Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Advances in Biosensors Based Nanostructure for Pharmaceutical Analysis

Author(s): Eslam Pourbasheer*, Zhila Azari and Mohammad Reza Ganjali

Volume 15, Issue 2, 2019

Page: [152 - 158] Pages: 7

DOI: 10.2174/1573411014666180319152853

Price: $65

Abstract

Background: The development of novel nanostructures for pharmaceutical analysis has received great attention. Biosensors are a class of analytical techniques competent in the rapid quantification of drugs. Recently, the nanostructures have been applied for modification of biosensors.

Objective: The goal of the present study is to review novel nanostructures for pharmaceutical analysis by biosensors.

Method: In this review, the application of different biosensors was extensively discussed.

Results: Biosensors based nanostructures are a powerful alternative to conventional analytical techniques, enabling highly sensitive, real-time, and high-frequency monitoring of drugs without extensive sample preparation. Several examples of their application have been reported.

Conclusion: The present paper reviews the recent advances on the pharmaceutical analysis of biosensor based nanostructures.

Keywords: Nanostructures, biosensors, pharmaceutical analysis, drugs, modifications, HPLC-MS.

Graphical Abstract
[1]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetil in pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan. Inst. Chem. Eng., 2017, 80, 989-996.
[2]
Ganjali, M.R.; Bananezhad, A.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[3]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: An experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[4]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food. Drug. Anal., 2017, 25, 1000-1007.
[5]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[6]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of levodopa in the presence of vitamin B6 using carbon paste electrode modified with 1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO nanoparticles. Electroanalysis, 2017, 29, 1854-1859.
[7]
Safari, F.; Keyvanfard, M.; Karimi-Maleh, H.; Alizad, K. Voltammetric determination of penicillamine using a carbon paste electrode modified with multiwall carbon nanotubes in the presence of methyldopa as a mediator. Iran. J. Pharm. Res., 2017, 16, 1019-1029.
[8]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[9]
Adrian, J.; Sánchez-Baeza, F.; Sanvicens, N.; Marco, M.P. Generation of broad specificity antibodies for sulfonamide antibiotics and development of an Enzyme-Linked Immunosorbent Assay (ELISA) for the analysis of milk samples. J. Agric. Food Chem., 2009, 57(2), 385-394.
[10]
Estévez, M.C.; Font, H.; Nichkova, M.; Salvador, J.P.; Varela, B.; Sánchez-Baeza, F.; Marco, M.P. Immunochemical determination of pharmaceuticals and personal care products as emerging pollutants. in Water Pollution; Springer, 2005, pp. 181-244.
[11]
Dzyadevych, S.V.; Arkhypova, V.N.; Soldatkin, A.P.; El’skaya, A.V.; Martelet, C.; Jaffrezic-Renault, N. Amperometric enzyme biosensors: Past, present and future. IRBM, 2008, 29(2), 171-180.
[12]
Sanvicens, N.; Mannelli, I.; Salvador, J.P.; Valera, E.; Marco, M.P. Biosensors for pharmaceuticals based on novel technology. TrAC. Trends Analyt. Chem., 2011, 30(3), 541-553.
[13]
Gil, E.S.; Melo, G.R. Electrochemical biosensors in pharmaceutical analysis. Braz. J. Pharm. Sci., 2010, 46(3), 375-391.
