Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action - Review

Author(s): Patricia Bento da Silva*, Rachel Temperani Amaral Machado, Andressa Maria Pironi, Renata Carolina Alves, Patricia Rocha de Araújo, Amanda Cutrim Dragalzew, Ingrid Dalberto, Marlus Chorilli*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 12 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

The term cancer represents a set of more than 100 diseases that are caused due to an uncontrolled growth of cells; and their subsequent spread to the other tissues and organs of the body by a phenomenon, called ‘metastasis’. According to the estimates provided by the World Health Organization (WHO), cancer is expected to account for about 10 million deaths per year by 2020 and 21 million cancer cases, which may lead to 13 million deaths by 2030, making cancer as the cause of highest mortality in contrast to other diseases. The search for potential therapeutics against cancer, which can reduce the side-effects that occur due to the difficulty of recognition between cancerous and normal cells, has ever been increased. In this view, nanotechnology, especially metallic nanoparticles (MNPs), comes to aid in the development of novel therapeutic agents, which may be synthesized or modified with the most diverse functional chemical groups; this property makes the metallic nanoparticles suitable for conjugation with already known drugs or prospective drug candidates. The biocompatibility, relatively simple synthesis, size flexibility and easy chemical modification of its surface, all make the metallic nanoparticles highly advantageous for opportune diagnosis and therapy of cancer. The present article analyzes and reports the anti-tumor activities of 78 papers of various metallic nanoparticles, particularly the ones containing copper, gold, iron, silver and titanium in their composition.

Keywords: Metallic nanoparticles, nanotechnology, antitumor activity, copper, gold, iron, silver, titanium.

[1]
Kanchana, A.; Balakrishnan, M. Anti-Cancer Effect of Saponins Isolated from Solanum Trilobatum Leaf Extract and Induction of Apoptosis in Humam Larynx Câncer Cell Lines. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 356-364.
[2]
De Almeida, V.L.; Leitão, A.; Barrett, C.; Alberto, C.; Luis, C.; Câncer, E. Agentes Antineoplásticos Ciclo-Celular Específicos E Ciclo-Celular Não Específicos Que Interagem Com DNA: Uma Introdução. Quim. Nova, 2005, 28(1), 118-129.
[http://dx.doi.org/10.1590/S0100-40422005000100021]
[4]
World Cancer Research Fund/American Institute for Cancer Research In:. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective;, 2007.
[5]
Foye, W.O.; Lemke, T.L.; Williams, D.A. Foye’s Principles of Medicinal Chemistry. In:Wolters Kluwer Health; Lippincott Williams & Wilkins, 2013.
[6]
WHO. Global Cancer Rates Could Increase by 50% to 15 Million by 2020; In: WHO, 2010.
[7]
Vinardell, M.P.; Mitjans, M. Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials (Basel), 2015, 5(2), 1004-1021.
[http://dx.doi.org/10.3390/nano5021004] [PMID: 28347048]
[8]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine (Lond.), 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[9]
Munhoz, A.H., Jr; Novickis, R.W. Braunstein Faldini, S.; Ribeiro, R. R.; Maeda, C. Y.; de Miranda, L. F. Development of Pseudoboehmites for Nanosystems to Release Acyclovir. Adv. Sci. Technol., 2010, 76, 184-189.
[http://dx.doi.org/10.4028/www.scientific.net/AST.76.184]
[10]
Couvreur, P.; Vauthier, C. Nanotechnology: Intelligent Design to Treat Complex Disease. , 2006.
[11]
Orive, G.; Hernandez, R.M.; Gascón, A.R.; Pedraz, J.L. Micro and Nano Drug Delivery Systems in Cancer Therapy. Cancer Ther., 2005, 3, 131-138.
[12]
Melo, M.A., Jr; Santos, L.S.S.; Gonçalves, M. do C.; Nogueira, A. F. Preparação de Nanopartículas de Prata E Ouro: Um Método Simples Para a Introdução Da Nanociência Em Laboratório de Ensino. Quim. Nova, 2011, 35(9), 1872-1878.
[http://dx.doi.org/10.1590/S0100-40422012000900030]
[13]
Aiken, J.D.; Finke, R.G. A Review of Modern Transition-Metal Nanoclusters: Their Synthesis, Characterization, and Applications in Catalysis. J. Mol. Catal. Chem., 1999, 145(1-2), 1-44.
