Inhalable Nanostructures for Lung Cancer Treatment: Progress and Challenges

Author(s): A. Singh, S. Bhatia, V. Rana*.

Journal Name: Current Nanomedicine

Volume 9 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Worldwide, lung cancer is the major cause of deaths due to cancer. Most of the lung cancer cases are categorized as 85% cases of non-small cell lung cancer, while remainder 15% cases are known as small cell lung cancer. The long survival time as well as the improved quality of life for patients undergoing lung cancer using conventional chemotherapy is still not satisfactory. Therefore, robust research undergoes development of drug delivery system which increased drug at target side with reduced systemic side effect.

Method: Bibliography database reviewed various inhalable nanostructured drug delivery strategies for effective delivery of anticancer drugs to lung cancer which are designed to improve the therapeutic index of anticancer drugs throughout improvement of their stability as well as bioavailability.

Results: It has been reported that nanostructure based inhalation chemotherapy is more successful targeting system and also offers reduced side effects than conventional chemotherapy.

Conclusion: Thus, the review highlights the critical issues, strategies for delivery and provides detail on various inhalable nanostructures for anticancer drug delivery along with toxicity concerns as well as rationale behind development of inhalable nanostructures.

Keywords: Anticancer drugs, bioavailability, inhalable nanostructures, lung cancer, non-small lung cancer, small cell lung cancer.

[1]
Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin 2011; 61(2): 91-112.
[2]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69-90.
[3]
Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett 2013; 3(1): 45.
[4]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 2015; 8: 55.
[5]
Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. J Lung Can 2011; 71(1): 3-10.
[6]
Sandler AB, Nemunaitis J, Denham C, et al. Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2000; 18(1): 122.
[7]
Tseng CL, Wu SY, Wang WH, et al. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials 2008; 29(20): 3014-22.
[8]
Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol 2007; 25(12): 563-70.
[9]
Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 2008; 60(8): 863-75.
[10]
Akhter S, Amin S, Ahmad J, et al. Nanotechnology to combat multidrug resistance in cancer Resistance to Targeted ABC Transporters in Cancer. Springer 2015; pp. 245-72.
[11]
Maiolino S, Russo A, Pagliara V, et al. Biodegradable nanoparticles sequentially decorated with polyethyl-eneimine and hyaluronan for the targeted delivery of docetaxel to airway cancer cells. J Nanobiotech 2015; 13(1): 29.
[12]
Yuan Dm, Yl Lv, Yao Yw, et al. Efficacy and safety of abraxane in treatment of progressive and recurrent non‐small cell lung cancer patients: A retrospective clinical study. Thorac Cancer 2012; 3(4): 341-7.
[13]
Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 2010; 392(1): 1-19.
[14]
Chandolu VR, R Dass C. Treatment of lung cancer using nanoparticle drug delivery systems. Curr Drug Discov Technol 2013; 10(2): 170-6.
[15]
Zarogouldis P, Karamanos NK, Porpodis K, et al. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13(9): 10828-62.
[16]
Goel A, Baboota S, Sahni JK, Ali J. Exploring targeted pulmonary delivery for treatment of lung cancer. Int J Pharm Investig 2013; 3(1): 8.
[17]
Alipour S, Montaseri H, Tafaghodi M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf B Biointerfaces 2010; 81(2): 521-9.
[18]
Davis ME, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771.
[19]
Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014; 190: 424-39.
[20]
Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 2004; 1(4): 338-44.
[21]
Schanker LS, Less MJ. Lung pH and pulmonary absorption of nonvolatile drugs in the rat. Drug Metab Dispos 1977; 5(2): 174-8.
[22]
MuÈller RH MaÈder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[23]
Calvo P, Vila‐Jato JL, Alonso MJ. Comparative in-vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci 1996; 85(5): 530-6.
[24]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[25]
Maherani B, Arab-Tehrany E. R Mozafari M, Gaiani C, Linder M. Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanosci 2011; 7(3): 436-52.
[26]
Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm 2015; 10(6): 481-9.
[27]
Ranganathan R, Madanmohan S, Kesavan A, et al. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomedicine 2012; 7: 1043.
[28]
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012; 7: 4391.
[29]
Dhanikula AB, Panchagnula R. Localized paclitaxel delivery. Int J Pharm 1999; 183(2): 85-100.
[30]
Carstens MG, de Jong PH, van Nostrum CF, et al. The effect of core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharm Biopharm 2008; 68(3): 596-606.
[31]
Hansch C, Leo A, Hoekman D, Livingstone D. Exploring QSAR: hydrophobic, electronic, and steric constants. Washington, DC. J Am Chem Soc 1995.
[32]
He J, Han Y, Xu G, et al. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv 2017; 7(22): 13053-64.
[33]
Meloun M, Ferenčíková Z, Vrána A. The thermodynamic dissociation constants of methotrexate by the nonlinear regression and factor analysis of multiwavelength spectrophotometric pH-titration data. Open Chem 2010; 8(3): 494-507.
[34]
Vrignaud S, Anton N, Gayet P, Benoit JP, Saulnier P. Reverse micelle-loaded lipid nanocarriers: a novel drug delivery system for the sustained release of doxorubicin hydrochloride. Eur J Pharm Biopharm 2011; 79(1): 197-204.
[35]
Truong DH, Tran TH, Ramasamy T, et al. Development of solid self-emulsifying formulation for improving the oral bioavailability of erlotinib. AAPS PharmSciTech 2016; 17(2): 466-73.
[36]
Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112.
[37]
Stella B, Arpicco S, Rocco F, et al. Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int J Pharm 2007; 344(1): 71-7.
[38]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65(1): 271-84.
[39]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5(4): 505-15.
[40]
Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26.
[41]
Karra N, Benita S. The ligand nanoparticle conjugation approach for targeted cancer therapy. Curr Drug Metab 2012; 13(1): 22-41.
[42]
Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 2015; 141(5): 769-84.
[43]
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs-barriers of translation and solutions. AAPS PharmSciTech 2014; 15(4): 822-33.
[44]
Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. The Lancet 2011; 377(9770): 1032-45.
[45]
Boe J, Dennis J, O’driscoll B, et al. European Respiratory Society Guidelines on the use of nebulizers. Eur Respir J 2001; 18(1): 228-42.
[46]
Niven RW, Ip AY, Mittelman S, Prestrelski S, Arakawa T. Some factors associated with the ultrasonic nebulization of proteins. Pharm Res 1995; 12(1): 53-9.
[47]
Respaud R, Vecellio L, Diot P, Heuzé-Vourc’h N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv 2015; 12(6): 1027-39.
[48]
Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release 2010; 144(2): 233-41.
[49]
Videira M, Almeida AJ, Fabra À. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine 2012; 8(7): 1208-15.
[50]
Godugu C, Patel AR, Doddapaneni R, Marepally S, Jackson T, Singh M. Inhalation delivery of telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release 2013; 172(1): 86-95.
[51]
Mainelis G, Seshadri S, Garbuzenko O, Han T, Wang Z, Minko T. Characterization and application of a nose-only exposure chamber for inhalation delivery of liposomal drugs and nucleic acids to mice. J Aerosol Med Pulm Drug Deliv 2013; 26(6): 345-54.
[52]
Brocklebank D, Ram F, Wright J, Barry P. Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature. Clinical Governance 2002; 7(2): 125.
[53]
Newman SP. Therapeutic inhalation agents and devices: effectiveness in asthma and bronchitis. Postgrad Med 1984; 76(5): 194-207.
[54]
Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SR. Poly (amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm 2014; 11(6): 1808-22.
[55]
Zhong Q, Humia BV, Punjabi AR, Padilha FF, da Rocha SR. The interaction of dendrimer-doxorubicin conjugates with a model pulmonary epithelium and their cosolvent-free, pseudo-solution formulations in pressurized metered-dose inhalers. Eur J Pharm Sci 2017; 109: 86.
[56]
Silva AS, Sousa AM, Cabral RP, et al. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int J Pharm 2017; 519(1): 240-9.
[57]
Anderson P. Use of Respimat® soft Mist™ inhaler in COPD patients. Int J Chron Obstruct Pulmon Dis 2006; 1(3): 251.
[58]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[59]
Xiong XB, Falamarzian A, Garg SM, Lavasanifar A. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 2011; 155(2): 248-61.
[60]
Gill KK, Nazzal S, Kaddoumi A. Paclitaxel loaded PEG 5000–DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur J Pharm Biopharm 2011; 79(2): 276-84.
[61]
Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med 2014; 11(1): 44.
[62]
Sun CY, Shen S, Xu CF, et al. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc 2015; 137(48): 15217-24.
[63]
Qiao JB, Jang Y, Fan QQ, et al. Aerosol delivery of biocompatible dihydroergotamine-loaded PLGA-PSPE polymeric micelles for efficient lung cancer therapy. Polym Chem 2017; 8(9): 1540-54.
[64]
Zhu JJ, Zhang XX, Miao YQ, et al. Delivery of acetylthevetin B, an antitumor cardiac glycoside, using polymeric micelles for enhanced therapeutic efficacy against lung cancer cells. Acta Pharmacol Sin 2017; 38(2): 290.
[65]
Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater 2013; 14.
[66]
Jiang ZM, Dai SP, Xu YQ, et al. Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med Oncol 2015; 32(7): 193.
[67]
Mehrotra A, Nagarwal RC, Pandit JK. Lomustine loaded chitosan nanoparticles: characterization and in-vitro cytotoxicity on human lung cancer cell line L132. Chem Pharm Bull 2011; 59(3): 315-20.
[68]
Roa WH, Azarmi S, Al-Hallak MK, Finlay WH, Magliocco AM, Löbenberg R. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release 2011; 150(1): 49-55.
[69]
Azarmi S, Tao X, Chen H, et al. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 2006; 319(1): 155-61.
[70]
Rafiei P, Haddadi A. Docetaxel-loaded Plga and Plga-Peg nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomedicine 2017; 12: 935.
[71]
Koshkina NV, Golunski E, Roberts LE, Gilbert BE, Knight V. Cyclosporin A aerosol improves the anticancer effect of paclitaxel aerosol in mice. J Aerosol Med 2004; 17(1): 7-14.
[72]
Patel K, Doddapaneni R, Chowdhury N, Boakye CH, Behl G, Singh M. Tumor stromal disrupting agent enhances the anticancer efficacy of docetaxel loaded PEGylated liposomes in lung cancer. Nanomedicine (Lond) 2016; 11(11): 1377-92.
[73]
Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 2014; 183: 18-26.
[74]
Zhang WW, Wang YC, Kan XM, Wang XM, Geng DM. Preparation and evaluation of peptide-dendrimer-paclitaxel conjugates for treatment of heterogeneous stage 1 nonsmall cell lung cancer in 293T and L132 cell lines. Trop J Pharm Res 2017; 16(4): 737-42.
[75]
Xie Y, Aillon KL, Cai S, et al. Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer. Int J Pharm 2010; 392(1): 156-63.
[76]
Verma NK, Crosbie-Staunton K, Satti A, et al. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 2013; 11(1): 1.
[77]
Hu L, Jia Y. Preparation and characterization of solid lipid nanoparticles loaded with epirubicin for pulmonary delivery. Die Pharmazie-Int J Pharm Sci 2010; 65(8): 585-7.
[78]
Bakhtiary Z, Barar J, Aghanejad A, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm 2017; 1-10.
[79]
Taratula O, Garbuzenko OB, Chen AM, Minko T. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 2011; 19(10): 900-14.
[80]
Tseng CL, Wang TW, Dong GC, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 2007; 28(27): 3996-4005.
[81]
Tseng CL, Su WY, Yen KC, Yang KC, Lin FH. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 2009; 30(20): 3476-85.
[82]
Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanopar-ticles for the targeting and therapy of lung cancer. Oncol Lett 2015; 9(3): 1065-72.
[83]
Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine (Lond) 2013; 9(4): 474-91.
[84]
Lakshmikuttyamma A, Sun Y, Lu B, Undieh A, Shoyele S. Stable and efficient transfection of siRNA for mutated KRAS silencing using novel hybrid nanoparticles. Mol Pharm 2014; 11(12): 4415-24.
[85]
Babu VR, Mallikarjun V, Nikhat S, Srikanth G. Dendrimers: a new carrier system for drug delivery. Int Res J Pharm App Sci 2010; 1(1): 1-10.
[86]
Khairnar G, Chavan-Patil A, Palve P, Bhise S, Mourya V, Kulkarni C. Dendrimers: potential tool for enhancement of antifungal activity. Int J Pharm Tech Res 2010; 2(1): 736-9.
[87]
Haensler J, Szoka Jr F.C.. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993; 4(5): 372-9.
[88]
Jinturkar KA, Anish C, Kumar MK, Bagchi T, Panda AK, Misra AR. Liposomal formulations of etoposide and docetaxel for p53 mediated enhanced cytotoxicity in lung cancer cell lines. Biomaterials 2012; 33(8): 2492-507.
[89]
Zhou J, Zhao WY, Ma X, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 2013; 34(14): 3626-38.
[90]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305.
[91]
De Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201: 1-13.
[92]
Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 2015; 495(1): 439-46.
[93]
Rosiere R, Amighi K, Vermeersch M, Wauthoz N, Eds. New Dry Powders for Inhalation containing Chitosan Derivative-coated Solid Lipid Nanoparticles for Targeted Delivery to Lung Cancer Cells RDD Europe. 2015; pp. 447-52. Virginia Commonwealth University.
[94]
Müller RH, Staufenbiel S, Keck CM. Lipid Nanoparticles (SLN, NLC) for innovative consumer care & household products. Househ Personal Care 2014; 9(2): 18-25.
[95]
Yoon G, Park JW, Yoon IS. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. J Pharm Investig 2013; 43(5): 353-62.
[96]
Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release 2013; 171(3): 349-57.
[97]
Jyoti K, Kaur K, Pandey RS, Jain UK, Chandra R, Madan J. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in-vitro and in-vivo studies. J Colloid Interface Sci 2015; 445: 219-30.
[98]
Vatta LL, Sanderson RD, Koch KR. Magnetic nanoparticles: properties and potential applications. Pure Appl Chem 2006; 78(9): 1793-801.
[99]
Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2(3): 22-32.
[100]
Orel V, Shevchenko A, Romanov A, et al. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Nanomed: Nanotech. Biol Med 2015; 11(1): 47-55.
[101]
del Mar Ramos-Tejada M, Viota JL, Rudzka K, Delgado AV. Preparation of multi-functionalized Fe3 O4/Au nanoparticles for medical purposes. Colloids Surf B Biointerfaces 2015; 128: 1-7.
