A Review on Anodic Aluminum Oxide Methods for Fabrication of Nanostructures for Organic Solar Cells

Author(s): Arkadiusz Jarosław Goszczak*, Paweł Piotr Cielecki.

Journal Name: Current Nanoscience

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Implementation of nanostructures into the organic solar cell (OSC) architecture has a great influence on the device performance. Nanostructuring the active layer increases the interfacial area between donor and acceptor, which enhances the probability of exciton dissociation. Introduction of nanostructures into the active layer and nanopatterning of the electrodes leads to increased light absorption due to light scattering and plasmonic effects, and nanostructured antireflection coatings constrict light within the device. The appealing features of Anodic Aluminum Oxide (AAO), mainly: scalability, low fabrication cost and easy control over its nano-scale morphology, make AAO patterning methods an intriguing candidate for nanopatterning. Hence, in this work, we present a review on the fabrication techniques and on nanostructures from Anodic Aluminum Oxide (AAO) for OSC applications. The versatility of such patterning technique is shown by pointing out the possibility of using an AAO template for the fabrication of nanowires by wetting, nanodots by evaporation, nanostructures by imprinting resists, organic layers and much more.

Keywords: Anodic aluminum oxide, organic solar cell, nanostructures, template, imprinting, direct patterning, device performance.

[1]
Society, R. Nanoscience and Nanotechnologies: Opportunities and Uncertainties; The Royal Society, 2004.
[2]
Guozhong, C. Nanostructures and Nanomaterials; World Scientific Publishing Co., 2004.
[3]
Martín-Palma, R.J.; Lakhtakia, A. Nanotechnology: A Crash Course; SPIE, 2010.
[4]
Nasir, A.; Friedman, A.; Wang, S. Nanotechnology in Dermatology; Springer Science & Business Media, 2012.
[5]
De Villiers, M.M.; Aramwit, P.; Kwon, G.S. Nanotechnology in Drug Delivery; Springer Science & Business Media, 2008.
[6]
Sivakumar, P.M.; Kodolov, V.I.; Zaikov, G.E.; Haghi, A.K. Nanostructure, Nanosystems, and Nanostructured Materials: Theory, Production and Development; CRC Press, 2013.
[7]
Cabrini, S.; Kawata, S. Nanofabrication Handbook; CRC Press, 2012.
[8]
Utke, I.; Moshkalev, S.; Russell, P. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications; Oxford University Press, 2012.
[9]
Hennessy, T.C. Lithography: Principle, Processes and Materials; Nova Science Pub Inc, 2011.
[10]
Al-Shamery, K.; Rubahn, H-G.; Sitter, H. Organic Nanostructures for Next Generation Devices; Springer Science & Business Media, 2007.
[11]
Xu, Y. Direct Synthesis of Multifunctional Heterostructured Magnetic Nanoparticles in Gas Phase; ProQuest, 2007.
[12]
Nalwa, H.S. Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set Vol. 3; Academic Press, 1999.
[13]
Zhiqun, L.; Wang, J. Low-Cost Nanomaterials; Springer, 2014.
[14]
Mishra, Y.K.; Mohapatra, S.; Kabiraj, D.; Tripathi, A.; Pivin, J.C.; Avasthi, D.K. Growth of Au nanostructures by annealing electron beam evaporated thin films. J. Opt. A, Pure Appl. Opt., 2007, 9, S410-S414.
[15]
Yao, B.D.; Chan, Y.F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett., 2002, 81, 757.
[16]
Mitzi, D. Solution Processing of Inorganic Materials; John Wiley & Sons, 2009.
[17]
Catherine, L. Gold Nanoparticles for Physics, Chemistry and Biology; Imperial College Press, 2012.
[18]
Khodashenas, B.; Ghorbani, H.R. Synthesis of Silver nanoparticles with different shapes. Arab. J. Chem., 2015.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[19]
Qi, S.; Shen, X.; Lin, Z.; Tian, G.; Wu, D.; Jin, R. Synthesis of silver nanocubes with controlled size using water-soluble poly(amic acid) salt as the intermediate via a novel ion-exchange self-assembly technique. Nanoscale, 2013, 5, 12132-12135.