[14]
Monošík, R.; Streďanský, M.; Šturdík, E. Biosensors-classification, characterization and new trends. Acta Chim. Slov., 2012, 5(1), 109-120.
[15]
McNaught, A.D.; McNaught, A.D. Compendium of chemical terminology Blackwell Science: Oxford,., 1997, 1669.
[16]
Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102(1), 29-45.
[17]
López-Muñoz, G.A.; Estevez, M.C.; Peláez-Gutierrez, E.C.; Homs-Corbera, A.; García-Hernandez, M.C.; Imbaud, J.I.; Lechuga, L.M. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection. Biosens. Bioelectron., 2017, 96, 260-267.
[18]
Kurbanoglu, S.; Mayorga-Martinez, C.C.; Medina-Sánchez, M.; Rivas, L.; Ozkan, S.A.; Merkoçi, A. Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle‐based lab‐on‐a‐chip system. Biosens. Bioelectron., 2015, 67, 670-676.
[19]
Adrián, J.; Fernández, F.; Muriano, A.; Obregon, R.; Ramón-Azcon, J.; Tort, N.; Marco, M.P. Biosensors for pharmaceuticals and emerging contaminants based on novel micro and nanotechnology approaches. Biosens. Environ. Monitor. Aquatic Syst., 2009, 1, 47-68.
[20]
Xu, Z.; Yuan, Y.J. Implementation of guiding layers of surface acoustic wave devices: A review. Biosens. Bioelectron., 2018, 99, 500-512.
[21]
Bally, M.; Vörös, J. Nanoscale labels: Nanoparticles and liposomes in the development of high-performance biosensors. Nanomedicine., 2009, 4(4), 447-467.
[22]
Wang, J. Biomolecule‐Functionalized nanowires: From nanosensors to nanocarriers. ChemPhysChem, 2009, 10(11), 1748-1755.
[23]
Arya, S.K.; Singh, S.P.; Malhotra, B.D. Electrochemical techniques in biosensors Handbook of Biosensors and Biochips; , 2008.
[24]
Stradiotto, N.R.; Yamanaka, H.; Zanoni, M.V.B. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc., 2003, 14(2), 159-173.
[25]
Shrivastava, S.; Jadon, N.; Jain, R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. TrAC. Trends Analyt. Chem., 2016, 82, 55-67.
[26]
Malhotra, B.D.; Chaubey, A.; Singh, S. Prospects of conducting polymers in biosensors. Anal. Chim. Acta, 2006, 578(1), 59-74.
[27]
Fan, Y.; Liu, J.H.; Yang, C.P.; Yu, M.; Liu, P. Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sens. Actuators B Chem., 2011, 157(2), 669-674.
[28]
Lu, L. Zhang, O.; Xu, J.; Wen, Y.; Duan, X.; Yu, H.; Wu, L.; Nie, T.A. Facile one-step redox route for the synthesis of graphene/poly (3, 4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sens. Actuators B Chem., 2013, 181, 567-574.
[29]
Devi, R.; Thakur, M.; Pundir, C. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles-polypyrrole composite film. Biosens. Bioelectron., 2011, 26(8), 3420-3426.
[30]
Kang, Z.; Gu, Y.; Yan, X.; Bai, Z.; Liu, Y.; Liu, S.; Zhang, X.; Zhang, Z.; Zhang, X.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens. Bioelectron., 2015, 64, 499-504.
[31]
Ilkhani, H.; Hughes, T.; Li, J.; Zhong, C.J.; Hepel, M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens. Bioelectron., 2016, 80, 257-264.
[32]
Lete, C.; Lakard, B.; Hihn, J.Y.; Campo, F.J.; Lupu, S. Use of sinusoidal voltages with fixed frequency in the preparation of tyrosinase based electrochemical biosensors for dopamine electroanalysis. Sens. Actuators B Chem., 2017, 240, 801-809.
[33]
He, P.; Xu, Y.; Fang, Y. Applications of carbon nanotubes in electrochemical DNA biosensors. Mikrochim. Acta, 2006, 152(3-4), 175.
[34]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Lütfi Yola, M.; Kumar Gupta, V.; Ensafi, A.A. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res., 2015, 54(14), 3634-3639.