[102]
Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 2013; 34(21): 5163-71.
[103]
Li K, Chen B, Xu L, et al. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in-vitro and in-vivo. Int J Nanomedicine 2013; 8: 1867.
[104]
Hauser AK, Anderson KW, Hilt JZ. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells. Nanomedicine 2016; 11(14): 1769-85.
[105]
Madni A, Batool A, Noreen S, et al. Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 2017; 25(6): 499-512.
[106]
Minati L, Antonini V, Dalla Serra M, Speranza G. Multifunctional branched gold-carbon nanotube hybrid for cell imaging and drug delivery. Langmuir 2012; 28(45): 15900-6.
[107]
Murakami T, Nakatsuji H, Inada M, et al. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. J Am Chem Soc 2012; 134(43): 17862-5.
[108]
Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target 2013; 21(1): 67-76.
[109]
Arya N, Arora A, Vasu K, Sood AK, Katti DS. Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale 2013; 5(7): 2818-29.
[110]
Tobin LA, Xie Y, Tsokos M, et al. Pegylated siRNA-loaded calcium phosphate nanoparticle-driven amplification of cancer cell internalization in-vivo. Biomaterials 2013; 34(12): 2980-90.
[111]
Zhang Y, Kim WY, Huang L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials 2013; 34(13): 3447-58.
[112]
Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 2010; 142(3): 416-21.
[113]
Yang Y, Li J, Liu F, Huang L. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol Ther 2012; 20(3): 609-15.
[114]
Yang SY, Sun JS, Liu CH, et al. Ex-vivo magnetofection with magnetic nanoparticles: a novel platform for nonviral tissue engineering. Artif Organs 2008; 32(3): 195-204.
[115]
Yu MK, Jeong YY, Park J, et al. Drug‐loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in-vivo. ‎. Angew Chem 2008; 120(29): 5442-5.
[116]
Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 2007; 4(5): 713-22.
[117]
Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[118]
Conde J, Tian F, Hernández Y, et al. In-vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials 2013; 34(31): 7744-53.
[119]
Hamzawy MA, Abo-youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv 2017; 24(1): 599-607.
[120]
Sun W, Fang N, Trewyn BG, et al. Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem 2008; 391(6): 2119.
[121]
Di Pasqua AJ, Miller ML, Lu X, Peng L, Jay M. Tumor accumulation of neutron-activatable holmium containing mesoporous silica nanoparticles in an orthotopic non-small cell lung cancer mouse model. Inorg Chim Acta 2012; 393: 334-6.
[122]
Sundarraj S. EGFR antibody conjugated mesoporous silica nanoparticles for cytosolic phospholipase A2α targeted nonsmall lung cancer therapy. J Cell Sci Ther 2012; 3(7)
[123]
Kumar CS. Biofunctionalization of nanomaterials.Biofunctionalization of Nanomaterials. by Challa SSR Kumar Ed., Wiley-VCH, November 2005; p. 377.
[124]
Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 2012; 161(1): 38-49.
[125]
Cao F, Ding B, Sun M, Guo C, Zhang L, Zhai G. Lung-targeted delivery system of curcumin loaded gelatin microspheres. Drug Deliv 2011; 18(8): 545-54.
[126]
Lu Z, Yeh TK, Wang J, et al. Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy. The J Urol 2011; 185(4): 1478-83.
[127]
Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E. Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed Preven Nutri 2013; 3(1): 64-73.
[128]
Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014; 75: 81-91.
[129]
Zhang L, Laug L, Munchgesang W, et al. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett 2009; 10(1): 219-23.
[130]
Elder A, Gelein R, Silva V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 2006; 114(8): 1172.
[131]
Shafi S. Nanomedicine and use of nanotechnology in drug delivery systems: A novel approach. Inter J Res Pharma Biomed Sci 2011; 2(3): 926-30.
[132]
Fernandez L, Sua LF, Camargo R, Basante M, Gutierrez O, Munoz J. Evaluation of the pulmonary inflammatory response in murine biomodels exposed to modified titanium oxide (TiO2-modified). InA33 Immune regulation of inflammation and airway hyperresponsiveness. Am Thoracic Soc 2015; A1372-2.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2019
Page: [4 - 29]
Pages: 26
DOI: 10.2174/2468187308666180307152049
Price: $58

Article Metrics

PDF: 56
HTML: 2
PRC: 1