[20]
Wu, H-L.; Tsai, H-R.; Hung, Y-T.; Lao, K-U.; Liao, C-W.; Chung, P-J.; Huang, J-S.; Chen, I-C.; Huang, M.H. A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates. Inorg. Chem., 2011, 50, 8106-8111.
[21]
Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett., 2002, 2, 165-168.
[22]
Soga, T. Nanostructured Materials for Solar Energy Conversion; Elsevier, 2006.
[23]
Jin, M.L.; Choi, J.K.; Kim, D.W.; Park, J-M.; An, C.J.; Kim, H.J.; Kim, B.J.; Diao, Y.; Jung, H-T. Enhanced thermal stability of organic solar cells on nano structured electrode by simple acid etching. Org. Electron., 2014, 15, 680-684.
[24]
Ray, B.; Member, S.; Khan, M.R.; Black, C.; Member, S.; Alam, M.A. Nanostructured electrodes for organic solar cells: Analysis and design fundamentals. IEEE J. Photovoltaics, 2013, 3, 318-329.
[25]
Cheng, Y-S.; Gau, C. Efficiency improvement of organic solar cells with imprint of nanostructures by capillary force lithography. Sol. Energy Mater. Sol. Cells, 2014, 120, 566-571.
[26]
Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett., 2010, 10, 1082-1087.
[27]
Yu, R.; Ching, K-L.; Lin, Q.; Leung, S-F.; Arcrossito, D.; Fan, Z. Strong light absorption of self-organized 3-d nanospike arrays for photovoltaic applications. ACS Nano, 2011, 5, 9291-9298.
[28]
Peer, A.; Biswas, R. Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals. ACS Photonics, 2014, 1, 840-847.
[29]
Shaw, P.E.; Ruseckas, A.; Samuel, I.D.W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater., 2008, 20, 3516-3520.
[30]
Tang, Z.; Tress, W.; Inganäs, O. Light trapping in thin film organic solar cells. Mater. Today, 2014, 17, 389-396.
[31]
Chou, C-H.; Chen, F-C. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444-8458.
[32]
Niesen, B.; Rand, B.P.; Van Dorpe, P.; Cheyns, D.; Tong, L.; Dmitriev, A.; Heremans, P. Plasmonic efficiency enhancement of high performance organic solar cells with a nanostructured rear electrode. Adv. Energy Mater., 2013, 3, 145-150.
[33]
Gan, Q.; Bartoli, F.J.; Kafafi, Z.H. Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier. Adv. Mater., 2013, 25, 2385-2396.
[34]
Zhu, J.; Xue, M.; Hoekstra, R.; Xiu, F.; Zeng, B.; Wang, K.L. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. Nanoscale, 2012, 4, 1978-1981.
[35]
Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J-J.; Flory, F.; Mathian, G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells, 2009, 93, 1377-1382.
[36]
Kim, S-S.; Na, S-I.; Jo, J.; Kim, D-Y.; Nah, Y-C. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett., 2008, 93, 073307.
[37]
Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.; Motta, N. Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy, 2014, 106, 23-37.
[38]
Chiu, N-F.; Hou, C-H.; Cheng, C-J.; Tsai, F-Y. Plasmonic circular nanostructure for enhanced light absorption in organic solar cells. Int. J. Photoenergy, 2013, 2013, Article ID 502576.
[39]
de Oliveira Hansen, R.M.; Liu, Y.; Madsen, M.; Rubahn, H-G. Flexible organic solar cells including efficiency enhancing grating structures. Nanotechnology, 2013, 24, 145301.
[40]
Li, X.H.; Sha, W.E.I.; Choy, W.C.H.; Fung, D.D.S.; Xie, F.X. Efficient inverted polymer solar cells with directly patterned active layer and silver back grating. J. Phys. Chem. C, 2012, 116, 7200-7206.
[41]
Hulteen, J.C.; Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem., 1997, 7, 1075-1087.
[42]
Eftekhari, A. Nanostructured Materials in Electrochemistry; John Wiley and Sons, 2008.
[43]
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268, 1466-1468.
