Inhibitors of ER Aminopeptidase 1 and 2: From Design to Clinical Application

Author(s): Dimitris Georgiadis, Anastasia Mpakali, Despoina Koumantou, Efstratios Stratikos*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 15 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.

Keywords: Immune system, antigen, peptide, enzyme, inhibitor, cancer, autoimmunity, infection.

[1]
Rock, K.L.; Reits, E.; Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol., 2016, 37(11), 724-737.
[http://dx.doi.org/10.1016/j.it.2016.08.010] [PMID: 27614798]
[2]
Rock, K.L.; Goldberg, A.L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol., 1999, 17, 739-779.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.739] [PMID: 10358773]
[3]
Cascio, P.; Hilton, C.; Kisselev, A.F.; Rock, K.L.; Goldberg, A.L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J., 2001, 20(10), 2357-2366.
[http://dx.doi.org/10.1093/emboj/20.10.2357] [PMID: 11350924]
[4]
Androlewicz, M.J.; Anderson, K.S.; Cresswell, P. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc. Natl. Acad. Sci. USA, 1993, 90(19), 9130-9134.
[http://dx.doi.org/10.1073/pnas.90.19.9130] [PMID: 8415666]
[5]
Lundegaard, C.; Lund, O.; Buus, S.; Nielsen, M. Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology, 2010, 130(3), 309-318.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03300.x] [PMID: 20518827]
[6]
Tsujimoto, M.; Hattori, A. The oxytocinase subfamily of M1 aminopeptidases. Biochim. Biophys. Acta, 2005, 1751(1), 9-18.
[http://dx.doi.org/10.1016/j.bbapap.2004.09.011] [PMID: 16054015]
[7]
Serwold, T.; Gonzalez, F.; Kim, J.; Jacob, R.; Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature, 2002, 419(6906), 480-483.
[http://dx.doi.org/10.1038/nature01074] [PMID: 12368856]
[8]
Saric, T.; Chang, S.C.; Hattori, A.; York, I.A.; Markant, S.; Rock, K.L.; Tsujimoto, M.; Goldberg, A.L. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol., 2002, 3(12), 1169-1176.
[http://dx.doi.org/10.1038/ni859] [PMID: 12436109]
[9]
York, I.A.; Chang, S.C.; Saric, T.; Keys, J.A.; Favreau, J.M.; Goldberg, A.L.; Rock, K.L. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat. Immunol., 2002, 3(12), 1177-1184.
[http://dx.doi.org/10.1038/ni860] [PMID: 12436110]
[10]
Hammer, G.E.; Gonzalez, F.; James, E.; Nolla, H.; Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol., 2007, 8(1), 101-108.
[http://dx.doi.org/10.1038/ni1409] [PMID: 17128277]
[11]
York, I.A.; Brehm, M.A.; Zendzian, S.; Towne, C.F.; Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 9202-9207.
[http://dx.doi.org/10.1073/pnas.0603095103] [PMID: 16754858]
[12]
Saveanu, L.; Carroll, O.; Lindo, V.; Del Val, M.; Lopez, D.; Lepelletier, Y.; Greer, F.; Schomburg, L.; Fruci, D.; Niedermann, G.; van Endert, P.M. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol., 2005, 6(7), 689-697.
[http://dx.doi.org/10.1038/ni1208] [PMID: 15908954]
[13]
Lorente, E.; Barriga, A.; Johnstone, C.; Mir, C.; Jiménez, M.; López, D. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases. PLoS One, 2013, 8(11)e79596
[http://dx.doi.org/10.1371/journal.pone.0079596] [PMID: 24223975]
[14]
Barnea, E.; Melamed Kadosh, D.; Haimovich, Y.; Satumtira, N.; Dorris, M.L.; Nguyen, M.T.; Hammer, R.E.; Tran, T.M.; Colbert, R.A.; Taurog, J.D.; Admon, A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the effect of Erap1 Deletion. Mol. Cell. Proteomics, 2017, 16(4), 642-662.
[http://dx.doi.org/10.1074/mcp.M116.066241] [PMID: 28188227]
[15]
Chen, L.; Fischer, R.; Peng, Y.; Reeves, E.; McHugh, K.; Ternette, N.; Hanke, T.; Dong, T.; Elliott, T.; Shastri, N.; Kollnberger, S.; James, E.; Kessler, B.; Bowness, P. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol., 2014, 66(2), 284-294.
[http://dx.doi.org/10.1002/art.38249] [PMID: 24504800]
[16]
Martín-Esteban, A.; Guasp, P.; Barnea, E.; Admon, A.; López de Castro, J.A. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 with the HLA-B*27 peptidome in human cells. Arthritis Rheumatol., 2016, 68(10), 2466-2475.
[http://dx.doi.org/10.1002/art.39734] [PMID: 27110896]
[17]
Blanchard, N.; Kanaseki, T.; Escobar, H.; Delebecque, F.; Nagarajan, N.A.; Reyes-Vargas, E.; Crockett, D.K.; Raulet, D.H.; Delgado, J.C.; Shastri, N. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J. Immunol., 2010, 184(6), 3033-3042.
[http://dx.doi.org/10.4049/jimmunol.0903712] [PMID: 20173027]
[18]
Nagarajan, N.A.; de Verteuil, D.A.; Sriranganadane, D.; Yahyaoui, W.; Thibault, P.; Perreault, C.; Shastri, N. ERAAP shapes the peptidome associated with classical and nonclassical MHC Class I molecules. J. Immunol., 2016, 197(4), 1035-1043.
[http://dx.doi.org/10.4049/jimmunol.1500654] [PMID: 27371725]
[19]
Alvarez-Navarro, C.; López de Castro, J.A. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol. Immunol., 2014, 57(1), 12-21.
[http://dx.doi.org/10.1016/j.molimm.2013.06.012] [PMID: 23916068]
[20]
Fruci, D.; Romania, P.; D’Alicandro, V.; Locatelli, F. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases. Tissue Antigens, 2014, 84(2), 177-186.
[http://dx.doi.org/10.1111/tan.12410] [PMID: 25066018]
[21]
Kim, S.; Lee, S.; Shin, J.; Kim, Y.; Evnouchidou, I.; Kim, D.; Kim, Y.K.; Kim, Y.E.; Ahn, J.H.; Riddell, S.R.; Stratikos, E.; Kim, V.N.; Ahn, K. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat. Immunol., 2011, 12(10), 984-991.
[http://dx.doi.org/10.1038/ni.2097] [PMID: 21892175]
[22]
Blanchard, N.; Gonzalez, F.; Schaeffer, M.; Joncker, N.T.; Cheng, T.; Shastri, A.J.; Robey, E.A.; Shastri, N. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat. Immunol., 2008, 9(8), 937-944.
[http://dx.doi.org/10.1038/ni.1629] [PMID: 18587399]
[23]
James, E.; Bailey, I.; Sugiyarto, G.; Elliott, T. Induction of protective antitumor immunity through attenuation of ERAAP function. J. Immunol., 2013, 190(11), 5839-5846.
[http://dx.doi.org/10.4049/jimmunol.1300220] [PMID: 23610143]
[24]
Cifaldi, L.; Lo Monaco, E.; Forloni, M.; Giorda, E.; Lorenzi, S.; Petrini, S.; Tremante, E.; Pende, D.; Locatelli, F.; Giacomini, P.; Fruci, D. Natural killer cells efficiently reject lymphoma silenced for the endoplasmic reticulum aminopeptidase associated with antigen processing. Cancer Res., 2011, 71(5), 1597-1606.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3326] [PMID: 21252114]
[25]
Keller, M.; Ebstein, F.; Bürger, E.; Textoris-Taube, K.; Gorny, X.; Urban, S.; Zhao, F.; Dannenberg, T.; Sucker, A.; Keller, C.; Saveanu, L.; Krüger, E.; Rothkötter, H.J.; Dahlmann, B.; Henklein, P.; Voigt, A.; Kuckelkorn, U.; Paschen, A.; Kloetzel, P.M.; Seifert, U. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35 -specific T-cell recognition. Eur. J. Immunol., 2015, 45(12), 3257-3268.
[http://dx.doi.org/10.1002/eji.201445243] [PMID: 26399368]
[26]
Stratikos, E. Modulating antigen processing for cancer immunotherapy. OncoImmunology, 2014, 3(1)e27568
[http://dx.doi.org/10.4161/onci.27568] [PMID: 24744979]
[27]
Cifaldi, L.; Romania, P.; Lorenzi, S.; Locatelli, F.; Fruci, D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int. J. Mol. Sci., 2012, 13(7), 8338-8352.
[http://dx.doi.org/10.3390/ijms13078338] [PMID: 22942706]
[28]
López de Castro, J.A.; Alvarez-Navarro, C.; Brito, A.; Guasp, P.; Martín-Esteban, A.; Sanz-Bravo, A. Molecular and pathogenic effects of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in MHC-I-associated inflammatory disorders: Towards a unifying view. Mol. Immunol., 2016, 77, 193-204.
[http://dx.doi.org/10.1016/j.molimm.2016.08.005] [PMID: 27522479]
[29]
Hattori, A.; Tsujimoto, M. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology. J. Biochem., 2013, 154(3), 219-228.
[http://dx.doi.org/10.1093/jb/mvt066] [PMID: 23946506]
[30]
Mehta, A.M.; Jordanova, E.S.; Corver, W.E.; van Wezel, T.; Uh, H.W.; Kenter, G.G.; Jan Fleuren, G. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosomes Cancer, 2009, 48(5), 410-418.
[http://dx.doi.org/10.1002/gcc.20648] [PMID: 19202550]
[31]
Steinbach, A.; Winter, J.; Reuschenbach, M.; Blatnik, R.; Klevenz, A.; Bertrand, M.; Hoppe, S.; von Knebel Doeberitz, M.; Grabowska, A.K.; Riemer, A.B. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism. OncoImmunology, 2017, 6(7)e1336594
[http://dx.doi.org/10.1080/2162402X.2017.1336594] [PMID: 28811980]
[32]
Stratikos, E.; Stamogiannos, A.; Zervoudi, E.; Fruci, D. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front. Oncol., 2014, 4, 363.
[http://dx.doi.org/10.3389/fonc.2014.00363] [PMID: 25566501]
[33]
Goto, Y.; Hattori, A.; Ishii, Y.; Tsujimoto, M. Reduced activity of the hypertension-associated Lys528Arg mutant of human adipocyte-derived leucine aminopeptidase (A-LAP)/ER-aminopeptidase-1. FEBS Lett., 2006, 580(7), 1833-1838.
[http://dx.doi.org/10.1016/j.febslet.2006.02.041] [PMID: 16513116]
[34]
Evnouchidou, I.; Kamal, R.P.; Seregin, S.S.; Goto, Y.; Tsujimoto, M.; Hattori, A.; Voulgari, P.V.; Drosos, A.A.; Amalfitano, A.; York, I.A.; Stratikos, E. Cutting Edge: Coding single nucleotide polymorphisms of endoplasmic reticulum aminopeptidase 1 can affect antigenic peptide generation in vitro by influencing basic enzymatic properties of the enzyme. J. Immunol., 2011, 186(4), 1909-1913.
[http://dx.doi.org/10.4049/jimmunol.1003337] [PMID: 21242517]
[35]
Martín-Esteban, A.; Gómez-Molina, P.; Sanz-Bravo, A.; López de Castro, J.A. Combined effects of ankylosing spondylitis-associated ERAP1 polymorphisms outside the catalytic and peptide-binding sites on the processing of natural HLA-B27 ligands. J. Biol. Chem., 2014, 289(7), 3978-3990.
[http://dx.doi.org/10.1074/jbc.M113.529610] [PMID: 24352655]
[36]
Reeves, E.; Edwards, C.J.; Elliott, T.; James, E. Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity. J. Immunol., 2013, 191(1), 35-43.
[http://dx.doi.org/10.4049/jimmunol.1300598] [PMID: 23733883]
[37]
Stamogiannos, A.; Koumantou, D.; Papakyriakou, A.; Stratikos, E. Effects of polymorphic variation on the mechanism of Endoplasmic Reticulum Aminopeptidase 1. Mol. Immunol., 2015, 67(2 Pt B), 426-435.
[http://dx.doi.org/10.1016/j.molimm.2015.07.010] [PMID: 26224046]
[38]
Stratikos, E.; Stern, L.J. Antigenic peptide trimming by ER aminopeptidases--insights from structural studies. Mol. Immunol., 2013, 55(3-4), 212-219.
[http://dx.doi.org/10.1016/j.molimm.2013.03.002] [PMID: 23545452]
[39]
Vanhille, D.L.; Hill, L.D.; Hilliard, D.D.; Lee, E.D.; Teves, M.E.; Srinivas, S.; Kusanovic, J.P.; Gomez, R.; Stratikos, E.; Elovitz, M.A.; Romero, R.; Strauss, J.F. III A Novel ERAP2 Haplotype Structure in a Chilean Population: Implications for ERAP2 Protein Expression and Preeclampsia Risk. Mol. Genet. Genomic Med., 2013, 1(2), 98-107.
[http://dx.doi.org/10.1002/mgg3.13] [PMID: 24040622]
[40]
Andrés, A.M.; Dennis, M.Y.; Kretzschmar, W.W.; Cannons, J.L.; Lee-Lin, S.Q.; Hurle, B.; Schwartzberg, P.L.; Williamson, S.H.; Bustamante, C.D.; Nielsen, R.; Clark, A.G.; Green, E.D.; Green, E.D. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet., 2010, 6(10)e1001157
[http://dx.doi.org/10.1371/journal.pgen.1001157] [PMID: 20976248]
[41]
Evnouchidou, I.; Birtley, J.; Seregin, S.; Papakyriakou, A.; Zervoudi, E.; Samiotaki, M.; Panayotou, G.; Giastas, P.; Petrakis, O.; Georgiadis, D.; Amalfitano, A.; Saridakis, E.; Mavridis, I.M.; Stratikos, E. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing. J. Immunol., 2012, 189(5), 2383-2392.
[http://dx.doi.org/10.4049/jimmunol.1200918] [PMID: 22837489]
[42]
García-Medel, N.; Sanz-Bravo, A.; Van Nguyen, D.; Galocha, B.; Gómez-Molina, P.; Martín-Esteban, A.; Alvarez-Navarro, C.; de Castro, J.A. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 polymorphism and HLA-B27 in vivo. Mol. Cell. Proteomics, 2012, 11(11), 1416-1429.
[http://dx.doi.org/10.1074/mcp.M112.019588] [PMID: 22918227]
[43]
Chang, S.C.; Momburg, F.; Bhutani, N.; Goldberg, A.L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17107-17112.
[http://dx.doi.org/10.1073/pnas.0500721102] [PMID: 16286653]
[44]
Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol., 2011, 11(12), 823-836.
[http://dx.doi.org/10.1038/nri3084] [PMID: 22076556]
[45]
Zervoudi, E.; Papakyriakou, A.; Georgiadou, D.; Evnouchidou, I.; Gajda, A.; Poreba, M.; Salvesen, G.S.; Drag, M.; Hattori, A.; Swevers, L.; Vourloumis, D.; Stratikos, E. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides. Biochem. J., 2011, 435(2), 411-420.
[http://dx.doi.org/10.1042/BJ20102049] [PMID: 21314638]
[46]
Hearn, A.; York, I.A.; Rock, K.L. The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum. J. Immunol., 2009, 183(9), 5526-5536.
[http://dx.doi.org/10.4049/jimmunol.0803663] [PMID: 19828632]
[47]
Evnouchidou, I.; Momburg, F.; Papakyriakou, A.; Chroni, A.; Leondiadis, L.; Chang, S.C.; Goldberg, A.L.; Stratikos, E. The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1. PLoS One, 2008, 3(11)e3658
[http://dx.doi.org/10.1371/journal.pone.0003658] [PMID: 18987748]
[48]
Nguyen, T.T.; Chang, S.C.; Evnouchidou, I.; York, I.A.; Zikos, C.; Rock, K.L.; Goldberg, A.L.; Stratikos, E.; Stern, L.J. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat. Struct. Mol. Biol., 2011, 18(5), 604-613.
[http://dx.doi.org/10.1038/nsmb.2021] [PMID: 21478864]
[49]
Gandhi, A.; Lakshminarasimhan, D.; Sun, Y.; Guo, H.C. Structural insights into the molecular ruler mechanism of the endoplasmic reticulum aminopeptidase ERAP1. Sci. Rep., 2011, 1, 186.
[http://dx.doi.org/10.1038/srep00186] [PMID: 22355701]
[50]
Mpakali, A.; Saridakis, E.; Harlos, K.; Zhao, Y.; Papakyriakou, A.; Kokkala, P.; Georgiadis, D.; Stratikos, E. Crystal structure of insulin-regulated aminopeptidase with bound substrate analogue provides insight on antigenic epitope precursor recognition and processing. J. Immunol., 2015, 195(6), 2842-2851.
[http://dx.doi.org/10.4049/jimmunol.1501103] [PMID: 26259583]
[51]
Birtley, J.R.; Saridakis, E.; Stratikos, E.; Mavridis, I.M. The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing. Biochemistry, 2012, 51(1), 286-295.
[http://dx.doi.org/10.1021/bi201230p] [PMID: 22106953]
[52]
Kochan, G.; Krojer, T.; Harvey, D.; Fischer, R.; Chen, L.; Vollmar, M.; von Delft, F.; Kavanagh, K.L.; Brown, M.A.; Bowness, P.; Wordsworth, P.; Kessler, B.M.; Oppermann, U. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7745-7750.
[http://dx.doi.org/10.1073/pnas.1101262108] [PMID: 21508329]
[53]
Sui, L.; Gandhi, A.; Guo, H.C. Crystal structure of a polypeptide’s C-terminus in complex with the regulatory domain of ER aminopeptidase 1. Mol. Immunol., 2016, 80, 41-49.
[http://dx.doi.org/10.1016/j.molimm.2016.10.012] [PMID: 27825049]
[54]
Mpakali, A.; Giastas, P.; Mathioudakis, N.; Mavridis, I.M.; Saridakis, E.; Stratikos, E. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J. Biol. Chem., 2015, 290(43), 26021-26032.
[http://dx.doi.org/10.1074/jbc.M115.685909] [PMID: 26381406]
[55]
Mpakali, A.; Giastas, P.; Deprez-Poulain, R.; Papakyriakou, A.; Koumantou, D.; Gealageas, R.; Tsoukalidou, S.; Vourloumis, D.; Mavridis, I.M.; Stratikos, E.; Saridakis, E. Crystal structures of ERAP2 complexed with inhibitors reveal pharmacophore requirements for optimizing inhibitor potency. ACS Med. Chem. Lett., 2017, 8(3), 333-337.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00505] [PMID: 28337326]
[56]
Stratikos, E. Regulating adaptive immune responses using small molecule modulators of aminopeptidases that process antigenic peptides. Curr. Opin. Chem. Biol., 2014, 23, 1-7.
[http://dx.doi.org/10.1016/j.cbpa.2014.08.007] [PMID: 25173825]
[57]
Stamogiannos, A.; Maben, Z.; Papakyriakou, A.; Mpakali, A.; Kokkala, P.; Georgiadis, D.; Stern, L.J.; Stratikos, E. Critical ROLE OF INTERDOMAIN INTERACTIONS IN THE CONFORMATIONAL CHANGE AND CATALYTIC MECHANISM OF ENDOPLASMIC RETICULUM AMinopeptidase 1. Biochemistry, 2017, 56(10), 1546-1558.
[http://dx.doi.org/10.1021/acs.biochem.6b01170] [PMID: 28218509]
[58]
Zervoudi, E.; Saridakis, E.; Birtley, J.R.; Seregin, S.S.; Reeves, E.; Kokkala, P.; Aldhamen, Y.A.; Amalfitano, A.; Mavridis, I.M.; James, E.; Georgiadis, D.; Stratikos, E. Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc. Natl. Acad. Sci. USA, 2013, 110(49), 19890-19895.
[http://dx.doi.org/10.1073/pnas.1309781110] [PMID: 24248368]
[59]
Kokkala, P.; Mpakali, A.; Mauvais, F.X.; Papakyriakou, A.; Daskalaki, I.; Petropoulou, I.; Kavvalou, S.; Papathanasopoulou, M.; Agrotis, S.; Fonsou, T.M.; van Endert, P.; Stratikos, E.; Georgiadis, D. optimization and structure-activity relationships of phosphinic pseudotripeptide inhibitors of aminopeptidases that generate antigenic peptides. J. Med. Chem., 2016, 59(19), 9107-9123.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01031] [PMID: 27606717]
[60]
Aldhamen, Y.A.; Pepelyayeva, Y.; Rastall, D.P.; Seregin, S.S.; Zervoudi, E.; Koumantou, D.; Aylsworth, C.F.; Quiroga, D.; Godbehere, S.; Georgiadis, D.; Stratikos, E.; Amalfitano, A. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells. J. Innate Immun., 2015, 7(3), 275-289.
[http://dx.doi.org/10.1159/000368899] [PMID: 25591727]
[61]
Chen, L.; Ridley, A.; Hammitzsch, A.; Al-Mossawi, M.H.; Bunting, H.; Georgiadis, D.; Chan, A.; Kollnberger, S.; Bowness, P. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Ann. Rheum. Dis., 2016, 75(5), 916-923.
[http://dx.doi.org/10.1136/annrheumdis-2014-206996] [PMID: 26130142]
[62]
Mucha, A.; Drag, M.; Dalton, J.P.; Kafarski, P. Metallo-aminopeptidase inhibitors. Biochimie, 2010, 92(11), 1509-1529.
[http://dx.doi.org/10.1016/j.biochi.2010.04.026] [PMID: 20457213]
[63]
Peng, G.; McEwen, A.G.; Olieric, V.; Schmitt, C.; Albrecht, S.; Cavarelli, J.; Tarnus, C. Insight into the remarkable affinity and selectivity of the aminobenzosuberone scaffold for the M1 aminopeptidases family based on structure analysis. Proteins, 2017, 85(8), 1413-1421.
[http://dx.doi.org/10.1002/prot.25301] [PMID: 28383176]
[64]
Deprez-Poulain, R.; Flipo, M.; Piveteau, C.; Leroux, F.; Dassonneville, S.; Florent, I.; Maes, L.; Cos, P.; Deprez, B. Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors. J. Med. Chem., 2012, 55(24), 10909-10917.
[http://dx.doi.org/10.1021/jm301506h] [PMID: 23176597]
[65]
Evnouchidou, I.; Berardi, M.J.; Stratikos, E. A continuous fluorigenic assay for the measurement of the activity of endoplasmic reticulum aminopeptidase 1: competition kinetics as a tool for enzyme specificity investigation. Anal. Biochem., 2009, 395(1), 33-40.
[http://dx.doi.org/10.1016/j.ab.2009.07.032] [PMID: 19638272]
[66]
Chan, W.W. L-leucinthiol - a potent inhibitor of leucine aminopeptidase. Biochem. Biophys. Res. Commun., 1983, 116(1), 297-302.
[http://dx.doi.org/10.1016/0006-291X(83)90414-X] [PMID: 6416254]
[67]
Ocain, T.D.; Rich, D.H. L-lysinethiol: a subnanomolar inhibitor of aminopeptidase B. Biochem. Biophys. Res. Commun., 1987, 145(3), 1038-1042.
[http://dx.doi.org/10.1016/0006-291X(87)91540-3] [PMID: 3111463]
[68]
Węglarz-Tomczak, E.; Vassiliou, S.; Mucha, A. Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues. Bioorg. Med. Chem. Lett., 2016, 26(16), 4122-4126.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.062] [PMID: 27390066]
[69]
Mpakali, A.; Saridakis, E.; Harlos, K.; Zhao, Y.; Kokkala, P.; Georgiadis, D.; Giastas, P.; Papakyriakou, A.; Stratikos, E. Ligand-induced conformational change of Insulin-regulated aminopeptidase: insights on catalytic mechanism and active site plasticity. J. Med. Chem., 2017, 60(7), 2963-2972.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01890] [PMID: 28328206]
[70]
Papakyriakou, A.; Zervoudi, E.; Theodorakis, E.A.; Saveanu, L.; Stratikos, E.; Vourloumis, D. Novel selective inhibitors of aminopeptidases that generate antigenic peptides. Bioorg. Med. Chem. Lett., 2013, 23(17), 4832-4836.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.024] [PMID: 23916253]
[71]
Papakyriakou, A.; Zervoudi, E.; Tsoukalidou, S.; Mauvais, F.X.; Sfyroera, G.; Mastellos, D.C.; van Endert, P.; Theodorakis, E.A.; Vourloumis, D.; Stratikos, E. 3,4-diaminobenzoic acid derivatives as inhibitors of the oxytocinase subfamily of M1 aminopeptidases with immune-regulating properties. J. Med. Chem., 2015, 58(3), 1524-1543.
[http://dx.doi.org/10.1021/jm501867s] [PMID: 25635706]
[72]
Georgiadis, D.; Yiotakis, A. Specific targeting of metzincin family members with small-molecule inhibitors: progress toward a multifarious challenge. Bioorg. Med. Chem., 2008, 16(19), 8781-8794.
[http://dx.doi.org/10.1016/j.bmc.2008.08.058] [PMID: 18790648]
[73]
Jacobsen, J.A.; Major Jourden, J.L.; Miller, M.T.; Cohen, S.M. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta, 2010, 1803(1), 72-94.
[http://dx.doi.org/10.1016/j.bbamcr.2009.08.006] [PMID: 19712708]
[74]
Stamogiannos, A.; Papakyriakou, A.; Mauvais, F.X.; van Endert, P.; Stratikos, E. Screening identifies thimerosal as a selective inhibitor of endoplasmic reticulum aminopeptidase 1. ACS Med. Chem. Lett., 2016, 7(7), 681-685.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00084] [PMID: 27437077]
[75]
Amyes, T.L.; Richard, J.P. Rational design of transition-state analogues as potent enzyme inhibitors with therapeutic applications. ACS Chem. Biol., 2007, 2(11), 711-714.
[http://dx.doi.org/10.1021/cb700228t] [PMID: 18030986]
[76]
Georgiadis, D.; Dive, V. Phosphinic peptides as potent inhibitors of zinc-metalloproteases. Top. Curr. Chem., 2015, 360, 1-38.
[PMID: 25370521]
[77]
Gupta, S.P. QSAR studies on hydroxamic acids: a fascinating family of chemicals with a wide spectrum of activities. Chem. Rev., 2015, 115(13), 6427-6490.
[http://dx.doi.org/10.1021/cr500483r] [PMID: 26024019]
[78]
Saveanu, L.; Carroll, O.; Weimershaus, M.; Guermonprez, P.; Firat, E.; Lindo, V.; Greer, F.; Davoust, J.; Kratzer, R.; Keller, S.R.; Niedermann, G.; van Endert, P. IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science, 2009, 325(5937), 213-217.
[http://dx.doi.org/10.1126/science.1172845] [PMID: 19498108]
[79]
Segura, E.; Albiston, A.L.; Wicks, I.P.; Chai, S.Y.; Villadangos, J.A. Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20377-20381.
[http://dx.doi.org/10.1073/pnas.0910295106] [PMID: 19918052]
[80]
Albiston, A.L.; Diwakarla, S.; Fernando, R.N.; Mountford, S.J.; Yeatman, H.R.; Morgan, B.; Pham, V.; Holien, J.K.; Parker, M.W.; Thompson, P.E.; Chai, S.Y. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br. J. Pharmacol., 2011, 164(1), 37-47.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01402.x] [PMID: 21470200]
[81]
Diwakarla, S.; Nylander, E.; Grönbladh, A.; Vanga, S.R.; Khan, Y.S.; Gutiérrez-de-Terán, H.; Sävmarker, J.; Ng, L.; Pham, V.; Lundbäck, T.; Jenmalm-Jensen, A.; Svensson, R.; Artursson, P.; Zelleroth, S.; Engen, K.; Rosenström, U.; Larhed, M.; Åqvist, J.; Chai, S.Y.; Hallberg, M. Aryl sulfonamide inhibitors of insulin-regulated aminopeptidase enhance spine density in primary hippocampal neuron cultures. ACS Chem. Neurosci., 2016, 7(10), 1383-1392.
[http://dx.doi.org/10.1021/acschemneuro.6b00146] [PMID: 27501164]
[82]
Cifaldi, L.; Romania, P.; Falco, M.; Lorenzi, S.; Meazza, R.; Petrini, S.; Andreani, M.; Pende, D.; Locatelli, F.; Fruci, D. ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors. Cancer Res., 2015, 75(5), 824-834.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1643] [PMID: 25592150]
[83]
Skiles, J.W.; Gonnella, N.C.; Jeng, A.Y. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr. Med. Chem., 2001, 8(4), 425-474.
[http://dx.doi.org/10.2174/0929867013373417] [PMID: 11172697]
[84]
Nagarajan, N.A.; Gonzalez, F.; Shastri, N. Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat. Immunol., 2012, 13(6), 579-586.
[http://dx.doi.org/10.1038/ni.2282] [PMID: 22522492]
[85]
Nagarajan, N.A.; Shastri, N. Immune surveillance for ERAAP dysfunction. Mol. Immunol., 2013, 55(2), 120-122.
[http://dx.doi.org/10.1016/j.molimm.2012.10.006] [PMID: 23433779]
[86]
Wang, B.; Niu, D.; Lai, L.; Ren, E.C. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat. Commun., 2013, 4, 2359.
[http://dx.doi.org/10.1038/ncomms3359] [PMID: 23965983]
[87]
Kuo, I.C.; Kao, H.K.; Huang, Y.; Wang, C.I.; Yi, J.S.; Liang, Y.; Liao, C.T.; Yen, T.C.; Wu, C.C.; Chang, K.P. Endoplasmic reticulum aminopeptidase 2 involvement in metastasis of oral cavity squamous cell carcinoma discovered by proteome profiling of primary cancer cells. Oncotarget, 2017, 8(37), 61698-61708.
[http://dx.doi.org/10.18632/oncotarget.18680] [PMID: 28977897]
[88]
Gubin, M.M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J.P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C.D.; Krebber, W.J.; Mulder, G.E.; Toebes, M.; Vesely, M.D.; Lam, S.S.; Korman, A.J.; Allison, J.P.; Freeman, G.J.; Sharpe, A.H.; Pearce, E.L.; Schumacher, T.N.; Aebersold, R.; Rammensee, H.G.; Melief, C.J.; Mardis, E.R.; Gillanders, W.E.; Artyomov, M.N.; Schreiber, R.D. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515(7528), 577-581.
[http://dx.doi.org/10.1038/nature13988] [PMID: 25428507]
[89]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[90]
Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; Utikal, J.; Hassel, J.C.; Weide, B.; Kaehler, K.C.; Loquai, C.; Mohr, P.; Gutzmer, R.; Dummer, R.; Gabriel, S.; Wu, C.J.; Schadendorf, D.; Garraway, L.A. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015, 350(6257), 207-211.
[http://dx.doi.org/10.1126/science.aad0095] [PMID: 26359337]
[91]
Guasp, P.; Alvarez-Navarro, C.; Gomez-Molina, P.; Martín-Esteban, A.; Marcilla, M.; Barnea, E.; Admon, A.; López de Castro, J.A. The Peptidome of Behçet’s Disease-Associated HLA-B*51:01 Includes Two Subpeptidomes Differentially Shaped by Endoplasmic Reticulum Aminopeptidase 1. Arthritis Rheumatol., 2016, 68(2), 505-515.
[http://dx.doi.org/10.1002/art.39430] [PMID: 26360328]
[92]
Alvarez-Navarro, C.; Martín-Esteban, A.; Barnea, E.; Admon, A.; López de Castro, J.A. ERAP1 polymorphism relevant to inflammatory disease shapes the peptidome of the birdshot chorioretinopathy-associated HLA-A*29:02 antigen. Mol. Cell. Proteomics, 2015, 14(7), 1770-1780.
[http://dx.doi.org/10.1074/mcp.M115.048959] [PMID: 25892735]
[93]
Tran, E.; Ahmadzadeh, M.; Lu, Y.C.; Gros, A.; Turcotte, S.; Robbins, P.F.; Gartner, J.J.; Zheng, Z.; Li, Y.F.; Ray, S.
Wunderlich, J.R.; Somerville, R.P.; Rosenberg, S.A. Immu-nogenicity of somatic mutations in human gastrointestinal cancers. Science, 2015, 350(6266), 1387-1390.
[http://dx.doi.org/10.1126/science.aad1253] [PMID: 26516200]
[94]
Cortes, A.; Pulit, S.L.; Leo, P.J.; Pointon, J.J.; Robinson, P.C.; Weisman, M.H.; Ward, M.; Gensler, L.S.; Zhou, X.; Garchon, H.J.; Chiocchia, G.; Nossent, J.; Lie, B.A.; Førre, Ø.; Tuomilehto, J.; Laiho, K.; Bradbury, L.A.; Elewaut, D.; Burgos-Vargas, R.; Stebbings, S.; Appleton, L.; Farrah, C.; Lau, J.; Haroon, N.; Mulero, J.; Blanco, F.J.; Gonzalez-Gay, M.A.; Lopez-Larrea, C.; Bowness, P.; Gaffney, K.; Gaston, H.; Gladman, D.D.; Rahman, P.; Maksymowych, W.P.; Crusius, J.B.; van der Horst-Bruinsma, I.E.; Valle-Oñate, R.; Romero-Sánchez, C.; Hansen, I.M.; Pimentel-Santos, F.M.; Inman, R.D.; Martin, J.; Breban, M.; Wordsworth, B.P.; Reveille, J.D.; Evans, D.M.; de Bakker, P.I.; Brown, M.A. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun., 2015, 6, 7146.
[http://dx.doi.org/10.1038/ncomms8146] [PMID: 25994336]
[95]
Kirino, Y.; Bertsias, G.; Ishigatsubo, Y.; Mizuki, N.; Tugal-Tutkun, I.; Seyahi, E.; Ozyazgan, Y.; Sacli, F.S.; Erer, B.; Inoko, H.; Emrence, Z.; Cakar, A.; Abaci, N.; Ustek, D.; Satorius, C.; Ueda, A.; Takeno, M.; Kim, Y.; Wood, G.M.; Ombrello, M.J.; Meguro, A.; Gül, A.; Remmers, E.F.; Kastner, D.L. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet., 2013, 45(2), 202-207.
[http://dx.doi.org/10.1038/ng.2520] [PMID: 23291587]
[96]
Martín-Esteban, A.; Sanz-Bravo, A.; Guasp, P.; Barnea, E.; Admon, A.; López de Castro, J.A. Separate effects of the ankylosing spondylitis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome. J. Autoimmun., 2017, 79, 28-38.
[http://dx.doi.org/10.1016/j.jaut.2016.12.008] [PMID: 28063628]
[97]
Guasp, P.; Barnea, E.; González-Escribano, M.F.; Jiménez-Reinoso, A.; Regueiro, J.R.; Admon, A.; López de Castro, J.A. The Behçet’s disease-associated variant of the aminopeptidase ERAP1 shapes a low-affinity HLA-B*51 peptidome by differential subpeptidome processing. J. Biol. Chem., 2017, 292(23), 9680-9689.
[http://dx.doi.org/10.1074/jbc.M117.789180] [PMID: 28446606]
[98]
Rastall, D.P.W.; Alyaquob, F.S.; O’Connell, P.; Pepelyayeva, Y.; Peters, D.; Godbehere-Roosa, S.; Pereira-Hicks, C.; Aldhamen, Y.A.; Amalfitano, A. Mice expressing human ERAP1 variants associated with ankylosing spondylitis have altered T-cell repertoires and NK cell functions, as well as increased in utero and perinatal mortality. Int. Immunol., 2017, 29(6), 277-289.
[http://dx.doi.org/10.1093/intimm/dxx035] [PMID: 28814066]
[99]
Cagliani, R.; Riva, S.; Biasin, M.; Fumagalli, M.; Pozzoli, U.; Lo Caputo, S.; Mazzotta, F.; Piacentini, L.; Bresolin, N.; Clerici, M.; Sironi, M. Genetic diversity at endoplasmic reticulum aminopeptidases is maintained by balancing selection and is associated with natural resistance to HIV-1 infection. Hum. Mol. Genet., 2010, 19(23), 4705-4714.
[http://dx.doi.org/10.1093/hmg/ddq401] [PMID: 20843824]
[100]
Tenzer, S.; Wee, E.; Burgevin, A.; Stewart-Jones, G.; Friis, L.; Lamberth, K.; Chang, C.H.; Harndahl, M.; Weimershaus, M.; Gerstoft, J.; Akkad, N.; Klenerman, P.; Fugger, L.; Jones, E.Y.; McMichael, A.J.; Buus, S.; Schild, H.; van Endert, P.; Iversen, A.K. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat. Immunol., 2009, 10(6), 636-646.
[http://dx.doi.org/10.1038/ni.1728] [PMID: 19412183]
[101]
Cui, X.; Rouhani, F.N.; Hawari, F.; Levine, S.J. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J. Biol. Chem., 2003, 278(31), 28677-28685.
[http://dx.doi.org/10.1074/jbc.M300456200] [PMID: 12748171]
[102]
Goto, Y.; Ogawa, K.; Hattori, A.; Tsujimoto, M. Secretion of endoplasmic reticulum aminopeptidase 1 is involved in the activation of macrophages induced by lipopolysaccharide and interferon-gamma. J. Biol. Chem., 2011, 286(24), 21906-21914.
[http://dx.doi.org/10.1074/jbc.M111.239111] [PMID: 21531727]
[103]
Aldhamen, Y.A.; Seregin, S.S.; Rastall, D.P.; Aylsworth, C.F.; Pepelyayeva, Y.; Busuito, C.J.; Godbehere-Roosa, S.; Kim, S.; Amalfitano, A. Endoplasmic reticulum aminopeptidase-1 functions regulate key aspects of the innate immune response. PLoS One, 2013, 8(7)e69539
[http://dx.doi.org/10.1371/journal.pone.0069539] [PMID: 23894499]
[104]
Hattori, A.; Kitatani, K.; Matsumoto, H.; Miyazawa, S.; Rogi, T.; Tsuruoka, N.; Mizutani, S.; Natori, Y.; Tsujimoto, M. Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells. J. Biochem., 2000, 128(5), 755-762.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022812] [PMID: 11056387]
[105]
Hisatsune, C.; Ebisui, E.; Usui, M.; Ogawa, N.; Suzuki, A.; Mataga, N.; Takahashi-Iwanaga, H.; Mikoshiba, K. ERp44 Exerts Redox-Dependent Control of Blood Pressure at the ER. Mol. Cell, 2015, 58(6), 1015-1027.
[http://dx.doi.org/10.1016/j.molcel.2015.04.008] [PMID: 25959394]
[106]
Miyashita, H.; Yamazaki, T.; Akada, T.; Niizeki, O.; Ogawa, M.; Nishikawa, S.; Sato, Y. A mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase is expressed in endothelial cells and plays an important role in angiogenesis. Blood, 2002, 99(9), 3241-3249.
[http://dx.doi.org/10.1182/blood.V99.9.3241] [PMID: 11964289]
[107]
Yamazaki, T.; Akada, T.; Niizeki, O.; Suzuki, T.; Miyashita, H.; Sato, Y. Puromycin-insensitive leucyl-specific aminopeptidase (PILSAP) binds and catalyzes PDK1, allowing VEGF-stimulated activation of S6K for endothelial cell proliferation and angiogenesis. Blood, 2004, 104(8), 2345-2352.
[http://dx.doi.org/10.1182/blood-2003-12-4260] [PMID: 15187024]
[108]
Akada, T.; Yamazaki, T.; Miyashita, H.; Niizeki, O.; Abe, M.; Sato, A.; Satomi, S.; Sato, Y. Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) is involved in the activation of endothelial integrins. J. Cell. Physiol., 2002, 193(2), 253-262.
[http://dx.doi.org/10.1002/jcp.10169] [PMID: 12385003]
[109]
Papakyriakou, A.; Stratikos, E. The Role of conformational dynamics in antigen trimming by intracellular aminopeptidases. Front. Immunol., 2017, 8(946), 946.
[http://dx.doi.org/10.3389/fimmu.2017.00946] [PMID: 28824657]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 15
Year: 2019
Page: [2715 - 2729]
Pages: 15
DOI: 10.2174/0929867325666180214111849
Price: $58

Article Metrics

PDF: 36
HTML: 4