[35]
Mousty, C. Sensors and biosensors based on clay-modified electrodes—new trends. Appl. Clay Sci., 2004, 27(3), 159-177.
[36]
Mousty, C. Biosensing applications of clay-modified electrodes: A review. Anal. Bioanal. Chem., 2010, 396(1), 315-325.
[37]
Kohli, P.; Wirtz, M.; Martin, C.R. Nanotube membrane based biosensors. Electroanalysis, 2004, 16(1‐2), 9-18.
[38]
Keusgen, M. Biosensors: New approaches in drug discovery. Naturwissenschaften, 2002, 89(10), 433-444.
[39]
Lavanya, N.; Radhakrishnan, S.; Sekar, C.; Navaneethan, M.; Hayakawa, Y. Fabrication of Cr doped SnO 2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. Analyst., 2013, 138(7), 2061-2067.
[40]
Moreira, F.T.; Kamel, A.H.; Guerreiro, J.R.; Sales, M.G. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline. Biosens. Bioelectron., 2010, 26(2), 566-574.
[41]
de Jesus, D.S.; Couto, C.M.; Araújo, A.N.; Montenegro, M.C. Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol–gel film for benzydamine determination in pharmaceuticals. J. Pharm. Biomed. Sci., 2003, 33(5), 983-990.
[42]
Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical biosensors based on ZnO nanostructures: Advantages and perspectives. A review. Sens. Actuators B Chem., 2016, 229, 664-677.
[43]
Abdulhalim, I.; Zourob, M.; Lakhtakia, A. Overview of optical biosensing techniques. Handbook of Biosensors and Biochips; , 2008.
[44]
Strianese, M.; Staiano, M.; Ruggiero, G.; Labella, T.; Pellecchia, C.; D’Auria, S. Fluorescence-based biosensors. Spectr. Methods Anal. Methods Protocol., 2012, 875, 193-216.
[45]
Zhao, D.; Song, H.; Hao, L.; Liu, X.; Zhang, L.; Lv, Y. Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta, 2013, 107, 133-139.
[46]
Soler, M.; Mesa-Antunez, P.; Estevez, M.C.; Ruiz-Sanchez, A.J.; Otte, M.A.; Sepulveda, B.; Collado, D.; Mayorga, C.; Torres, M.J.; Perez-Inestrosa, E.; Lechuga, L.M. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens. Bioelectron., 2015, 66, 115-123.
[47]
Olaru, A.; Bala, C.; Jaffrezic-Renault, N.; Aboul-Enein, H.Y. Surface Plasmon Resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem., 2015, 45(2), 97-105.
[48]
Yadav, S.P.; Bergqvist, S.; Doyle, M.L.; Neubert, T.A.; Yamniuk, A.P. MIRG, Survey 2011: Snapshot of rapidly evolving label-free technologies used for characterizing molecular interactions. J. Biomol. Tech. JBT., 2012, 23(3), 94.
[49]
Chang, T.C.; Wu, C.C.; Wang, S.C.; Chau, L.K.; Hsieh, W.H. Using a fiber optic particle plasmon resonance biosensor to determine kinetic constants of antigen–antibody binding reaction. Anal. Chem., 2012, 85(1), 245-250.
[50]
Chen, S.; Deng, T.; Wang, T.; Wang, J.; Li, X.; Li, Q.; Huang, G. Visualization of high-throughput and label-free antibody-polypeptide binding for drug screening based on microarrays and surface plasmon resonance imaging. J. Biomed. Opt., 2012, 17(1), 015005.
[51]
Gupta, G.; Sharma, P.K.; Sikarwar, B.; Merwyn, S.; Kaushik, S.; Boopathi, M.; Agarwal, G.S.; Singh, B. Surface plasmon resonance immunosensor for the detection of Salmonella typhi antibodies in buffer and patient serum. Biosens. Bioelectron., 2012, 36(1), 95-102.
[52]
Bai, Y.; Feng, F.; Zhao, L.; Wang, C.; Wang, H.; Tian, M.; Qin, J.; Duan, Y.; He, X. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens. Bioelectron., 2013, 47, 265-270.
[53]
