A Hybrid Approach for Sub-Acute Ischemic Stroke Lesion Segmentation Using Random Decision Forest and Gravitational Search Algorithm

Author(s): Sunil Babu Melingi*, V. Vijayalakshmi.

Journal Name: Current Medical Imaging Reviews

Volume 15 , Issue 2 , 2019

Graphical Abstract:


Background: The sub-acute ischemic stroke is the most basic illnesses reason for death on the planet. We evaluate the impact of segmentation technique during the time of breaking down the capacities of the cerebrum.

Objective: The main objective of this paper is to segment the ischemic stroke lesions in Magnetic Resonance (MR) images in the presence of other pathologies like neurological disorder, encephalopathy, brain damage, Multiple sclerosis (MS).

Methods: In this paper, we utilize a hybrid way to deal with segment the ischemic stroke from alternate pathologies in magnetic resonance (MR) images utilizing Random Decision Forest (RDF) and Gravitational Search Algorithm (GSA). The RDF approach is an effective machine learning approach.

Results: The RDF strategy joins two parameters; they are; the number of trees in the forest and the number of leaves per tree; it runs quickly and proficiently when dealing with vast data. The GSA algorithm is utilized to optimize the RDF data for choosing the best number of trees and the number of leaves per tree in the forest.

Conclusion: This paper provides a new hybrid GSA-RDF classifier technique to segment the ischemic stroke lesions in MR images. The experimental results demonstrate that the proposed technique has the Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Bias Error (MBE) ranges are 16.5485 %, 7.2654 %, and 2.4585 %individually. The proposed RDF-GSA algorithm has better precision and execution when compared with the existing ischemic stroke segmentation method.

Keywords: Sub acute ischemic stroke, MR images, stroke segmentation, hybrid GSA -RDF algorithm, bagger algorithm, cerebrum.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [170 - 183]
Pages: 14
DOI: 10.2174/1573405614666180209150338
Price: $58

Article Metrics

PDF: 4