Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Voltammetric Sensors Based on Various Nanomaterials for the Determination of Sulfonamides

Author(s): Hana Beigizadeh, Mohammad Reza Ganjali* and Parviz Norouzi

Volume 15, Issue 2, 2019

Page: [124 - 130] Pages: 7

DOI: 10.2174/1573411014666180313114313

Price: $65

Abstract

Background: The widespread applications of sulphonamides, as antibacterial or antimicrobial agents, and their mechanism of actions in the body, have changed their determination to an important issue in the area of human health.

Objective: Here, history of developing voltammetric sensors based on nanomaterials for the detection of sulfonamides including sulfadiazine, sulfamethoxazole, sulfacetamide, sulfadimethoxine, sulfathiazole, sulfamethiazole and sulfamerazine is reviewed. Modified electrodes based on various nanomaterials (carbonaceous nanomaterials, Metallic Nanoparticles (MNPs), conducting nanopolymers) have been reported, and studies showed that nanomaterials have been mostly used to overcome problems like the poor sensitivity and selectivity of bare electrodes. The study covers the properties of each sensor in detail, and reports and compares the linear ranges, Limits of Detection (LODs), reproducibility, and reusability of the electrodes reported so far.

Keywords: Sulfonamides, voltammetric determination, modified electrodes, electrochemical sensors, nanomaterials, electrochemical methods.