[44]
Yang, R.; Sui, C.; Gong, J.; Qu, L. Silver nanowires prepared by modified AAO template method. Mater. Lett., 2007, 61, 900-903.
[45]
Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in nano-engineered anodic aluminum oxide membrane development. Materials (Basel), 2010, 4, 487-526.
[46]
Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum for plasmonics. ACS Nano, 2014, 8, 834-840.
[47]
Martin, J.; Plain, J. Fabrication of aluminium nanostructures for plasmonics. J. Phys. D Appl. Phys., 2015, 48, 184002.
[48]
Lee, M.H.; Lim, N.; Ruebusch, D.J.; Jamshidi, A.; Kapadia, R.; Lee, R.; Seok, T.J.; Takei, K.; Cho, K.Y.; Fan, Z.; Jang, H.; Wu, M.; Cho, G.; Javey, A. Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett., 2011, 11, 3425-3430.
[49]
Miles, R.W.; Zoppi, G.; Forbes, I. Inorganic photovoltaic cells. Mater. Today, 2007, 10, 20-27.
[50]
Gregg, B.A.; Hanna, M.C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys., 2003, 93, 3605-3614.
[51]
Hoppe, H.; Sariciftci, N.S. Organic solar cells: An overview. J. Mater. Res., 2011, 19, 1924-1945.
[52]
Bagher, A.M. Comparison of organic solar cells and inorganic solar cells. Int. J. Renew. Sustain. Energy, 2014, 3, 53-58.
[53]
Kirchartz, T.; Agostinelli, T.; Campoy-Quiles, M.; Gong, W.; Nelson, J. Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: The influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett., 2012, 3, 3470-3475.
[54]
Hazar Apaydın, D.; Esra Yıldız, D.; Cirpan, A.; Toppare, L. Optimizing the organic solar cell efficiency: Role of the active layer thickness. Sol. Energy Mater. Sol. Cells, 2013, 113, 100-105.
[55]
Heliatek. Heliatek sets new Organic Photovoltaic world record efficiency of 13.2%. Avaliable at: http://www.heliatek.com/en/press/press-releases/details/heliatek-sets-new-organic-photovoltaic-world-record-efficiency-of-13-2 (Accessed on: October 31, 2016).
[56]
Blakers, A.; Zin, N.; McIntosh, K.R.; Fong, K. High efficiency silicon solar cells. Energy Procedia, 2013, 33, 1-10.
[57]
Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci., 2013, 38, 1929-1940.
[58]
Watkins, P.K.; Walker, A.B.; Verschoor, G.L.B. Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology. Nano Lett., 2005, 5, 1814-1818.
[59]
Wiedemann, W.; Sims, L.; Abdellah, A.; Exner, A.; Meier, R.; Musselman, K.P.; MacManus-Driscoll, J.L.; Müller-Buschbaum, P.; Scarpa, G.; Lugli, P.; Schmidt-Mende, L. Nanostructured interfaces in polymer solar cells. Appl. Phys. Lett., 2010, 96, 263109.
[60]
Niggemann, M.; Riede, M.; Gombert, A.; Leo, K. Light trapping in organic solar cells. Phys. Status Solidi, 2008, 205, 2862-2874.
[61]
Ko, D-H.; Tumbleston, J.R.; Gadisa, A.; Aryal, M.; Liu, Y.; Lopez, R.; Samulski, E.T. Light-trapping nano-structures in organic photovoltaic cells. J. Mater. Chem., 2011, 21, 16293-16303.
[62]
Yu, Z.; Raman, A.; Fan, S. Nanophotonic light-trapping theory for solar cells. Appl. Phys., A., 2011, 105, 329-339.
[63]
Ahn, S.; Rourke, D.; Park, W. Plasmonic nanostructures for organic photovoltaic devices. J. Opt., 2016, 18, 33001.
[64]
Grote, R.R.; Brown, S.J.; Driscoll, J.B.; Osgood, R.M.; Schuller, J.A. Morphology-dependent light trapping in thin-film organic solar cells. Opt. Express, 2013, 21, A847-A863.