[http://dx.doi.org/10.1016/S1381-1169(99)00098-9]
[14]
Fawcett, D.; Verduin, J.J.; Shah, M.; Sharma, S.B.; Eddy, G.; Poinern, J. A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. J. Nanosci., 2017, 2017, 1-15.
[http://dx.doi.org/10.1155/2017/8013850]
[15]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[16]
Parveen, K.; Banse, V.; Ledwani, L. Green Synthesis of Nanoparticles: Their Advantages and Disadvantages. AIP Conf. Proc, 2016. •••, 1724.
[17]
Dhuper, S.; Panda, D.; Nayak, P.P.L. Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Azadirachta Indica (Neem). Nano Trends A J. Nanotechnol. Its Appl., 2013, 2(1), 6-9.
[18]
Klabunde, K.J. Nanoscale Materials in Chemistry. In:; Wiley-Interscience, 2001.
[http://dx.doi.org/10.1002/0471220620]
[19]
Ong, C.; Lim, J.Z.Z.; Ng, C.T.; Li, J.J.; Yung, L.Y.; Bay, B.H. Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr. Med. Chem., 2013, 20(6), 772-781.
[PMID: 23298139]
[20]
Lembo, D.; Cavalli, R. Nanoparticulate delivery systems for antiviral drugs. Antivir. Chem. Chemother., 2010, 21(2), 53-70.
[http://dx.doi.org/10.3851/IMP1684] [PMID: 21107015]
[21]
Conde, J.; Doria, G.; Baptista, P. Noble metal nanoparticles applications in cancer. J. Drug Deliv., 2012, 2012751075.
[http://dx.doi.org/10.1155/2012/751075] [PMID: 22007307]
[22]
Arvizo, R.R.; Saha, S.; Wang, E.; Robertson, J.D.; Bhattacharya, R.; Mukherjee, P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc. Natl. Acad. Sci. USA, 2013, 110(17), 6700-6705.
[http://dx.doi.org/10.1073/pnas.1214547110] [PMID: 23569259]
[23]
Siddiqui, M.A.; Alhadlaq, H.A.; Ahmad, J.; Al-Khedhairy, A.A.; Musarrat, J.; Ahamed, M. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One, 2013, 8(8), e69534.
[http://dx.doi.org/10.1371/journal.pone.0069534] [PMID: 23940521]
[24]
Ramaswamy, S.V.P.; Narendhran, S.; Sivaraj, R. Potentiating Effect of Ecofriendly Synthesis of Copper Oxide Nanoparticles Using Brown Alga: Antimicrobial and Anticancer Activities. Bull. Mater. Sci., 2016, 39(2), 361-364.
[http://dx.doi.org/10.1007/s12034-016-1173-3]
[25]
Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129, 255-258.
[http://dx.doi.org/10.1016/j.saa.2014.03.027] [PMID: 24747845]
[26]
Sankar, R.; Maheswari, R.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 234-239.
[http://dx.doi.org/10.1016/j.msec.2014.08.030] [PMID: 25280701]
[27]
Nagajyothi, P.C.; Muthuraman, P.; Sreekanth, T.V.M.; Kim, D.H.; Shim, J. Green Synthesis: In-Vitro Anticancer Activity of Copper Oxide Nanoparticles against Human Cervical Carcinoma Cells. Arab. J. Chem., 2017, 10(2), 215-225.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.011]
[28]
Jeronsia, Je.; Vidhya Raj, D.; Joseph, La.; Rubini, K.; Das, Sj. In Vitro Antibacterial and Anticancer Activity of Copper Oxide Nanostructures in Human Breast Cancer Michigan Cancer Foundation-7 Cells. J. Med. Sci., 2016, 36(4), 145.
[http://dx.doi.org/10.4103/1011-4564.188899]
[29]
Hu, Y.; Wang, Y. Cuprous Oxide Nanoparticles Selectively Induce Apoptosis of Tumor Cells. Int. J. Nanomedicine, 2012.
[http://dx.doi.org/10.2147/IJN.S31133]
[30]
Shafagh, M.; Rahmani, F.; Delirezh, N. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran. J. Basic Med. Sci., 2015, 18(10), 993-1000.