Graphical Abstract
[1]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetilin pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan Inst. Chem. Eng., 2017, 80, 989-996.
[2]
Bananezhad, A.; M.R, Ganjali.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of n-acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[3]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12(1), 634-640.
[4]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[5]
Lamani, S.D.; Teradale, A.B.; Unki, S.N.; Nandibewoor, S.T. Electrochemical oxidation and determination of methocarbamol at multi-walled carbon nanotubes-modified glassy carbon electrode. Anal. Bioanal. Electrochem., 2016, 8, 304-317.
[6]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent; An experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[7]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[8]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[9]
Elyasia, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141, 4311-4317.
[10]
Maulidiyah, Tribawono. D.S.; Wibowo, D.; Nurdin, M. Electrochemical profile degradation of amino acid by flow system using TiO2/Ti nanotubes electrode. Anal. Bioanal. Electrochem, 2016, 8, 761-776.
[11]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for analysisof glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[12]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[13]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food. Drug. Anal., 2017, 25, 1000-1007.
[14]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of Levodopa in the presence of vitamin B6 using carbon paste electrode modified with 1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO Nanoparticles. Electroanalysis, 2017, 29, 1-7.
[15]
Babaei, A. Nanomolar simultaneous determination of amlodipine and uric acid at the novel carbon paste electrode modified with magnetic carbon nanotubes/diatomite earth composite. Anal. Bioanal. Electrochem., 2016, 8, 489-504.
[16]
Najafia, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[17]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical determination of 3,5-dinitrobenzoic acid in the presence and absence of CTAB at multi-walled carbon nanotubes modified glassy carbon electrode: A voltammetric study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[18]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of Glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[19]
Karimi-Maleh, H.; Shojaei, A.F.; Karimi, F.; Tabatabaeian, K.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt /MWCNTs and 1-b utyl -3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[20]
Balooei, M.; Raoof, J.B.; Chekin, F.; Ojani, R. Novel sensor based on 3-Mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of cefixime. Anal. Bioanal. Electrochem, 2017, 9, 266-276.
[21]
Wormser, G.P.; Keusch, G.T. Trimethoprim-sulfamethoxazole in the United States. Ann. Intern. Med., 1979, 91, 420-429.
[22]
Gentili, A.; Perret, D.; Marchese, S.; Sergi, M.; Olmi, C.; Curini, R. Accelerated solvent extraction and confirmatory analysis of sulfonamide residues in raw meat and infant foods by liquid chromatography electrospray tandem mass spectrometry. J. Agric. Food Chem., 2004, 52, 4614-4624.
[23]
Hruska, K.; Franek, M. Sulfonamides in the environment: A review and a case report. Vet. Med. (Prague, Czech Repub.),, 2012, 57, 2- 11.
[24]
Haasnoot, W.; Bienenmann-Ploum, M.; Lamminmaki, U.; Swanenburg, M.; Rhijn, H. Application of a multi-sulfonamide biosensor immunoassay for the detection of sulfadiazine and sulfamethoxazole residues in broiler serum and its use as a predictor of the levels in edible tissue. Anal. Chim. Acta, 2005, 552, 87-95.
[25]
Borràs, S.; Companyó, R.; Guiteras, J. Analysis of sulfonamides in animal feeds by liquid chromatography with fluorescence detection. J. Agric. Food Chem., 2011, 59, 5240-5247.
[26]
Shao, B.; Dan, D.; Wu, Y.N.; Hu, J.Y.; Meng, J.; Tu, X.M.; Xu, S.K. Simultaneous determination of 17 sulfonamide residues in porcine meat, kidney and liver by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta, 2005, 546, 174-181.
[27]
De-Keizer, W.; Bienenmann-Ploum, M.E.; Bergwerff, A.A.; Haasnoot, W. Flow cytometric immunoassay for sulfonamides in raw milk. Anal. Chim. Acta, 2008, 14, 142-149.
[28]
Koesukwiwat, U.; Jayanta, S.; Leepipatpiboon, N. Validation of liquid chromatography-mass spectrometry multi-residue method for the simultaneous determination of sulfonamides, tetracyclines, and pyrimethamine in milk. J. Chromatogr. A, 2007, 1140, 147-156.
[29]
Amini, H.; Ahmadiani, A. Rapid and simultaneous determination of sulfamethoxazole and trimethoprimin human plasma by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2007, 43, 1146-1150.
[30]
Preechaworapun, A.; Chuanuwatanakul, S.; Einaga, Y.; Grudpan, K.; Motomizu, S.; Chailapakul, O. Electroanalysis of sulfonamides by flow injection system/highperformance liquid chromatography coupled with amperometric detection using boron-doped diamond electrode. Talanta, 2006, 68, 1726-1731.
[31]
Reeves, V.B. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography-positive chemical ionization mass spectrometry. J. Chromatogr. B., 1999, 723, 127-137.
[32]
Chiavarino, B.; Crestoni, M.E.; Marzio, A.; Fornarini, S. Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. J. Chromatogr. B., 1998, 706, 269-277.
[33]
Assassi, N.; Tazerouti, A.; Canselier, J.P. Analysis of chlorinated, sulfochlorinated and sulfonamide derivatives ofn-tetradecane by gas chromatography/mass spectrometry. J. Chromatogr. A, 2005, 1071, 71-80.
[34]
You, T.Y.; Yang, X.R.; Wang, E.K. Determination of sulfadiazine and sulfamethoxazole by capillary electrophoresis with end-column electrochemical detection. Analyst, 1998, 123, 2357-2360.
[35]
Voorhies, J.D.; Adams, R.N. Voltammetry solid electrodes. Anodic polarography of sulfa drugs. Anal. Chem., 1958, 30, 346-350.
[36]
Ali, A.M.M. Electroanalytical studies of azo sulpha drugs, application to novel heterocyclo-sulphonamide azo dye. Anal. Lett., 1993, 26, 1635-1647.
[37]
Braga, O.C.; Campestrini, I.; Vieira, I.C.; Spinelli, A. Sulfadiazine determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode. Brazilian Chem. Soc., 2010, 21, 813-820.
[38]