[65]
Xu, M.; Feng, J.; Liu, Y-S.; Jin, Y.; Wang, H-Y.; Sun, H-B. Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Appl. Phys. Lett., 2014, 105, 153303.
[66]
In, S.; Mason, D.R.; Lee, H.; Jung, M.; Lee, C.; Park, N. Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: A coupled optical-electrical multiphysics study on the effect of nanoparticle geometry. ACS Photonics, 2015, 2, 78-85.
[67]
Müller-Meskamp, L.; Kim, Y.H.; Roch, T.; Hofmann, S.; Scholz, R.; Eckardt, S.; Leo, K.; Lasagni, A.F. Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. Adv. Mater., 2012, 24, 906-910.
[68]
Sha, W.E.I.; Choy, W.C.H.; Chew, W.C. Angular response of thin-film organic solar cells with periodic metal back nanostrips. Opt. Lett., 2011, 36, 478-480.
[69]
Zhu, J.; Xue, M.; Shen, H.; Wu, Z.; Kim, S.; Ho, J.J.; Hassani-Afshar, A.; Zeng, B.; Wang, K.L. Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres. Appl. Phys. Lett., 2011, 98, 151110.
[70]
Fallahpour, A.H.; Ulisse, G.; Auf der Maur, M.; Di Carlo, A.; Brunetti, F. 3-D simulation and optimization of organic solar cell with periodic back contact grating electrode. IEEE J. Photovoltaics, 2015, 5, 591-596.
[71]
Zu, F-S.; Shi, X-B.; Liang, J.; Xu, M-F.; Lee, C-S.; Wang, Z-K.; Liao, L-S. Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure. Appl. Phys. Lett., 2014, 104, 243904.
[72]
Cho, C.; Kim, H.; Jeong, S.; Baek, S-W.; Seo, J-W.; Han, D.; Kim, K.; Park, Y.; Yoo, S.; Lee, J-Y. Random and V-groove texturing for efficient light trapping in organic photovoltaic cells. Sol. Energy Mater. Sol. Cells, 2013, 115, 36-41.
[73]
Zhou, L.; Ou, Q-D.; Chen, J-D.; Shen, S.; Tang, J-X.; Li, Y-Q.; Lee, S-T. Light manipulation for organic optoelectronics using bio-inspired Moth’s eye nanostructures. Sci. Rep., 2014, 4, 4040.
[74]
Chen, J-D.; Cui, C.; Li, Y-Q.; Zhou, L.; Ou, Q-D.; Li, C.; Li, Y.; Tang, J-X. Single-Junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater., 2015, 27, 1035-1041.
[75]
Yun, J.; Wang, W.; Kim, S.M.; Bae, T-S.; Lee, S.; Kim, D.; Lee, G-H.; Lee, H-S.; Song, M. Light trapping in bendable organic solar cells using silica nanoparticle arrays. Energy Environ. Sci., 2015, 8, 932-940.
[76]
Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.; Herwig, P.; de Leeuw, D.M. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401, 685-688.
[77]
Zhou, M.; Aryal, M.; Mielczarek, K.; Zakhidov, A.; Hu, W. Hole mobility enhancement by chain alignment in nanoimprinted poly(3- hexylthiophene) nanogratings for organic electronics. J. Vac. Sci. Technol. B. Nanotechnol. Microelectron.,, 2010, 28, C6M63- C6M67.
[78]
Buff, H. Ueber das electrische verhalten des aluminiums. Justus Liebigs Ann. Chem., 1857, 102(3), 265-284.
[79]
Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev., 1969, 69, 365-405.
[80]
Hoar, T.P.; Mott, N.F. A mechanism for the formation of porous anodic oxide films on aluminium. J. Phys. Chem. Solids, 1959, 9, 97-99.
[81]
O’Sullivan, J.P.; Wood, G.C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. A Math. Phys. Eng. Sci., 1970, p. 317, 511-543.
[82]
Kawai, S. Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited Co and Co-Ni. J. Electrochem. Soc., 1975, 122, 32-36.
[83]
Kawai, S. Recording characteristics of anodic oxide films on aluminum containing electrodeposited ferromagnetic metals and alloys. J. Electrochem. Soc., 1976, 123, 1047-1051.
[84]
Goad, D.G.W.; Moskovits, M. Colloidal metal in aluminum-oxide. J. Appl. Phys., 1978, 49, 2929-2934.
[85]
Lupu, N., Ed.; Electrodeposited Nanowires and Their Applications; INTECH: Croatia, 2010.
[86]
Brüggemann, D. Nanoporous aluminium oxide membranes as cell interfaces. J. Nanomater., 2013, 2013, 1-18.
[87]
Tsao, Y-C.; Fisker, C.; Garm Pedersen, T. Optical absorption of amorphous silicon on anodized aluminum substrates for solar cell applications. Opt. Commun., 2014, 315, 17-25.
[88]
Tsui, K.H.; Lin, Q.; Chou, H.; Zhang, Q.; Fu, H.; Qi, P.; Fan, Z. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv. Mater., 2014, 26, 2805-2811.
[89]
Lin, J.L.; Chu, Y.M.; Hsaio, S.H.; Chin, Y.L.; Sun, T.P. Structures of anodized aluminum oxide extended-gate field-effect transistors on pH sensors. Jpn. J. Appl. Phys., 2006, 45, 7999-8004.
[90]
Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci., 2013, 58, 636-704.
[91]
Lee, W.; Park, S-J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev., 2014, 114, 7487-7556.
[92]
Li, F.; Zhang, L.; Metzger, R. On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater., 1998, 10, 2470-2480.
[93]
Sattler, K.D. Handbook of Nanophysics. 5, Functional Nanomaterials; CRC Press, 2011.
[94]
Losic, D.; Santos, A., Eds.; Nanoporous Alumina: Fabrication, Structure, Properties and Applications; Springer International Publishing, 2015.
[95]
Ottone, C.; Laurenti, M.; Bejtka, K.; Sanginario, A.; Cauda, V.; Caud, V. The effects of the film thickness and roughness in the anodization process of very thin aluminum films. J. Mater. Sci. Nanotechnol., 2014, 1, 9.
[96]
Su, Z.; Hähner, G.; Zhou, W. Investigation of the pore formation in anodic aluminium oxide. J. Mater. Chem., 2008, 18, 5787-5795.
[97]
Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroanal. Chem., 2015, 750, 79-88.
[98]
Norek, M.; Włodarski, M.; Stępniowski, W.J. Tailoring of UV/violet plasmonic properties in Ag, and Cu coated Al concaves arrays. Appl. Surf. Sci., 2014, 314, 807-814.
[99]
Goszczak, A.J.; Cielecki, P.P.; Fiutowski, J.; Rubahn, H-G.; Madsen, M. Nanoscale aluminum concaves for light-trapping in organic thin films. Opt. Commun., 2016, 370, 135-139.
[100]
Pang, Y.; Chandrasekar, R. Cylindrical and spherical membranes of anodic aluminum oxide with highly ordered conical nanohole arrays. Nat. Sci., 2015, 7, 232-237.
[101]
Malinovskis, U.; Poplausks, R.; Apsite, I.; Meija, R.; Prikulis, J.; Lombardi, F.; Erts, D. Ultrathin anodic aluminum oxide membranes for production of dense sub-20 Nm nanoparticle arrays. J. Phys. Chem. C, 2014, 118, 8685-8690.
[102]
Khan, K.A.; Kasi, J.K.; Afzulpurkar, N.; Bohez, E.; Tuantranont, A.; Mahaisavariya, B. Novel Anodic Aluminum Oxide (AAO) nanoporous membrane for wearable hemodialysis device. In International Conference on Communications and Electronics IEEE 2010, 2010, pp. 98-101.
[103]
Coakley, K.M.; Liu, Y.; McGehee, M.D.; Frindell, K.L.; Stucky, G.D. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater., 2003, 13, 301-306.
[104]
Coakley, K.M.; Srinivasan, B.S.; Ziebarth, J.M.; Goh, C.; Liu, Y.; McGehee, M.D. Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv. Funct. Mater., 2005, 15, 1927-1932.
[105]
Moynihan, S.; Iacopino, D.; O’Carroll, D.; Lovera, P.; Redmond, G. Template synthesis of highly oriented polyfluorene nanotube arrays. Chem. Mater., 2008, 20, 996-1003.