Lin, P.H.; Chen, R.H.; Lee, C.H.; Chang, Y.; Chen, C.S.; Chen, W.Y. Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry. Colloids Surf. B Biointerfaces, 2011, 88(2), 552-558.
[54]
Mani, R.J.; Dye, R.G.; Snider, T.A.; Wang, S.; Clinkenbeard, K.D. Bi-cell surface plasmon resonance detection of aptamer mediated thrombin capture in serum. Biosens. Bioelectron., 2011, 26(12), 4832-4836.
[55]
Anraku, K.; Fukuda, R.; Takamune, N.; Misumi, S.; Okamoto, Y.; Otsuka, M.; Fujita, M. Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance. Biochemistry, 2010, 49(25), 5109-5116.
[56]
Lee, J.H.; Kim, B.C.; Oh, B.K.; Choi, J.W. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomed-Nanotechnol: Biology. Med., 2013, 9(7), 1018-1026.
[57]
Vaisocherová, H.; Snásel, J.; Springer, T.; Sípová, H.; Rosenberg, I.; Stepánek, J.; Homola, J. Surface plasmon resonance study on HIV-1 integrase strand transfer activity. Anal. Bioanal. Chem., 2009, 393(4), 1165-1172.
[58]
Markgren, P.O.; Schaal, W.; Hämäläinen, M.; Karlén, A.; Hallberg, A.; Samuelsson, B.; Helen Danielson, U. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J. Med. Chem., 2002, 45(25), 5430-5439.
[59]
Danielson, U.H. Fragment library screening and lead characterization using SPR biosensors. Curr. Top. Med. Chem., 2009, 9(18), 1725-1735.
[60]
Guo, X. Surface plasmon resonance based biosensor technique: a review. J. Biophotonics, 2012, 5(7), 483-501.
[61]
Das, A.; Zhao, J.; Schatz, G.C.; Sligar, S.G.; Van Duyne, R.P. Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal. Chem., 2009, 81(10), 3754-3759.
[62]
Hong, Y.; Ku, M.; Lee, E.; Suh, J.S.; Huh, Y.M.; Yoon, D.S.; Yang, J. Localized surface plasmon resonance based nanobiosensor for biomarker detection of invasive cancer cells. J. Biomed. Opt., 2014, 19(5), 051202-051202.
[63]
Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors., 2015, 15(5), 10481-10510.
[64]
Nirschl, M.; Reuter, F.; Vörös, J. Review of transducer principles for label-free biomolecular interaction analysis. Biosensors., 2011, 1(3), 70-92.
[65]
In’acio, P.; Marat-Mendes, J.; Dias, C. Development of a biosensor based on a piezoelectric film. Ferroelectrics, 2003, 293(1), 351-356.
[66]
Ngeh-Ngwainbi, J.; Suleiman, A.A.; Guilbault, G.G. Piezoelectric crystal biosensors. Biosens. Bioelectron., 1990, 5(1), 13-26.
[67]
Uludağ, Y.; Piletsky, S.A.; Turner, A.P.; Cooper, M.A. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. FEBS J., 2007, 274(21), 5471-5480.
[68]
Neves, M.A. Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. Biosens. Bioelectron., 2015, 72, 383-392.
[69]
Li, X.; Thompson, K.S.; Godber, B.; Cooper, M.A. Quantification of small molecule-receptor affinities and kinetics by acoustic profiling. Assay Drug Dev. Technol., 2006, 4(5), 565-573.
[70]
Trojanowicz, M.; Wcisło, M. Electrochemical and piezoelectric enantioselective sensors and biosensors. Anal. Lett., 2005, 38(4), 523-547.
[71]
Mohanty, S.P.; Kougianos, E. Biosensors: A tutorial review. IEEE Potentials, 2006, 25(2), 35-40.
[72]
Hagen, J.A.; Kim, S.N.; Bayraktaroglu, B.; Leedy, K.; Chávez, J.L.; Kelley-Loughnane, N.; Naik, R.R.; Stone, M.O. Biofunctionalized zinc oxide field effect transistors for selective sensing of riboflavin with current modulation. Sensors., 2011, 11(7), 6645-6655.
[73]
Choi, A.; Kim, K.; Jung, H.; Lee, S.Y. ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens. Actuators B Chem., 2010, 148(2), 577-582.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy