Nanoporous and Nanotubular Anodic Films on Iron Substrates. Synthesis and Structure

Author(s): Arunas Jagminas*, Vaclovas Klimas.

Journal Name: Current Nanoscience

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Self-ordering nanostructured anodic films fabricated onto the surface of iron and ironbased alloys opened new horizons for their application in the recent energy harvesting and storage devices and catalysis. The anodic passivity of iron in the aqueous solutions is known since the beginning of the past century due to formation of extremely thin iron oxides or salt layer. Ten years ago the discovery of the formation of thick and self-ordered nanoporous and nanotubular iron anodic films in organic solutions containing some fluorides and water opened a new pathway for investigation and application of these materials and stimulated a still growing interest. Therefore, the purpose of this review paper is to provide a better insight in the processes of iron anodizing for nanoporous and nanotubular film formation, their composition, and possible application trends in the view of the latest and our advances in this field. Apart from the formation of nanostructured films in well-known ethylene glycol electrolytes, the peculiarities of iron anodizing in other organic electrolytes, such as dimethyl sulfoxide, are presented herein. Since earlier published papers are almost forgotten, but they could give the basic knowledge on nanostructured anodic film formation in other electrolytes, we briefly introduce the behavior of iron in aqueous solutions resulted from the active dissolution of iron and polarization-dependent the passive film formation. To reveal the composition of as-grown anodic films on iron, X-ray diffraction, X-ray photoelectron, X-ray energy dispersive and Mössbauer spectroscopies are used and the reactions of passive films formation are discussed.

Keywords: Iron anodizing, nanostructured films, passive layers, compositional characterization, hematite, Mössbauer.

Kennedy, J.H.; Frese, Jr, K.W. Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc., 1978, 125, 709-714.
Raja, K.S.; Mahajan, V.K.; Misra, M. Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation. J. Power Sources, 2006, 159, 1258-1265.
Prakasam, H.E.; Varghese, O.K.; Paulose, M.; Mor, G.K.; Grimes, C.A. Synthesis and photoelectrochemical properties of nanoporous iron(III) oxide by potentiostatic anodization. Nanotechnology, 2006, 17, 4285-4291.
Mohapatra, S.K.; John, S.E.; Banerjee, S.; Misra, M. Water photooxidation by smooth and ultrathin γ-Fe2O3 nanotube arrays. Chem. Mater., 2009, 21, 3048-3055.
Zhang, Z.; Hossain, M.F.; Takahashi, T. Self-assembled hematite (a-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal.,, 2010, B 95, 423-429.
Zhang, Z.; Hossain, M.F.; Takahashi, T. Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application. Mater. Lett., 2010, 64, 435-438.
Rangaraju, R.R.; Raja, K.S.; Panday, A.; Misra, M. An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron. Electrochim. Acta, 2010, 55, 785-793.
Rangaraju, R.R.; Panday, A.; Raja, K.S.; Misra, M. Nanostructured anodic iron oxide film as photoanode for water oxidation. J. Phys. D Appl. Phys., 2009, 42, 135303.
Momeni, M.M.; Ghayeb, Y.; Mohammadi, F. Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: Effect of anodizing time on performance of Fe2O3 nanotube arrays. J. Mater. Sci. Mater. Electron., 2015, 26, 685-692.
Rangaraju, R.R.; Raja, K.S.; Panday, A.; Misra, M. Low-cost photoelectrocatalyst based on a nanoporous oxide layer of low-carbon steel. J. Phys. D Appl. Phys., 2010, 43, 445301.
Kim, D.H.; Shim, Y.S.; Jeon, J.M.; Jeong, H.Y.; Park, S.S.; Kim, Y.W.; Kim, J.S.; Lee, J.H.; Jang, H.W. Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor. ACS Appl. Mater. Interfaces, 2014, 6, 14779-14784.
Jang, J.W.; Park, J.W. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction. J. Hazard. Mat., 2014, 273, 1-6.
Momeni, M.M. Influence of top morphology of hematite nanotubes on photo degradation of methylene blue and solar water splitting performance. Mater. Res. Innov., 2016, 20, 390-394.
Xie, K.; Li, J.; Lai, Y.; Lu, W.; Zhang, Z.; Liu, Y.; Zhou, L.; Huang, H. Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem. Commun., 2011, 13, 657-660.
Pervez, S.A.; Kim, D.; Farooq, U.; Yaqub, A.; Choi, J.H.; Lee, Y.J.; Doh, C.H. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB. ACS Appl. Mater. Interfaces, 2014, 6, 11219-11224.
Cheng, H.; Lu, Z.; Ma, R.; Dong, Y.; Wang, H.E.; Xi, L.; Zheng, L.; Tsang, C.K.; Li, H.; Chung, C.Y.; Zapien, J.A.; Li, Y.Y. Rugated porous Fe3O4 thin films as stable binder-free anode materials for lithium ion batteries. J. Mater. Chem., 2012, 22, 22692-22698.
Cheng, H.; Zheng, L.; Tsang, C.K.; Zhang, J.; Wang, H.E.; Dong, Y.; Li, F.; Liang, H.; Zapien, J.A.; Li, Y.Y. Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films. Electrochem. Commun., 2012, 20, 178-181.
Burleigh, T.D.; Schmuki, P.; Virtanen, S. Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50% NaOH. J. Electrochem. Soc., 2009, 156, C45-C53.
Konno, Y.; Tsuji, E.; Aoki, Y.; Ohtsuka, T.; Habazaki, H. Corrosion protection of iron using porous anodic oxide/conducting polymer composite coatings. Faraday Discuss., 2015, 180, 479-493.
Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem, 2011, 4, 432-449.
Bonhoeffer, K.F.; Heusler, K.E. Remark about the anodic dissolution of iron. Z. Elektrochem, 1957, 61, 122-123.
Heusler, K.E. The influence of hydrogen ion concentration on the electrochemical behavior of the active iron in acidic solutions. Z. Elektrochem., 1958, 62, 582-587.
Bockris, J. O’M.; Reddy, A.K.N. Modern Electrochemistry 2; Springer: New York, 1970, pp. 1080-1093.
Epelboin, I.; Keddam, M. Kinetics of formation of primary and secondary passivity in sulfuric aqueous media. Electrochim. Acta, 1972, 17, 177-186.
Epelboin, I.; Gabrielli, C.; Keddam, M.; Takenouti, H. A model of the anodic behaviour of iron in sulphuric acid medium. Electrochim. Acta, 1975, 20, 913-916.
Geana, D.; El Miligy, A.A.; Lorenz, W.J. On the anodic dissolution of pure iron in the range between active and passive behavior. Corros. Sci., 1973, 13, 505-520.
Bessone, J.; Karakaya, L.; Lorbeer, P.; Lorenz, W.J. The Kinetics of iron dissolution and passivation. Electrochim. Acta, 1977, 22, 1147-1154.
Schweickert, H.; Lorenz, W.J.; Friedburg, H. Impedance measurements of the anodic iron dissolution. J. Electrochem. Soc., 1980, 127, 1693-1701.
Lorenz, W.J.; Staikov, G.; Schindler, W.; Wiesbeck, W. The role of low-dimensional systems in electrochemical phase formation and dissolution processes. J. Electrochem. Soc., 2002, 149, K47-K59.
Bhardwaj, R.C.; González-Martín, A.; Bockris, J. O’M. In situ scanning tunneling microscopy studies on passivation of polycrystalline iron in borate buffer. J. Electrochem. Soc., 1991, 138, 1901-1908.
Díez-Pérez, I.; Gorostiza, P.; Sanz, F.; Müller, C. First stages of electrochemical growth of the passive film on iron. J. Electrochem. Soc., 2001, 148, B307-B313.
Deng, H.; Nanjo, H.; Ishikawa, I.; Laycock, N.J.; Atkin, J.; Hendyb, S.C. STM observation of grain ripening during air exposure of the passive film formed on iron. Electrochem. Solid-State Lett., 2006, 9, B8-B10.
Lorenz, W.J.; Eichkorn, G.; Mayer, C. The effect of sulfate ions on the kinetics of anodic dissolution of iron in acidic solutions. Corros. Sci., 1967, 7, 357-365.
Schwabe, K.; Voigt, C. On the influence of neutral salts on the kinetics of Fe corrosion. Werkstoffe und Korrosion., 1965, 16, 125-126.
Schwabe, K.; Voigt, C. Influence of concentrated neutral salt solutions on the corrosion of metals. J. Electrochem. Soc., 1966, 113, 886-891.
Voigt, C. Contribution to the kinetics of corrosion of Fe in acidic sulphate and perchlorate solutions. Electrochim. Acta, 1968, 13, 2037-2050.
Florianovich, G.M.; Sokolova, L.A.; Kolotyrkin, J.M. The participation of anions in the elementary stages of the electrochemical reaction of dissolution of iron in acidic solutions. Elektrochymija, 1967, 3, 1359-1363. [in rus.].
Arvia, A.J.; Podestá, J.J. The kinetics of anodic dissolution of active iron in acid solutions containing high concentration of halides. Corros. Sci., 1968, 8, 203-205.
Bech-Nielsen, G. The anodic dissolution of iron-VII - A detailed kinetic model for the two coupled, parallel anodic reactions. Electrochim. Acta, 1976, 21, 627-636.
Alkire, R.; Ernsberger, D.; Beck, T.R. Occurrence of salt films during repassivation of newly generated metal surfaces. J. Electrochem. Soc., 1975, 125, 1382-1388.
Beck, T.R. Formation of salt films during passivation of iron. J. Electrochem. Soc., 1982, 129, 2412-2418.
Russell, P.; Newman, J. Anodic dissolution of iron in acidic sulfate electrolytes. I. Formation and growth of a porous salt film. J. Electrochem. Soc., 1986, 133, 59-69.
Russell, P.; Newman, J. Anodic dissolution of iron in acidic sulfate electrolytes. II. Mathematical model of current oscillations. J. Electrochem. Soc., 1987, 134, 1051-1059.
Barcia, O.E.; Mattos, O.R.; Tribollet, B. Anodic dissolution of iron in acid sulfate under mass transport control. J. Electrochem. Soc., 1992, 139, 446-453.
Sazou, D.; Pagitsas, M. On the onset of current oscillations at the limiting current region emerged during iron electrodissolution in sulfuric acid solutions. Electrochim. Acta, 2006, 51, 6281-6296.
Nagayama, M.; Cohen, M. The anodic oxidation of iron in a neutral solution. I. The nature and composition of the passive film. J. Electrochem. Soc., 1962, 109, 781-790.
Sato, N.; Kudo, K.; Nishimura, R. Depth analysis of passive films on iron in neutral borate solution. J. Electrochem. Soc., 1976, 123, 1419-1423.
Ho, F.C.; Ord, J.L. The anodic oxide of iron: Its component layers and their properties. J. Electrochem. Soc., 1972, 119, 139-145.
Ord, J.L.; De Smet, D.J. The anodic oxidation of iron: Overpotential analysis for a two-phase film. J. Electrochem. Soc., 1976, 123, 1876-1882.
Sato, N.; Cohen, M. Kinetics of the aging of anodic oxide film on iron. J. Electrochem. Soc., 1964, 111, 624-625.
Sato, N.; Kudo, K.; Noda, T. Single layer of the passive film on Fe. Corros. Sci., 1970, 10, 785-794.
Sato, N.; Noda, T.; Kudo, K. Thickness and structure of passive films on iron in acidic and basic solution. Electrochim. Acta, 1974, 19, 471-475.
Sato, N.; Kudo, K.; Noda, T. Anodic passivating films on iron in phosphate and borate solutions. Z. Phys. Chem. N.F., 1975, 98, 271-284.
Revie, R.W.; Baker, B.G.; Bockris, J. O’M. The passive film on iron: An application of Auger electron spectroscopy. J. Electrochem. Soc., 1975, 122, 1460-1466.
O’Grady, W.E. Mössbauer study of the passive oxide film on iron. J. Electrochem. Soc., 1980, 127, 555-563.
Davenport, A.J.; Bardwell, J.A.; Vitus, C.M. In situ XANES study of galvanostatic reduction of the passive film on iron. J. Electrochem. Soc., 1995, 142, 721-724.
Davenport, A.J.; Sansone, M. High resolution in situ XANES investigation of the nature of the passive film on iron in a pH 8.4 borate buffer. J. Electrochem. Soc., 1995, 142, 725-730.
Schroeder, V.; Devine, T.M. Surface enhanced Raman spectroscopy study of the galvanostatic reduction of the passive film on iron. J. Electrochem. Soc., 1999, 146, 4061-4070.
Toney, M.F.; Davenport, A.J.; Oblonsky, L.J.; Ryan, M.P.; Vitus, C.M. Atomic structure of the passive oxide film formed on iron. Phys. Rev. Lett., 1997, 79, 4282-4285.
Davenport, A.J.; Oblonsky, L.J.; Ryan, M.P.; Toney, M.F. The structure of the passive film that forms on iron in aqueous environments. J. Electrochem. Soc., 2000, 147, 2162-2173.
Rees, E.E.; Ryan, M.P.; McPhail, D.S. An STM study of the nanocrystalline structure of the passive film on iron. Electrochem. Solid-State Lett., 2002, 5, B21-B23.
Schmuki, P.; Büchler, M.; Böhni, H.; Müller, R.; Gauckler, L.J. Significance of electrochemical and semiconductive properties of bulk metal oxides for the characterization of passive films. In Oxide Films on Metals and Alloys,, Herbert K.R.; Thompson G.E., Eds., The Electrochemical Society Proceedings Series PV 94-25, Penington, NJ, 1994, p.p. 119-128.
Chao, C.Y.; Lin, L.F.; Macdonald, D.D. A point defect model for anodic passive films I. Film growth kinetics. J. Electrochem. Soc., 1981, 128, 1187-1194.
Macdonald, D.D.; Urquidi-Macdonald, M. Theory of steady-state passive films. J. Electrochem. Soc., 1990, 137, 2395-2402.
Macdonald, D.D. The point defect model for the passive state. J. Electrochem. Soc., 1992, 139, 3434-3449.
Seyeux, A.; Maurice, V.; Marcus, P. Oxide film growth kinetics on metals and alloys. I. Physical model. J. Electrochem. Soc., 2013, 160, C189-C196.
Itagaki, M.; Hasebe, N.; Watanabe, K. Transpassive dissolution of iron in acidic solution investigated by channel flow elektrode. In: Passivity and Localized Corrosion - An International Symposium in Honor of Professor Norio Sato., Seo, M.; MacDougall, B.; Takahashi H.; Kelly R.G., Eds.; Proceedings Volume 99-27; The Electrochemical Society: Pennington, NJ, 1999 p.p. 103-111.
Virtanen, S.; Schmuki, P.; Davenport, A.J.; Vitus, C.M. Dissolution of thin iron oxide films used as models for iron passive films studied by in situ X-ray absorption near-edge spectroscopy. J. Electrochem. Soc., 1997, 144, 198-204.
Kozlowski, W.; Szklarska-Smialowska, A. Electrochemical and ellipsometric investigations of passive films on iron in borate solutions. III. The kinetics of film growth on iron at transpassive potentials. J. Electrochem. Soc., 1984, 131, 723-726.
Sato, N. Anodic breakdown of passive films on metals. J. Electrochem. Soc., 1982, 129, 255-260.
Seyeux, A.; Maurice, V.; Marcus, P. Breakdown kinetics at nanostructure defects of passive films. Electrochem. Solid-State Lett., 2009, 12, C25-C27.
Galvele, J.R. Transport processes and the mechanism of pitting of metals. J. Electrochem. Soc., 1976, 123, 464-474.
Swanepoel, S.; Stander, C.M. Mössbauer spectroscopic study of iron fluoride surface layers. J. Phys. Chem. Solids, 1987, 48, 275-281.
Tang, Y.; Guan, X.; Wang, J.; Gao, N.; McPhail, M.R.; Chusuei, C.C. Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions. J. Hazard. Mater., 2009, 171, 774-779.
Hiemstra, T.; Van Riemsdijk, W.H. Fluoride adsorption on goethite in relation to different types of surface sites. J. Colloid Interface Sci., 2000, 225, 94-104.
Jayarathna, L.; Bandara, A.; Ng, W.J.; Weerasooriya, R. Fluoride adsorption on γ - Fe2O3 nanoparticles. J. Environ. Health Sci. Eng., 2015, 13, 54.
Löchel, B.; Strehblow, H.H. Breakdown of passivity of iron by fluoride. Electrochim. Acta, 1983, 28, 565-571.
Mišković, I.; Pilić, Z. Influence of fluoride concentration and pH value on the corrosion behaviour of iron. Int. J. Electrochem. Sci., 2013, 8, 7926-7937.
Pagitsas, M.; Diamantopoulou, A.; Sazou, D. Distinction between general and pitting corrosion based on the nonlinear dynamical response of passive iron surfaces perturbed chemically by halides. Electrochem. Commun., 2001, 3, 330-335.
De Anna, P.L. The effects of water and chloride ions on the electrochemical behaviour of iron and 304L stainless steel in alcohols. Corros. Sci., 1985, 25, 43-53.
Banaś, J.; Stypuła, B.; Banaś, K.; Światowska-Mrowiecka, J.; Starowicz, M.; Lelek-Borkowska, U. Corrosion and passivity of metals in methanol solutions of electrolytes. J. Solid State Electrochem., 2009, 13, 1669-1679.
Kelly, R.G.; Moran, P.J.; Kruger, J.; Zollman, C.; Gileadi, E. Passivity of Fe in anhydrous propylene carbonate. J. Electrochem. Soc., 1989, 136, 3262-3269.
Li, F.B.; Bremner, D.H.; Burges, A.E. Dissolution and passivation of iron in acetonitrile and acetonitrile-water mixtures. Corros. Sci., 1999, 41, 2317-2335.
Sakakibara, M.; Saito, N.; Nishihara, H.; Aramaki, K. Corrosion of iron in anhydrous metanol. Corros. Sci., 1993, 34, 391-405.
Sakakibara, M.; Nishihara, H.; Aramaki, K. The effects of complexing agents on the corrosion of iron in an anhydrous metanol solution. Corros. Sci., 1993, 34, 1937-1946.
Choi, Y.W.; Shin, S.; Park, D.W.; Choi, J. Surface treatment of iron by electrochemical oxidation and subsequent annealing for the improvement of anti-corrosive properties. Curr. Appl. Phys., 2014, 14, 641-648.
Albu, S.P.; Ghicov, A.; Schmuki, P. High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes. Phys. Status Solidi RRL., 2009, 3, 64-66.
LaTempa, T.J.; Feng, X.; Paulose, M.; Grimes, C.A. Temperature-dependent growth of self-assembled hematite (γ-Fe2O3) nanotube arrays: Rapid electrochemical synthesis and photoelectrochemical properties. J. Phys. Chem. C, 2009, 113, 16293-16298.
Xie, K.; Guo, M.; Huang, H.; Liu, Y. Fabrication of iron oxide nanotube arrays by electrochemical anodization. Corros. Sci., 2014, 88, 66-75.
Habazaki, H.; Konno, Y.; Aoki, Y.; Skeldon, P.; Thompson, G.E. Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride-ethylene glycol electrolytes with different water contents. J. Phys. Chem. C, 2010, 114, 18853-18859.
Konno, Y.; Tsuji, E.; Skeldon, P.; Thompson, G.E.; Habazaki, H. Factors influencing the growth behaviour of nanoporous anodic films on iron under galvanostatic anodizing. J. Solid State Electrochem., 2012, 16, 3887-3896.
Shahzad, K.; Tsuji, E.; Aoki, Y.; Nagata, S.; Habazaki, H. Formation and field-assisted dissolution of anodic films on iron in fluoride-containing organic electrolyte. Electrochim. Acta, 2015, 151, 363-369.
Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K. Grimes.; C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mat. Sol. C, 2006, 90, 2011-2075.
Yasuda, K.; Macak, J.M.; Berger, S.; Ghicov, A.; Schmuki, P. Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals. J. Electrochem. Soc., 2007, 154, C472-C478.
Garcia-Vergara, S.J.; Skeldon, P.; Thomson, G.E.; Habazaki, H. A flow model of porous anodic film growth on aluminium. Electrochim. Acta, 2006, 52, 681-687.
Jagminas, A.; Mažeika, K.; Bernotas, N.; Klimas, V.; Selskis, A.; Baltrūnas, D. Compositional and structural characterization of nanoporous films produced by iron anodizing in ethylene glycol solution. Appl. Surf. Sci., 2011, 257, 3893-3897.
Klimas, V.; Mažeika, K.; Jasulaitienė, V.; Jagminas, A. Formation, morphology and composition of F-- and Cl-- stabilized iron β-oxyhydroxides. J. Fluorine . Chem., 2015, 170, 1-9.
Jagminas, A.; Klimas, V.; Mažeika, K.; Bernotas, N.; Selskis, A.; Niaura, G. Fabrication of thick gel-like films by anodizing iron in a novel electrolyte based on dimethyl sulfoxide and H2SiF6. Electrochim. Acta, 2011, 56, 5452-5458.
Jagminas, A.; Klimas, V.; Mažeika, K.; Mickevičius, S.; Balakauskas, S. Investigation on calcination of bi-layered films produced by anodizing iron in DMSO electrolyte. Appl. Surf. Sci., 2012, 258, 3321-3327.
Klimas, V.; Mažeika, K.; Pakštas, V.; Spudulis, E.; Jagminas, A. Peculiarities of heating-induced transformations in Fe(III) β-oxyhydroxides. J. Fluorine . Chem., 2015, 173, 55-62.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [27 - 41]
Pages: 15
DOI: 10.2174/1573413714666180228151510
Price: $58

Article Metrics

PDF: 21