[PMID: 26730334]
[31]
Wang, Y.; Yang, F.; Zhang, H.X.; Zi, X.Y.; Pan, X.H.; Chen, F.; Luo, W.D.; Li, J.X.; Zhu, H.Y.; Hu, Y.P. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis, 2013. 4e783
[32]
Sun, T.; Yan, Y.; Zhao, Y.; Guo, F.; Jiang, C. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One, 2012, 7(8), e43442.
[http://dx.doi.org/10.1371/journal.pone.0043442] [PMID: 22916263]
[33]
Mahmoud, B.A.; Elif, G.E.; Gül, Ö. Copper (II) Oxide Nanoparticles Induce High Toxicity in Human Neuronal Cell. Glob. J. Med. Res., 2016, 16(3), 7-14.
[34]
Fu, X. Oxidative Stress Induced by CuO Nanoparticles (CuO NPs) to Human Hepatocarcinoma (HepG2) Cells. J. Cancer Ther., 2015, 6(6), 889-895.
[http://dx.doi.org/10.4236/jct.2015.610097]
[35]
Akhtar, M.J.; Kumar, S.; Alhadlaq, H.A.; Alrokayan, S.A.; Abu-Salah, K.M.; Ahamed, M. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol. Ind. Health, 2016, 32(5), 809-821.
[http://dx.doi.org/10.1177/0748233713511512] [PMID: 24311626]
[36]
Mendhulkar, V.D.; Yadav, A. Anticancer Activity of Camellia Sinensis Mediated Copper Nanoparticles Against Ht-29, Mcf-7 and Molt-4 Human Cancer Cell Lines. Asian J. Pharm. Clin. Res., 2017, 10(2), 82.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15710]
[37]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother., 2017, 89, 1067-1077.
[http://dx.doi.org/10.1016/j.biopha.2017.02.101] [PMID: 28292015]
[38]
Laha, D.; Pramanik, A.; Maity, J.; Mukherjee, A.; Pramanik, P.; Laskar, A.; Karmakar, P. Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim. Biophys. Acta, 2014, 1840(1), 1-9.
[http://dx.doi.org/10.1016/j.bbagen.2013.08.011] [PMID: 23962629]
[39]
de Araújo, R.F.; de Araújo, A.A.; Pessoa, J.B.; Freire Neto, F.P.; da Silva, G.R.; Leitão Oliveira, A.L.C.S.; de Carvalho, T.G.; Silva, H.F.O.; Eugênio, M.; Sant’Anna, C.; Gasparotto, L.H. Anti-inflammatory, analgesic and anti-tumor properties of gold nanoparticles. Pharmacol. Rep., 2017, 69(1), 119-129.
[http://dx.doi.org/10.1016/j.pharep.2016.09.017] [PMID: 27915185]
[40]
Biswas, S.; Medina, S.H.; Barchi, J.J., Jr Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles. Carbohydr. Res., 2015, 405, 93-101.
[http://dx.doi.org/10.1016/j.carres.2014.11.002] [PMID: 25556664]
[41]
Pal, R.; Chakraborty, B.; Nath, A.; Singh, L.M.; Ali, M.; Rahman, D.S.; Ghosh, S.K.; Basu, A.; Bhattacharya, S.; Baral, R.; Sengupta, M. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach. Int. Immunopharmacol., 2016, 38, 332-341.
[http://dx.doi.org/10.1016/j.intimp.2016.06.006] [PMID: 27344639]
[42]
Manju, S.; Sreenivasan, K. Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J. Colloid Interface Sci., 2012, 368(1), 144-151.
[http://dx.doi.org/10.1016/j.jcis.2011.11.024] [PMID: 22200330]
[43]
Brown, S.D.; Nativo, P.; Smith, J-A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132(13), 4678-4684.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[44]
Sun, J.; Guo, Y.; Xing, R.; Jiao, T.; Zou, Q.; Yan, X. Synergistic in Vivo Photodynamic and Photothermal Antitumor Therapy Based on Collagen-Gold Hybrid Hydrogels with Inclusion of Photosensitive Drugs. Colloids Surf. A Physicochem. Eng. Asp., 2017, 514, 155-160.
[http://dx.doi.org/10.1016/j.colsurfa.2016.11.062]
[45]
Hasegawa, K.; Ono, K.; Yamada, M.; Naiki, H. Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry, 2002, 41(46), 13489-13498.
[http://dx.doi.org/10.1021/bi020369w] [PMID: 12427009]
[46]
Ghosh, S.K.; Pal, A.; Kundu, S.; Nath, S.; Pal, T. Fluorescence Quenching of 1-Methylaminopyrene near Gold Nanoparticles: Size Regime Dependence of the Small Metallic Particles. Chem. Phys. Lett., 2004, 395(4-6), 366-372.
[http://dx.doi.org/10.1016/j.cplett.2004.08.016]
[47]
Bulte, J.W.; Kraitchman, D.L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed., 2004, 17(7), 484-499.
[http://dx.doi.org/10.1002/nbm.924] [PMID: 15526347]
[48]
Sonvico, F.; Mornet, S.; Vasseur, S.; Dubernet, C.; Jaillard, D.; Degrouard, J.; Hoebeke, J.; Duguet, E.; Colombo, P.; Couvreur, P. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug. Chem., 2005, 16(5), 1181-1188.
[http://dx.doi.org/10.1021/bc050050z] [PMID: 16173796]
[49]
Chung, T-H.; Hsieh, C-C.; Hsiao, J-K.; Hsu, S-C.; Yao, M.; Huang, D-M. Dextran-Coated Iron Oxide Nanoparticles Turn Protumor Mesenchymal Stem Cells (MSCs) into Antitumor MSCs. RSC Advances, 2016, 6(51), 45553-45561.
[http://dx.doi.org/10.1039/C6RA03453E]
[50]
Schleich, N.; Sibret, P.; Danhier, P.; Ucakar, B.; Laurent, S.; Muller, R.N.; Jérôme, C.; Gallez, B.; Préat, V.; Danhier, F. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm., 2013, 447(1-2), 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.042] [PMID: 23485340]
[51]
Massart, R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans. Magn., 1981, 17(2), 1247-1248.
[http://dx.doi.org/10.1109/TMAG.1981.1061188]
[52]
Danhier, F.; Lecouturier, N.; Vroman, B.; Jérôme, C.; Marchand-Brynaert, J.; Feron, O.; Préat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J. Control. Release, 2009, 133(1), 11-17.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.086] [PMID: 18950666]
[53]
Garinot, M.; Fiévez, V.; Pourcelle, V.; Stoffelbach, F.; des Rieux, A.; Plapied, L.; Theate, I.; Freichels, H.; Jérôme, C.; Marchand-Brynaert, J.; Schneider, Y.J.; Préat, V. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release, 2007, 120(3), 195-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.04.021] [PMID: 17586081]
[54]
Allkemper, T.; Bremer, C.; Matuszewski, L.; Ebert, W.; Reimer, P. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology, 2002, 223(2), 432-438.
[http://dx.doi.org/10.1148/radiol.2232010241] [PMID: 11997549]
[55]
Rampersaud, S.; Fang, J.; Wei, Z.; Fabijanic, K.; Silver, S.; Jaikaran, T.; Ruiz, Y.; Houssou, M.; Yin, Z.; Zheng, S.; Hashimoto, A.; Hoshino, A.; Lyden, D.; Mahajan, S.; Matsui, H. The Effect of Cage Shape on Nanoparticle-Based Drug Carriers: Anticancer Drug Release and Efficacy via Receptor Blockade Using Dextran-Coated Iron Oxide Nanocages. Nano Lett., 2016, 16(12), 7357-7363.
[http://dx.doi.org/10.1021/acs.nanolett.6b02577] [PMID: 27960523]
[56]
Kumar, M.; Singh, G.; Sharma, S.; Gupta, D.; Bansal, V.; Arora, V.; Bhat, M.; Srivastava, S.K.; Sapra, S.; Kharbanda, S. Intracellular Delivery of Peptide Cargos Using Polyhydroxybutyrate Based Biodegradable Nanoparticles: Studies on Antitumor Efficacy of BCL-2 Converting Peptide, NuBCP-9. Nanoscale, 2014, 6(14473), 14483.
[57]
Wani, K.D.; Kadu, B.S.; Mansara, P.; Gupta, P.; Deore, A.V.; Chikate, R.C.; Poddar, P.; Dhole, S.D.; Kaul-Ghanekar, R. Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PLoS One, 2014, 9(9), e107315.
[http://dx.doi.org/10.1371/journal.pone.0107315] [PMID: 25268975]
[58]
Dorniani, D.; Synthesis, M. Release Behavior and Toxicity Profiles towards Leukemia (WEHI-3B) Cell Lines of 6-Mercaptopurine-PEG-Coated Magnetite Nanoparticles Delivery System Release Behavior and Toxicity Profiles towards Leukemia (WEHI-3B) Cell Lines of 6-Mercaptopurine-PEG-Co. Sci. World J., 2014, 2014, 1-11.
[59]
Yu, M.K.; Jeong, Y.Y.; Park, J.; Park, S.; Kim, J.W.; Min, J.J.; Kim, K.; Jon, S. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. Engl., 2008, 47(29), 5362-5365.
[http://dx.doi.org/10.1002/anie.200800857] [PMID: 18551493]
[60]
Petri-Fink, A.; Chastellain, M.; Juillerat-Jeanneret, L.; Ferrari, A.; Hofmann, H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials, 2005, 26(15), 2685-2694.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.023] [PMID: 15585272]
[61]
Dilnawaz, F.; Singh, A.; Mohanty, C.; Sahoo, S.K. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 2010, 31(13), 3694-3706.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.057] [PMID: 20144478]
[62]
Chertok, B.; David, A.E.; Yang, V.C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 2010, 31(24), 6317-6324.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.043] [PMID: 20494439]
[63]
Quinto, C.A.; Mohindra, P.; Tong, S.; Bao, G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale, 2015, 7(29), 12728-12736.
[http://dx.doi.org/10.1039/C5NR02718G] [PMID: 26154916]
[64]
Wang, J.; Fang, J.; Fang, P.; Li, X.; Wu, S.; Zhang, W.; Li, S. Preparation of hollow core/shell Fe3O4@graphene oxide composites as magnetic targeting drug nanocarriers. J. Biomater. Sci. Polym. Ed., 2017, 28(4), 337-349.
[http://dx.doi.org/10.1080/09205063.2016.1268463] [PMID: 27931160]
[65]
Uchida, M.; Flenniken, M.L.; Allen, M.; Willits, D.A.; Crowley, B.E.; Brumfield, S.; Willis, A.F.; Jackiw, L.; Jutila, M.; Young, M.J.; Douglas, T. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc., 2006, 128(51), 16626-16633.
[http://dx.doi.org/10.1021/ja0655690] [PMID: 17177411]
[66]
Reddy, G.R.; Bhojani, M.S.; McConville, P.; Moody, J.; Moffat, B.A.; Hall, D.E.; Kim, G.; Koo, Y.E.L.; Woolliscroft, M.J.; Sugai, J.V.; Johnson, T.D.; Philbert, M.A.; Kopelman, R.; Rehemtulla, A.; Ross, B.D. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res., 2006, 12(22), 6677-6686.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0946] [PMID: 17121886]
[67]
Gang, J.; Park, S-B.; Hyung, W.; Choi, E.H.; Wen, J.; Kim, H-S.; Shul, Y-G.; Haam, S.; Song, S.Y. Magnetic poly ε-caprolactone nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J. Drug Target., 2007, 15(6), 445-453.
[http://dx.doi.org/10.1080/10611860701453901] [PMID: 17613663]
[68]
Kolluri, S.K.; Zhu, X.; Zhou, X.; Lin, B.; Chen, Y.; Sun, K.; Tian, X.; Town, J.; Cao, X.; Lin, F.; Zhai, D.; Kitada, S.; Luciano, F.; O’Donnell, E.; Cao, Y.; He, F.; Lin, J.; Reed, J.C.; Satterthwait, A.C.; Zhang, X.K. A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell, 2008, 14(4), 285-298.
[http://dx.doi.org/10.1016/j.ccr.2008.09.002] [PMID: 18835031]
[69]
Cotter, T.G. Apoptosis and cancer: the genesis of a research field. Nat. Rev. Cancer, 2009, 9(7), 501-507.
[http://dx.doi.org/10.1038/nrc2663] [PMID: 19550425]
[70]
Ashkenazi, A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discov., 2008, 7(12), 1001-1012.
[http://dx.doi.org/10.1038/nrd2637] [PMID: 18989337]
[71]
Sriram, M.I.; Kanth, S.B.M.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine, 2010, 5(1), 753-762.
[PMID: 21042421]
[72]
Asharani, P.V. Lian Wu, Y.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008, 19(25), 255102.
[http://dx.doi.org/10.1088/0957-4484/19/25/255102] [PMID: 21828644]
[73]
Sukirtha, R.; Priyanka, K.M.; Antony, J.J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic Effect of Green Synthesized Silver Nanoparticles Using Melia Azedarach against in Vitro HeLa Cell Lines and Lymphoma Mice Model. Process Biochem., 2012, 47(2), 273-279.
[http://dx.doi.org/10.1016/j.procbio.2011.11.003]
[74]
Duraipandy, N.; Lakra, R.; Kunnavakkam Vinjimur, S.; Samanta, D. K, P.S.; Kiran, M.S. Caging of plumbagin on silver nanoparticles imparts selectivity and sensitivity to plumbagin for targeted cancer cell apoptosis. Metallomics, 2014, 6(11), 2025-2033.
[http://dx.doi.org/10.1039/C4MT00165F] [PMID: 25188862]
[75]
Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Toxicity Study of Silver Nanoparticles Synthesized from Suaeda monoica on Hep-2 Cell Line. Avicenna J. Med. Biotechnol., 2012, 4(1), 35-39.
[PMID: 23407847]
[76]
Guo, D.; Zhang, J.; Huang, Z.; Jiang, S.; Gu, N. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress. Colloids Surf. B Biointerfaces, 2015, 126, 198-203.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.023] [PMID: 25576804]
[77]
El-Sonbaty, S.M. Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol., 2013, 4(4-5), 73-79.
[http://dx.doi.org/10.1007/s12645-013-0038-3] [PMID: 26069502]
[78]
Kaler, A.; Jain, S.; Banerjee, U.C. Green and Rapid Synthesis of Anticancerous Silver Nanoparticles by Saccharomyces Boulardii and Insight into Mechanism of Nanoparticle Synthesis. BioMed Res. Int., 2013.
[79]
Gurunathan, S.; Raman, J.; Abd Malek, S.N.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J. Nanomedicine, 2013, 8, 4399-4413.
[PMID: 24265551]
[80]
Antony, J.J.; Sithika, M.A.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf. B Biointerfaces, 2013, 108(108), 185-190.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.041] [PMID: 23537836]
[81]
Lara-gonzález, J.H.; Gomez-flores, R.; Tamez-guerra, P.; Monreal-cuevas, E.; Tamez-guerra, R.; Rodríguez-padilla, C. In Vivo Antitumor Activity of Metal Silver and Silver Nanoparticles in the L5178Y-R Murine Lymphoma Model. Br. J. Med. Med. Res., 2013, 3(4), 1308-1316.
[http://dx.doi.org/10.9734/BJMMR/2013/3108]
[82]
Liu, P.; Huang, Z.; Chen, Z.; Xu, R.; Wu, H.; Zang, F.; Wang, C.; Gu, N. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale, 2013, 5(23), 11829-11836.
[http://dx.doi.org/10.1039/c3nr01351k] [PMID: 24126539]
[83]
Vasanth, K.; Ilango, K. MohanKumar, R.; Agrawal, A.; Dubey, G.P. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B Biointerfaces, 2014, 117(117), 354-359.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.052] [PMID: 24681047]
[84]
Lin, J.; Huang, Z.; Wu, H.; Zhou, W.; Jin, P.; Wei, P.; Zhang, Y.; Zheng, F.; Zhang, J.; Xu, J.; Hu, Y.; Wang, Y.; Li, Y.; Gu, N.; Wen, L. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy, 2014, 10(11), 2006-2020.
[http://dx.doi.org/10.4161/auto.36293] [PMID: 25484080]
[85]
Priyadharshini, R.I.; Prasannaraj, G.; Geetha, N.; Venkatachalam, P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl. Biochem. Biotechnol., 2014, 174(8), 2777-2790.
[http://dx.doi.org/10.1007/s12010-014-1225-3] [PMID: 25380639]
[86]
Kathiravan, V.; Ravi, S.; Ashokkumar, S. Synthesis of Silver Nanoparticles from Melia Dubia Leaf Extract and Their in Vitro Anticancer Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 2014(130), 116-121.
[http://dx.doi.org/10.1016/j.saa.2014.03.107]
[87]
Locatelli, E.; Naddaka, M.; Uboldi, C.; Loudos, G.; Fragogeorgi, E.; Molinari, V.; Pucci, A.; Tsotakos, T.; Psimadas, D.; Ponti, J.; Franchini, M.C. Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine (Lond.), 2014, 9(6), 839-849.
[http://dx.doi.org/10.2217/nnm.14.1] [PMID: 24433240]
[88]
Arunachalam, K.D.; Arun, L.B.; Annamalai, S.K.; Arunachalam, A.M. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int. J. Nanomedicine, 2014, 10, 31-41.
[http://dx.doi.org/10.2147/IJN.S71182] [PMID: 25565802]
[89]
Ramar, M.; Manikandan, B.; Marimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Karthick, S.; Munusamy, A.; Manikandan, B.; Marimuthu, P.N. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 140, 223-228.
[http://dx.doi.org/10.1016/j.saa.2014.12.060] [PMID: 25613692]
[90]
Guo, D.; Zhu, L.; Huang, Z.; Zhou, H.; Ge, Y.; Ma, W.; Wu, J.; Zhang, X.; Zhou, X.; Zhang, Y.; Zhao, Y.; Gu, N. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 2013, 34(32), 7884-7894.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.015] [PMID: 23876760]
[91]
Guo, D.; Dou, D.; Ge, L.; Huang, Z.; Wang, L.; Gu, N. A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surf. B Biointerfaces, 2015, 134, 229-234.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.070] [PMID: 26208293]
[92]
Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci., 2015, 457, 329-338.
[http://dx.doi.org/10.1016/j.jcis.2015.07.012] [PMID: 26196716]
[93]
Ramar, M.; Manikandan, B.; Raman, T.; Prabhu, N.M.; Babu, M.J.; Perumal, M.; Palanisamy, S.; Munusamy, A.; Manikandan, B.; Raman, T. Biosynthesis of Silver Nanoparticles Using Ethanolic Petals Extract of Rosa Indica and Characterization of Its Antibacterial, Anticancer and Anti-Inflammatory Activities. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2015, 138, 120-129.
[http://dx.doi.org/10.1016/j.saa.2014.10.043]
[94]
Netala, V.R.; Bethu, M.S.; Pushpalatha, B.; Baki, V.B.; Aishwarya, S.; Rao, J.V.; Tartte, V. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int. J. Nanomedicine, 2016, 11, 5683-5696.
[http://dx.doi.org/10.2147/IJN.S112857] [PMID: 27826190]
[95]
Castro-Aceituno, V.; Ahn, S.; Simu, S.Y.; Singh, P.; Mathiyalagan, R.; Lee, H.A.; Yang, D.C. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed. Pharmacother., 2016, 84, 158-165.
[http://dx.doi.org/10.1016/j.biopha.2016.09.016] [PMID: 27643558]
[96]
Majeed, S.; Abdullah, M.S.; Dash, G.K.; Ansari, M.T.; Nanda, A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin. J. Nat. Med., 2016, 14(8), 615-620.
[http://dx.doi.org/10.1016/S1875-5364(16)30072-3] [PMID: 27608951]
[97]
Casañas Pimentel, R.G.; Robles Botero, V.; San Martín Martínez, E.; Gómez García, C.; Hinestroza, J.P. Soybean agglutinin-conjugated silver nanoparticles nanocarriers in the treatment of breast cancer cells. J. Biomater. Sci. Polym. Ed., 2016, 27(3), 218-234.
[http://dx.doi.org/10.1080/09205063.2015.1116892] [PMID: 26540350]
[98]
Venil, C.K.; Sathishkumar, P.; Malathi, M.; Usha, R.; Jayakumar, R.; Yusoff, A.R.M.; Ahmad, W.A. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater. Sci. Eng. C, 2016, 59, 228-234.
[http://dx.doi.org/10.1016/j.msec.2015.10.019] [PMID: 26652368]
[99]
Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study. Biomed. Pharmacother., 2016, 84, 10-21.
[http://dx.doi.org/10.1016/j.biopha.2016.09.003] [PMID: 27621034]
[100]
Prasannaraj, G.; Sahi, S.V.; Ravikumar, S.; Venkatachalam, P. Enhanced Cytotoxicity of Biomolecules Loaded Metallic Silver Nanoparticles Against Human Liver (HepG2) and Prostate (PC3) Cancer Cell Lines. J. Nanosci. Nanotechnol., 2016, 16(5), 4948-4959.
[http://dx.doi.org/10.1166/jnn.2016.12336] [PMID: 27483851]
[101]
Kuppusamy, P.; Ichwan, S.J.A.; Al-Zikri, P.N.H.; Suriyah, W.H.; Soundharrajan, I.; Govindan, N.; Maniam, G.P.; Yusoff, M.M. In Vitro Anticancer Activity of Au, Ag Nanoparticles Synthesized Using Commelina nudiflora L. Aqueous Extract Against HCT-116 Colon Cancer Cells. Biol. Trace Elem. Res., 2016, 173(2), 297-305.
[http://dx.doi.org/10.1007/s12011-016-0666-7] [PMID: 26961292]
[102]
Kovács, D.; Szőke, K.; Igaz, N.; Spengler, G.; Molnár, J.; Tóth, T.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine (Lond.), 2016, 12(3), 601-610.
[http://dx.doi.org/10.1016/j.nano.2015.10.015] [PMID: 26656631]
[103]
Ortega, F.G.; Fernández-Baldo, M.A.; Fernández, J.G.; Serrano, M.J.; Sanz, M.I.; Diaz-Mochón, J.J.; Lorente, J.A.; Raba, J. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int. J. Nanomedicine, 2015, 10(1), 2021-2031.
[PMID: 25844035]
[104]
Rutberg, F.G.; Dubina, M.V.; Kolikov, V.A.; Moiseenko, F.V.; Ignat’eva, E.V.; Volkov, N.M.; Snetov, V.N.; Stogov, A.Y. Effect of silver oxide nanoparticles on tumor growth in vivo. Dokl. Biochem. Biophys., 2008, 421(1), 191-193.
[http://dx.doi.org/10.1134/S1607672908040078] [PMID: 18853769]
[105]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[106]
Singh, P.; Kim, Y.J.; Yang, D.C. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1949-1957.
[http://dx.doi.org/10.3109/21691401.2015.1115410] [PMID: 26698271]
[107]
Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol., 2013, 10(1), 15.
[http://dx.doi.org/10.1186/1743-8977-10-15] [PMID: 23587290]
[108]
Murugan, K.; Dinesh, D.; Kavithaa, K.; Paulpandi, M.; Ponraj, T.; Alsalhi, M.S.; Devanesan, S.; Subramaniam, J.; Rajaganesh, R.; Wei, H.; Kumar, S.; Nicoletti, M.; Benelli, G. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol. Res., 2016, 115(3), 1085-1096.
[http://dx.doi.org/10.1007/s00436-015-4838-8] [PMID: 26621285]
[109]
Kim, M.; Seo, J.H.; Jeon, W.I.; Kim, M.Y.; Cho, K.; Lee, S.Y.; Joo, S.W. Real-time monitoring of anticancer drug release in vitro and in vivo on titania nanoparticles triggered by external glutathione. Talanta, 2012, 88, 631-637.
[http://dx.doi.org/10.1016/j.talanta.2011.11.049] [PMID: 22265551]
[110]
Thurn, K.T.; Arora, H.; Paunesku, T.; Wu, A.; Brown, E.M.B.; Doty, C.; Kremer, J.; Woloschak, G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine (Lond.), 2011, 7(2), 123-130.
[http://dx.doi.org/10.1016/j.nano.2010.09.004] [PMID: 20887814]
[111]
Chen, Y.; Wan, Y.; Wang, Y.; Zhang, H.; Jiao, Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int. J. Nanomedicine, 2011, 6, 2321-2326.
[PMID: 22072869]
[112]
Thevenot, P.; Cho, J.; Wavhal, D.; Timmons, R.B.; Tang, L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine (Lond.), 2008, 4(3), 226-236.
[http://dx.doi.org/10.1016/j.nano.2008.04.001] [PMID: 18502186]
[113]
Ninomiya, K.; Fukuda, A.; Ogino, C.; Shimizu, N. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason. Sonochem., 2014, 21(5), 1624-1628.
[http://dx.doi.org/10.1016/j.ultsonch.2014.03.010] [PMID: 24717690]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2019
Page: [2108 - 2146]
Pages: 39
DOI: 10.2174/0929867325666180214102918
Price: $58

Article Metrics

PDF: 19
HTML: 3