[106]
Haberkorn, N.; Gutmann, J.S.; Theato, P. Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: Toward ordered bulk-heterojunction solar cells. ACS Nano, 2009, 3, 1415-1422.
[107]
Baek, S.; Park, J.B.; Lee, W.; Han, S-H.; Lee, J.; Lee, S-H. A facile method to prepare regioregular poly(3-hexylthiophene) nanorod arrays using anodic aluminium oxide templates and capillary force. New J. Chem., 2009, 33, 986-990.
[108]
Santos, A.; Formentin, P.; Pallarés, J.; Ferré-Borrull, J.; Marsal, L.F. Quasi-ordered P3HT nanopillar-nanocap structures with controlled size. Mater. Lett., 2010, 64, 371-374.
[109]
Santos, A.; Formentín, P.; Pallarés, J.; Ferré-Borrull, J.; Marsal, L.F. Fabrication and characterization of high-density arrays of P3HT nanopillars on ITO/glass substrates. Sol. Energy Mater. Sol. Cells, 2010, 94, 1247-1253.
[110]
Haberkorn, N.; Kim, S.; Kim, K-S.; Sommer, M.; Thelakkat, M.; Sohn, B-H.; Theato, P. Template-assisted fabrication of highly ordered interpenetrating polymeric donor/acceptor nanostructures for photovoltaic applications. Macromol. Chem. Phys., 2011, 212, 2142-2150.
[111]
Hu, J.; Shirai, Y.; Han, L.; Wakayama, Y. Template method for fabricating interdigitate P-N heterojunction for organic solar cell. Nanoscale Res. Lett., 2012, 7, 1-5.
[112]
Kim, J.S.; Park, Y.; Lee, D.Y.; Lee, J.H.; Park, J.H.; Kim, J.K.; Cho, K. Poly(3-hexylthiophene) nanorods with aligned chain orientation for organic photovoltaics. Adv. Funct. Mater., 2010, 20, 540-545.
[113]
Wang, H-S.; Lin, L-H.; Chen, S-Y.; Wang, Y-L.; Wei, K-H. Ordered polythiophene/fullerene composite core–shell nanorod arrays for solar cell applications. Nanotechnology, 2009, 20, 075201.
[114]
Wang, H-S.; Chen, S-Y.; Su, M-H.; Wang, Y-L.; Wei, K-H. Inverted heterojunction solar cells incorporating fullerene/ polythiophene composite core/shell nanorod arrays. Nanotechnology, 2010, 21, 145203.
[115]
Kim, T.; Yoon, H.; Song, H-J.; Haberkorn, N.; Cho, Y.; Sung, S.H.; Lee, C.H.; Char, K.; Theato, P. Toward mass producible ordered bulk heterojunction organic photovoltaic devices. Macromol. Rapid Commun., 2012, 33, 2035-2040.
[116]
Chang, C-Y.; Wu, C-E.; Chen, S-Y.; Cui, C.; Cheng, Y-J.; Hsu, C-S.; Wang, Y-L.; Li, Y. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew. Chem. Int. Ed., 2011, 50, 9386-9390.
[117]
Allen, J.E.; Yager, K.G.; Hlaing, H.; Nam, C-Y.; Ocko, B.M.; Black, C.T. Enhanced charge collection in confined bulk heterojunction organic solar cells. Appl. Phys. Lett., 2011, 99, 163301.
[118]
Allen, J.E.; Black, C.T. Improved power conversion efficiency in bulk heterojunction organic solar cells with radial electron contacts. ACS Nano, 2011, 5, 7986-7991.
[119]
Ko, H-W.; Chang, C-W.; Chi, M-H.; Chu, C-W.; Cheng, M-H.; Fang, Z-X.; Luo, K-H.; Chen, J-T. Hierarchical hybrid nanostructures: Controlled assembly of polymer-encapsulated gold nanoparticles via a rayleigh-instability-driven transformation under cylindrical confinement. RSC Adv., 2016, 6, 54539-54543.
[120]
Wang, C.C.D.; Choy, W.C.H.; Duan, C.; Fung, D.D.S.; Sha, W.E.I.; Xie, F-X.; Huang, F.; Cao, Y. Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J. Mater. Chem., 2012, 22, 1206-1211.
[121]
Cao, J.; Sun, J.; Shi, G.; Chen, H.; Zhang, Q.; Wang, D.; Wang, M. Photovoltaic properties of polythiophene nano-tubule films. Mater. Chem. Phys., 2003, 82, 44-48.
[122]
Park, D.H.; Kim, B.H.; Jang, M.G.; Bae, K.Y.; Joo, J. Characteristics and photoluminescence of nanotubes and nanowires of poly (3-methylthiophene). Appl. Phys. Lett., 2005, 86, 113116.
[123]
Joo, J.; Kim, B.H.; Park, D.H.; Kim, H.S.; Seo, D.S.; Shim, J.H.; Lee, S.J.; Ryu, K.S.; Kim, K.; Jin, J-I.; Lee, T.J.; Lee, C.J. Fabrication and applications of conducting polymer nanotube, nanowire, nanohole, and double wall nanotube. Synth. Met., 2005, 153, 313-316.
[124]
Park, D.H.; Kim, B.H.; Jang, M.K.; Bae, K.Y.; Lee, S.J.; Joo, J. Synthesis and characterization of polythiophene and poly (3-methylthiophene) nanotubes and nanowires. Synth. Met., 2005, 153, 341-344.
[125]
Xiao, R.; Cho, S.I.; Liu, R.; Lee, S.B. Controlled electrochemical synthesis of conductive polymer nanotube structures. J. Am. Chem. Soc., 2007, 129, 4483-4489.
[126]
Lin, H-A.; Luo, S-C.; Zhu, B.; Chen, C.; Yamashita, Y.; Yu, H. Molecular or nanoscale structures? The deciding factor of surface properties on functionalized poly(3,4-ethylenedioxythiophene) nanorod arrays. Adv. Funct. Mater., 2013, 23, 3212-3219.
[127]
Bae, K.; Kim, K. In: Plasmonic Nanodot Array Optimization on Organic Thin Film Solar Cells Using Anodic Aluminum Oxide Templates,, SPIE Solar Energy + Technology, San Diego, California, United States, September 11, 2013; SPIE, US, 2013; pp. 8823.
[128]
Sangar, A.; Merlen, A.; Torchio, P.; Vedraine, S.; Flory, F.; Patrone, L.; Delafosse, G.; Chevallier, V.; Moyen, E.; Hanbucken, M. Fabrication and characterization of large metallic nanodots arrays for organic thin film solar cells using anodic aluminum oxide templates. Sol. Energy Mater. Sol. Cells, 2013, 117, 657-662.
[129]
Robatjazi, H.; Bahauddin, S.M.; Macfarlan, L.H.; Fu, S.D.; Thomann, I. Ultrathin AAO membrane as a generic template for sub-100 Nm nanostructure fabrication. Chem. Mater., 2016, 28, 4546-4553.
[130]
Zhou, W. Nanoimprint Lithography: An Enabling Process for Nanofabrication; Springer: New York, 2013.
[131]
Guo, L.J. Nanoimprint lithography: Methods and material requirements. Adv. Mater., 2007, 19, 495-513.
[132]
Yang, Y.; Mielczarek, K.; Aryal, M.; Zakhidov, A.; Hu, W. Nanoimprinted polymer solar cell. ACS Nano, 2012, 6, 2877-2892.
[133]
Chen, D.; Zhao, W.; Russell, T.P. P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. ACS Nano, 2012, 6, 1479-1485.
[134]
Ding, G.; Li, C.; Li, X.; Wu, Y.; Liu, J.; Li, Y.; Hu, Z.; Li, Y. Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance. Nanoscale, 2015, 7, 11024-11032.
[135]
Pfadler, T.; Coric, M.; Palumbiny, C.M.; Jakowetz, A.C.; Strunk, K.; Dorman, J.A.; Ehrenreich, P.; Wang, C.; Hexemer, A.; Png, R.; Ho, P.K.H.; Müller-Buschbaum, P.; Weickert, J.; Schmidt-Mende, L. Influence of interfacial area on exciton separation and polaron recombination in nanostructured bilayer all-polymer solar cells. ACS Nano, 2014, 8, 12397-12409.
[136]
Ding, G.; Wu, Y.; Weng, Y.; Zhang, W.; Hu, Z. Solvent-assistant room temperature nanoimprinting-induced molecular orientation in poly (3-hexylthiophene) nanopillars. Macromolecules, 2013, 46, 8638-8643.
[137]
Cui, D.; Li, H.; Park, H.; Cheng, X. Improving organic thin-film transistor performance by nanoimprint-induced chain ordering. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2008, 26, 2404.
[138]
Kim, M-S.; Kim, J-S.; Cho, J.C.; Shtein, M.; Guo, L.J.; Kim, J. Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography. Appl. Phys. Lett., 2007, 90, 123113.
[139]
Aryal, M.; Trivedi, K.; Hu, W.W. Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography. ACS Nano, 2009, 3, 3085-3090.
[140]
Lee, J.H.; Kim, D.W.; Jang, H.; Choi, J.K.; Geng, J.; Jung, J.W.; Yoon, S.C.; Jung, H-T. Enhanced solar-cell efficiency in bulk-heterojunction polymer systems obtained by nanoimprinting with commercially available AAO membrane filters. Small, 2009, 5, 2139-2143.
[141]
Dunbar, R.B.; Hesse, H.C.; Lembke, D.S.; Schmidt-Mende, L. Light-trapping plasmonic nanovoid arrays. Phys. Rev. B, 2012, 85, 035301.
[142]
Dunbar, R.B.; Pfadler, T.; Lal, N.N.; Baumberg, J.J.; Schmidt-Mende, L. Imprinting localized plasmons for enhanced solar cells. Nanotechnology, 2012, 23, 385202.
[143]
Park, J.B.; Bae, T.S.; Sohn, J.I.; Cha, S.; Lee, J.; Kim, S.K.; Hong, W-K. Fabrication of Ag nanorods-embedded P3HT/PCBM films for the enhancement of light absorption. ECS Solid State Lett., 2015, 4, Q5-Q9.
[144]
Ham, J.; Lee, J-L. ITO breakers: Highly transparent conducting Polymer/Metal/Dielectric (P/M/D) films for organic solar cells. Adv. Energy Mater., 2014, 4, 1400539.
[145]
Yang, K-Y.; Yoon, K-M.; Lim, S.; Lee, H. Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2009, 27, 2786.
[146]
Clapham, P.B.; Hutley, M.C. Reduction of lens reflexion by the “Moth Eye” principle. Nature, 1973, 244, 281-282.
[147]
Forberich, K.; Dennler, G.; Scharber, M.C.; Hingerl, K.; Fromherz, T.; Brabec, C.J. Performance Improvement of organic solar cells with moth eye anti-reflection coating. Thin Solid Films, 2008, 516, 7167-7170.
[148]
Leem, J.W.; Kim, S.; Lee, S.H.; Rogers, J.A.; Kim, E.; Yu, J.S. Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films. Adv. Energy Mater., 2014, 4, 1301315.
[149]
Ho, Y-H.; Liang, H.; Liu, S-W.; Tian, W-C.; Chen, F-C.; Wei, P-K. Efficiency improvement of organic bifunctional devices by applying omnidirectional antireflection nanopillars. RSC Adv., 2014, 4, 9588-9593.
[150]
Choi, K.; Park, S.H.; Song, Y.M.; Lee, Y.T.; Hwangbo, C.K.; Yang, H.; Lee, H.S. Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film. Adv. Mater., 2010, 22, 3713-3718.
[151]
Aryal, M.; Buyukserin, F.; Mielczarek, K.; Zhao, X-M.; Gao, J.; Zakhidov, A.; Hu, W. (Walter). Imprinted large-scale high density polymer nanopillars for organic solar cells. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2008, 26, 2562-2566.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [64 - 75]
Pages: 12
DOI: 10.2174/1573413714666180228152018
Price: $58

Article Metrics

PDF: 25
HTML: 3