Souza, C.D.; Braga, O.C.; Vieira, I.C.; Spinelli, A. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sens. Actuat. B, 2008, 135, 66-73.
[39]
Hong, X.; Zhu, Y.; Ma, J. Application of multiwalled carbon nanotubes/ionic liquid modified for amperometric determination of sulfadiazine. Drug Test. Anal., 2011, 4, 1034-1039.
[40]
Msagati, T.A.M.; Ngila, J.C. Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. Talanta, 2002, 58, 605-610.
[41]
Sadeghi, S.; Motaharian, A. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum. Mater. Sci. Eng. C, 2013, 33, 4884-4891.
[42]
Campestrini, I.; De Braga, O.C.; Vieira, I.C.; Spinelli, A. Application of bismuth-film electrode for cathodic electroanalytical determination of sulfadiazine. Electrochim. Acta, 2010, 55, 4970-4975.
[43]
Abdullin, I.F.; Chernysheva, N.N.; Budnikov, G.K. Galvanostatic coulometric determination of aromatic amine derivatives in pharmaceutical preparations using electrochemically generated bromine. J. Anal. Chem., 2002, 57, 629-631.
[44]
Bishop, E.; Hussein, W. Electroanalytical studies of antibacterial and diuretic drugs at rotating disc electrodes of gold and platinum. Analyst., 1984, 109, 913-921.
[45]
Rao, T.N.; Sarada, B.V.; Tryk, D.A.; Fujishima, A. Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. J. Electroanal. Chem., 2000, 491, 175-181.
[46]
Astrid, M.V.; Maria, E.; Carrera, B.; Dietrich, V.B.; Carls, B. The oxidative voltammetric behaviour of some sulphonamides at the glassy carbon electrode. Anal. Chim. Acta, 1984, 159, 119-127.
[47]
Kotouˇcek. M.; Skopalová, J.; Michálková, D. Electroanalytical study of salazosulfapyridine and components at the mercury electrode. Anal. Chim. Acta, 1997, 353, 61-69.
[48]
Joseph, R.; Kumar, K.G. Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test. Anal., 2010, 2, 278-283.
[49]
Cottrell, P.T.; Mann, C.K. Electrochemical reduction of Arylsulfonamides. J. Am. Chem. Soc., 1971, 93, 3579-3584.
[50]
Fotouhi, L.; Bagheri Hashkavayi, A.; Heravi, M.M. Interaction of sulfadiazine with DNA on a MWCNT modified glassy carbon electrode: Determination of DNA. Int. J. Biol. Macromol., 2013, 53, 101-106.
[51]
Ebrahimi, M.; Nikoofard, H.; Faridbod, F.; Shiralizadeh Dezfuli, A.; Beigizadeh, H.; Norouzi, P. A ceria NPs decorated graphene nano-composite sensor for sulfadiazine determination in pharmaceutical formulation. J. Mater. Sci. Mater. Electron., 2017, 28(22), 16704-16712.
[52]
Beitollahi, H.; Movlaee, K.; Ganjali, M.R.; Norouzi, P. A sensitive graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate modified carbon paste electrode for the concurrent determination of isoproterenol, acetaminophen, tryptophan and theophylline in human biological fluids. J. Electroanal. Chem., 2017, 799, 576-582.
[53]
Dezfuli, A.S.; Ganjali, M.R.; Jafari, H.; Faridbod, F. Samaria/reduced graphene oxide nanocomposites; sonochemical synthesis and electrochemical evaluation. J. Mater. Sci. Mater. Electron., 2017, 28(8), 6176-6185.
[54]
Dezfuli, A.S.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J. Mater. Chem. B., 2015, 3(11), 2362-2370.
[55]
Jafari, H.; Ganjali, M.R.; Dezfuli, A.S.; Faridbod, F. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route. Appl. Surf. Sci., 2018, 427, 496-506.
[56]
Karimi-Maleh, H.; Ahanjan, K.; Taghavi, M.; Ghaemy, M. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods, 2016, 8(8), 1780-1788.
[57]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[58]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Mikrochim. Acta, 2017, 184(9), 3281-3289.
[59]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12(9), 8045-8058.
[60]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate. J. Electrochem. Soc., 2017, 164(6), H407-H412.
[61]
Movlaee, K.; Ganjali, M.R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci., 2017, 12(1), 305-315.
[62]
Norouzi, P.; Ganjali, H.; Larijani, B.; Ganjali, M.R.; Faridbod, F.; Zamani, H.A. A glucose biosensor based on nanographene and ZnO nanoparticles using FFT continuous cyclic voltammetry. Int. J. Electrochem. Sci., 2011, 6(11), 5189-5199.
[63]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[64]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic Liquid-Graphene Nano-Sheets using Coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[65]
Norouzi, P.; Pirali-Hamedan, M.; Ganjali, R. Candesartan cilexetil determination by electrode modified with hybrid film of ionic liquid- graphene nanosheets-silicon carbide nanoparticle using continuous coulometric fft cyclic voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2023-2033.
[66]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[67]
Karimi-Maleh, H.; Ganjali, M.R.; Norouzi, P.; Bananezhad, A. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater. Sci. Eng. C, 2017, 73, 472-477.
[68]
Chasta, H.; Goyal, R.N. A simple and sensitive Poly-1,5-diaminonaphthalene modified sensor for the determination of sulfamethoxazole in biological samples. Electroanalysis, 2015, 27, 1229-1237.
[69]
Ait Lahcen, A.; Ait Errayess, S.; Amine, A. Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Mikrochim. Acta, 2016, 183, 2169-2176.
[70]
Ozkorucuklu, S.P.; Ozcan, L.; Sahin, Y.; Alsancak, G. Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes. Aust. J. Chem., 2011, 64(7), 965-972.
[71]
Issac, S.; Kumar, K.G. Voltammetric determination of sulfamethoxazole at amultiwalled carbon nanotube modified glassy carbon sensor and its application studies. Drug Test. Anal., 2009, 1, 350-354.
[72]
He, B.; Yan, S. Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/func-tionalized graphene. Int. J. Electrochem. Sci., 2017, 12, 3001-3011.
[73]
He, B.; Chen, W. Two-electrode sensor system for rapid detection of sulfonamides by applying the nafion-carboxyl multiwalled carbon nanotubes powder microelectrode. Int. J. Electrochem. Sci., 2016, 11, 10362-10378.
[74]
Reguera, C.; Ortiz, M.C.; Herrero, A.; Sarabia, L.A. Optimization of a FIA system with amperometric detection by means of a desirability function. Determination of sulfadiazine, sulfamethazine and sulfamerazine in milk. Talanta, 2008, 75(1), 274-283.
[75]
He, B.S.; Chen, W.B. Voltammetric determination of sulfonamides with a modified glassy carbon electrode using carboxyl multiwalled carbon nanotubes. J. Braz. Chem. Soc., 2016, 27(12), 2216-2225.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy