The Use of Immunotherapy to Treat Metastatic Breast Cancer

Author(s): Andrea Nicolini*, Vivian Barak, Piermario Biava, Paola Ferrari, Giuseppe Rossi, Angelo Carpi.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 6 , 2019

  Journal Home
Translate in Chinese
Submit Manuscript
Submit Proposal

Abstract:

This article reviews the principal attempts of immune-modulation or immune therapy in metastatic breast cancer. It considers their rationale and reports on results from the relevant key clinical trials. Immune-modulatory or immune-stimulating cytokines used alone or combined with conventional therapies is among the principal approaches of immune manipulation in breast cancer. As this issue has recently been reviewed by us, the aim of the current article is to discuss our updated and unpublished data on this topic. Overall survival in luminal (28 patients) and non-luminal (9 patients) molecular subtypes is 91 and 59 months respectively that is about two and half or three times longer than expected. Thereafter, we focus on monoclonal antibodies (mAb) based-therapies including novel strategies to overcome resistance to anti-HER2 mAb. The main vaccine platforms in different molecular subtypes and immune therapies in triple negative metastatic breast cancer (m-TNBC) are discussed in the last sections. Some phase III investigations have already changed the current clinical practice. In fact, pertuzumab plus trastuzumab and docetaxel is the recommended first line regimen in HER2 positive locally recurrent or metastatic breast cancer and bevacizumab plus paclitaxel or docetaxel is a reasonable option for m-TNBC. In some other observational or phase I/II studies on first-line trastuzumab plus chemotherapy and hormonal therapy and in that on HER2 peptide/protein vaccines promising although preliminary findings have been reported to be further validated. In the remaining studies, results were disappointing. In the future, finding new predictive biomarkers and exploring more suitable synergizing combinations, time and dose-dependent-scheduled sequences of currently and further investigated immunological approaches are main challenges.

Keywords: Immunotherapy, breast cancer, cytokines, mAb, m-TNBC, interferons.

[1]
Nicolini, A.; Carpi, A. Immune manipulation of advanced breast cancer: An interpretative model of the relationship between immune system and tumor cell biology. Med. Res. Rev., 2009, 29(3), 436-471.
[2]
Nicolini, A.; Carpi, A.; Ferrari, P.; Biava, P.M.; Rossi, G. Immunotherapy and hormone-therapy in metastatic breast cancer: A review and an update. Curr. Drug Targets, 2016, 17(10), 1127-1139.
[3]
Nicolini, A.; Carpi, A. Beta-interferon and interleukin-2 prolong more than three times the survival of 26 consecutive endocrine dependent breast cancer patients with distant metastases: An exploratory trial. Biomed. Pharmacother., 2005, 59(5), 253-263.
[4]
Nicolini, A.; Rossi, G.; Ferrari, P.; Carpi, A. Clinical and laboratory patterns during immune stimulation in hormone responsive metastatic breast cancer. Biomed. Pharmacother., 2014, 68(2), 171-178.
[5]
Sica, G.; Iacopino, F.; Lama, G.; Amadori, D.; Baroni, M.; Lo Sardo, F.; Malacarne, P.; Marchetti, P.; Pellegrini, A.; Zaniboni, A. Combination of beta-interferon and tamoxifen as a new way to overcome clinical resistance to tamoxifen in advanced breast cancer. Anticancer Res., 1992, 12(3), 869-871.
[6]
Buzzi, F.; Brugia, M.; Rossi, G.; Giustini, L.; Scoponi, C.; Sica, G. Combination of beta-interferon and tamoxifen as a new way to overcome clinical resistance to tamoxifen in advanced breast cancer. Anticancer Res., 1992, 12(3), 869-871.
[7]
Repetto, L.; Giannessi, P.G.; Campora, E.; Pronzato, P.; Vigani, A.; Naso, C.; Spinelli, I.; Conte, P.F.; Rosso, R. Tamoxifen and interferon-beta for the treatment of metastatic breast cancer. Breast Cancer Res. Treat., 1996, 39(2), 235-238.
[8]
Recchia, F.; Frati, L.; Rea, S.; Torchio, P.; Sica, G. Minimal residual disease in metastatic breast cancer: Treatment with IFN-beta, retinoids, and tamoxifen. J. Interferon Cytokine Res., 1998, 18(1), 41-47.
[9]
Caligiuri, M.A. Low-dose recombinant interleukin-2 therapy: rationale and potential clinical applications. Semin. Oncol., 1993, 20(6)(Suppl. 9), 3-10.
[10]
Buzio, C.; De Palma, G.; Passalacqua, R.; Potenzoni, D.; Ferrozzi, F.; Cattabiani, M.A.; Manenti, L.; Borghetti, A. Effectiveness of very low doses of immunotherapy in advanced renal cell cancer. Br. J. Cancer, 1997, 76(4), 541-544.
[11]
Lissoni, P.; Barni, S.; Ardizzoia, A.; Olivini, G.; Brivio, F.; Tisi, E.; Tancini, G.; Characiejus, D.; Kothari, L. Cancer immunotherapy with low-dose interleukin-2 subcutaneous administration: potential efficacy in most solid tumor histotypes by a concomitant treatment with the pineal hormone melatonin. J. Biol. Regul. Homeost. Agents, 1993, 7(4), 121-125.
[12]
Atzpodien, J.; Körfer, A.; Franks, C.R.; Poliwoda, H.; Kirchner, H. Home therapy with recombinant interleukin-2 and interferon-alpha 2b in advanced human malignancies. Lancet, 1990, 335(8704), 1509-1512.
[13]
Zhang, J.; Fan, M.; Xie, J.; Wang, Z.; Wang, B.; Zhang, S.; Wang, L.; Cao, J.; Tao, Z.; Li, T.; Hu, X. Chemotherapy of metastatic triple negative breast cancer: Experience of using platinum-based chemotherapy. Oncotarget, 2015, 6(40), 43135-43143.
[14]
Fan, Y.; Xu, B.H.; Yuan, P.; Ma, F.; Wang, J.Y.; Ding, X.Y.; Zhang, P.; Li, Q.; Cai, R.G. Docetaxel-cisplatin might be superior to docetaxel-capecitabine in the first-line treatment of metastatic triple-negative breast cancer. Ann. Oncol., 2013, 24(5), 1219-1225.
[15]
Lam, S.W.; de Groot, S.M.; Honkoop, A.H.; Jager, A.; ten Tije, A.J.; Bos, M.M.; Linn, S.C.; van den Bosch, J.; Kroep, J.R.; Braun, J.J.; van Tinteren, H.; Boven, E. Paclitaxel and bevacizumab with or without capecitabine as first-line treatment for HER2-negative locally recurrent or metastatic breast cancer: a multicentre, open-label, randomised phase 2 trial. Eur. J. Cancer, 2014, 50(18), 3077-3088.
[16]
Dickler, M.N.; Barry, W.T.; Cirrincione, C.T.; Ellis, M.J.; Moynahan, M.E.; Innocenti, F.; Hurria, A.; Rugo, H.S.; Lake, D.E.; Hahn, O.; Schneider, B.P.; Tripathy, D.; Carey, L.A.; Winer, E.P.; Hudis, C.A. Phase III trial evaluating letrozole as first-line endocrine therapy with or without bevacizumab for the treatment of postmenopausal women with hormone receptor-positive advanced-stage breast cancer: CALGB 40503 (Alliance). J. Clin. Oncol., 2016, 34(22), 2602-2609.
[17]
Zielinski, C.; Láng, I.; Inbar, M.; Kahán, Z.; Greil, R.; Beslija, S.; Stemmer, S.M.; Zvirbule, Z.; Steger, G.G.; Melichar, B.; Pienkowski, T.; Sirbu, D.; Petruzelka, L.; Eniu, A.; Nisenbaum, B.; Dank, M.; Anghel, R.; Messinger, D.; Brodowicz, T. Bevacizumab plus paclitaxel versus bevacizumab plus capecitabine as first-line treatment for HER2-negative metastatic breast cancer (TURANDOT): primary endpoint results of a randomised, open-label, non-inferiority, phase 3 trial. Lancet Oncol., 2016, 17(9), 1230-1239.
[18]
Cohen, S. The epidermal growth factor (EGF). Cancer, 1983, 51(10), 1787-1791.
[19]
Carpenter, G.; Cohen, S. Epidermal growth factor. J. Biol. Chem., 1990, 265(14), 7709-7712.
[20]
Cohen, S.; Ushiro, H.; Stoscheck, C.; Chinkers, M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J. Biol. Chem., 1982, 257(3), 1523-1531.
[21]
Roskoski, R., Jr The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res., 2014, 79, 34-74.
[22]
Pinkas-Kramarski, R.; Soussan, L.; Waterman, H.; Levkowitz, G.; Alroy, I.; Klapper, L.; Lavi, S.; Seger, R.; Ratzkin, B.J.; Sela, M.; Yarden, Y. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J., 1996, 15(10), 2452-2467.
[23]
Browne, B.C.; O’Brien, N.; Duffy, M.J.; Crown, J.; O’Donovan, N. HER-2 signaling and inhibition in breast cancer. Curr. Cancer Drug Targets, 2009, 9(3), 419-438.
[24]
Castaneda, C.A.; Cortes-Funes, H.; Gomez, H.L.; Ciruelos, E.M. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev., 2010, 29(4), 751-759.
[25]
Nicolini, A.; Campani, D.; Miccoli, P.; Spinelli, C.; Carpi, A.; Menicagli, M.; Ferrari, P.; Gadducci, G.; Rossi, G.; Fini, M.; Giavaresi, G.; Bonazzi, V.; Giardino, R. Vascular endothelial growth factor (VEGF) and other common tissue prognostic indicators in breast cancer: A case-control study. Int. J. Biol. Markers, 2004, 19(4), 275-281.
[26]
Rocca, A.; Andreis, D.; Fedeli, A.; Maltoni, R.; Sarti, S.; Cecconetto, L.; Pietri, E.; Schirone, A.; Bravaccini, S.; Serra, P.; Farolfi, A.; Amadori, D. Pharmacokinetics, pharmacodynamics and clinical efficacy of pertuzumab in breast cancer therapy. Expert Opin. Drug Metab. Toxicol., 2015, 11(10), 1647-1663.
[27]
Recondo, G., Jr; de la Vega, M.; Galanternik, F.; Díaz-Cantón, E.; Leone, B.A.; Leone, J.P. Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine. Cancer Manag. Res., 2016, 8, 57-65.
[28]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[29]
National Comprehensive Cancer Network. NCCN Guidelines for treatment of cancer.Breast cancer. Available at, https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf [Accessed: March 26, 2019].
[30]
Untch, M.; Gelber, R.D.; Jackisch, C.; Procter, M.; Baselga, J.; Bell, R.; Cameron, D.; Bari, M.; Smith, I.; Leyland-Jones, B.; de Azambuja, E.; Wermuth, P.; Khasanov, R.; Feng-Yi, F.; Constantin, C.; Mayordomo, J.I.; Su, C.H.; Yu, S.Y.; Lluch, A.; Senkus-Konefka, E.; Price, C.; Haslbauer, F.; Suarez Sahui, T.; Srimuninnimit, V.; Colleoni, M.; Coates, A.S.; Piccart-Gebhart, M.J.; Goldhirsch, A. Estimating the magnitude of trastuzumab effects within patient subgroups in the HERA trial. Ann. Oncol., 2008, 19(6), 1090-1096.
[31]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[32]
Brufsky, A.; Lembersky, B.; Schiffman, K.; Lieberman, G.; Paton, V.E. Hormone receptor status does not affect the clinical benefit of trastuzumab therapy for patients with metastatic breast cancer. Clin. Breast Cancer, 2005, 6(3), 247-252.
[33]
Arpino, G.; Weiss, H.; Lee, A.V.; Schiff, R.; De Placido, S.; Osborne, C.K.; Elledge, R.M. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J. Natl. Cancer Inst., 2005, 97(17), 1254-1261.
[34]
Vogel, C.L.; Cobleigh, M.A.; Tripathy, D.; Gutheil, J.C.; Harris, L.N.; Fehrenbacher, L.; Slamon, D.J.; Murphy, M.; Novotny, W.F.; Burchmore, M.; Shak, S.; Stewart, S.J.; Press, M. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol., 2002, 20(3), 719-726.
[35]
Seidman, A.D.; Berry, D.; Cirrincione, C.; Harris, L.; Muss, H.; Marcom, P.K.; Gipson, G.; Burstein, H.; Lake, D.; Shapiro, C.L.; Ungaro, P.; Norton, L.; Winer, E.; Hudis, C. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: Final results of Cancer and Leukemia Group B protocol 9840. J. Clin. Oncol., 2008, 26(10), 1642-1649.
[36]
Burstein, H.J.; Keshaviah, A.; Baron, A.D.; Hart, R.D.; Lambert-Falls, R.; Marcom, P.K.; Gelman, R.; Winer, E.P. Trastuzumab plus vinorelbine or taxane chemotherapy for HER2-overexpressing metastatic breast cancer: the trastuzumab and vinorelbine or taxane study. Cancer, 2007, 110(5), 965-972.
[37]
Robert, N.; Leyland-Jones, B.; Asmar, L.; Belt, R.; Ilegbodu, D.; Loesch, D.; Raju, R.; Valentine, E.; Sayre, R.; Cobleigh, M.; Albain, K.; McCullough, C.; Fuchs, L.; Slamon, D. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J. Clin. Oncol., 2006, 24(18), 2786-2792.
[38]
Yamamoto, D.; Iwase, S.; Kitamura, K.; Odagiri, H.; Yamamoto, C.; Nagumo, Y. A phase II study of trastuzumab and capecitabine for patients with HER2-overexpressing metastatic breast cancer: Japan Breast Cancer Research Network (JBCRN) 00 Trial. Cancer Chemother. Pharmacol., 2008, 61(3), 509-514.
[39]
Baselga, J.; Cortés, J.; Kim, S.B. Im, S.A.; Hegg, R.; Im, Y.H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; Clark, E.; Benyunes, M.C.; Ross, G.; Swain, S.M. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med., 2012, 366(2), 109-119.
[40]
Swain, S.M.; Baselga, J.; Kim, S.B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.M.; Schneeweiss, A.; Heeson, S.; Clark, E.; Ross, G.; Benyunes, M.C.; Cortés, J. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med., 2015, 372(8), 724-734.
[41]
von Minckwitz, G.; du Bois, A.; Schmidt, M.; Maass, N.; Cufer, T.; de Jongh, F.E.; Maartense, E.; Zielinski, C.; Kaufmann, M.; Bauer, W.; Baumann, K.H.; Clemens, M.R.; Duerr, R.; Uleer, C.; Andersson, M.; Stein, R.C.; Nekljudova, V.; Loibl, S. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: A German breast group 26/breast international group 03-05 study. J. Clin. Oncol., 2009, 27(12), 1999-2006.
[42]
Baselga, J.; Gelmon, K.A.; Verma, S.; Wardley, A.; Conte, P.; Miles, D.; Bianchi, G.; Cortes, J.; McNally, V.A.; Ross, G.A.; Fumoleau, P.; Gianni, L. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J. Clin. Oncol., 2010, 28(7), 1138-1144.
[43]
Cortés, J.; Fumoleau, P.; Bianchi, G.V.; Petrella, T.M.; Gelmon, K.; Pivot, X.; Verma, S.; Albanell, J.; Conte, P.; Lluch, A.; Salvagni, S.; Servent, V.; Gianni, L.; Scaltriti, M.; Ross, G.A.; Dixon, J.; Szado, T.; Baselga, J. Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol., 2012, 30(14), 1594-1600.
[44]
Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; Skarlos, D.; Campone, M.; Davidson, N.; Berger, M.; Oliva, C.; Rubin, S.D.; Stein, S.; Cameron, D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2006, 355(26), 2733-2743.
[45]
Cameron, D.; Casey, M.; Oliva, C.; Newstat, B.; Imwalle, B.; Geyer, C.E. Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist, 2010, 15(9), 924-934.
[46]
Dowsett, M.; Allred, C.; Knox, J.; Quinn, E.; Salter, J.; Wale, C.; Cuzick, J.; Houghton, J.; Williams, N.; Mallon, E.; Bishop, H.; Ellis, I.; Larsimont, D.; Sasano, H.; Carder, P.; Cussac, A.L.; Knox, F.; Speirs, V.; Forbes, J.; Buzdar, A. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J. Clin. Oncol., 2008, 26(7), 1059-1065.
[47]
De Laurentiis, M.; Arpino, G.; Massarelli, E.; Ruggiero, A.; Carlomagno, C.; Ciardiello, F.; Tortora, G.; D’Agostino, D.; Caputo, F.; Cancello, G.; Montagna, E.; Malorni, L.; Zinno, L.; Lauria, R.; Bianco, A.R.; De Placido, S. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin. Cancer Res., 2005, 11(13), 4741-4748.
[48]
Lipton, A.; Ali, S.M.; Leitzel, K.; Demers, L.; Chinchilli, V.; Engle, L.; Harvey, H.A.; Brady, C.; Nalin, C.M.; Dugan, M.; Carney, W.; Allard, J. Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J. Clin. Oncol., 2002, 20(6), 1467-1472.
[49]
Osborne, C.K.; Schiff, R. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med., 2011, 62, 233-247.
[50]
Shou, J.; Massarweh, S.; Osborne, C.K.; Wakeling, A.E.; Ali, S.; Weiss, H.; Schiff, R. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl. Cancer Inst., 2004, 96(12), 926-935.
[51]
Witters, L.M.; Kumar, R.; Chinchilli, V.M.; Lipton, A. Enhanced anti-proliferative activity of the combination of tamoxifen plus HER-2-neu antibody. Breast Cancer Res. Treat., 1997, 42(1), 1-5.
[52]
Witters, L.; Engle, L.; Lipton, A. Restoration of estrogen responsiveness by blocking the HER-2/neu pathway. Oncol. Rep., 2002, 9(6), 1163-1166.
[53]
Johnston, S.; Pippen, J., Jr; Pivot, X.; Lichinitser, M.; Sadeghi, S.; Dieras, V.; Gomez, H.L.; Romieu, G.; Manikhas, A.; Kennedy, M.J.; Press, M.F.; Maltzman, J.; Florance, A.; O’Rourke, L.; Oliva, C.; Stein, S.; Pegram, M. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J. Clin. Oncol., 2009, 27(33), 5538-5546.
[54]
Kaufman, B.; Mackey, J.R.; Clemens, M.R.; Bapsy, P.P.; Vaid, A.; Wardley, A.; Tjulandin, S.; Jahn, M.; Lehle, M.; Feyereislova, A.; Révil, C.; Jones, A. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: Results from the randomized phase III TAnDEM study. J. Clin. Oncol., 2009, 27(33), 5529-5537.
[55]
Giordano, S.H.; Temin, S.; Kirshner, J.J.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Gonzalez-Angulo, A.M.; Krop, I.; Levinson, J.; Lin, N.U.; Modi, S.; Patt, D.A.; Perez, E.A.; Perlmutter, J.; Ramakrishna, N.; Winer, E.P. Systemic therapy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol., 2014, 32(19), 2078-2099.
[56]
Tripathy, D.; Kaufman, P.A.; Brufsky, A.M.; Mayer, M.; Yood, M.U.; Yoo, B.; Quah, C.; Yardley, D.; Rugo, H.S. First-line treatment patterns and clinical outcomes in patients with HER2-positive and hormone receptor-positive metastatic breast cancer from registHER. Oncologist, 2013, 18(5), 501-510.
[57]
Stendahl, M.; Rydén, L.; Nordenskjöld, B.; Jönsson, P.E.; Landberg, G.; Jirström, K. High progesterone receptor expression correlates to the effect of adjuvant tamoxifen in premenopausal breast cancer patients. Clin. Cancer Res., 2006, 12(15), 4614-4618.
[58]
Creighton, C.J.; Kent Osborne, C.; van de Vijver, M.J.; Foekens, J.A.; Klijn, J.G.; Horlings, H.M.; Nuyten, D.; Wang, Y.; Zhang, Y.; Chamness, G.C.; Hilsenbeck, S.G.; Lee, A.V.; Schiff, R. Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res. Treat., 2009, 114(2), 287-299.
[59]
Cancello, G.; Maisonneuve, P.; Rotmensz, N.; Viale, G.; Mastropasqua, M.G.; Pruneri, G.; Montagna, E.; Iorfida, M.; Mazza, M.; Balduzzi, A.; Veronesi, P.; Luini, A.; Intra, M.; Goldhirsch, A.; Colleoni, M. Progesterone receptor loss identifies Luminal B breast cancer subgroups at higher risk of relapse. Ann. Oncol., 2013, 24(3), 661-668.
[60]
Parise, C.A.; Caggiano, V. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J. Cancer Epidemiol., 2014, 2014, 469251.
[61]
Nahta, R.; Esteva, F.J. Herceptin: mechanisms of action and resistance. Cancer Lett., 2006, 232(2), 123-138.
[62]
Holbro, T.; Beerli, R.R.; Maurer, F.; Koziczak, M.; Barbas, C.F., III; Hynes, N.E. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8933-8938.
[63]
Rexer, B.N.; Arteaga, C.L. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Crit. Rev. Oncog., 2012, 17(1), 1-16.
[64]
Huw, L.Y.; O’Brien, C.; Pandita, A.; Mohan, S.; Spoerke, J.M.; Lu, S.; Wang, Y.; Hampton, G.M.; Wilson, T.R.; Lackner, M.R. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis, 2013, 2, e83.
[65]
Loi, S. Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. OncoImmunology, 2013, 2(7), e24720.
[66]
Clynes, R.A.; Towers, T.L.; Presta, L.G.; Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med., 2000, 6(4), 443-446.
[67]
Loi, S.; Michiels, S.; Salgado, R.; Sirtaine, N.; Jose, V.; Fumagalli, D.; Kellokumpu-Lehtinen, P.L.; Bono, P.; Kataja, V.; Desmedt, C.; Piccart, M.J.; Loibl, S.; Denkert, C.; Smyth, M.J.; Joensuu, H.; Sotiriou, C. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann. Oncol., 2014, 25(8), 1544-1550.
[68]
Perez, E.A.; Ballman, K.V.; Tenner, K.S.; Thompson, E.A.; Badve, S.S.; Bailey, H.; Baehner, F.L. Association of Stromal Tumor-Infiltrating Lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol., 2016, 2(1), 56-64.
[69]
Bianchini, G.; Pusztai, L.; Pienkowski, T. Im, Y.H.; Bianchi, G.V.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Galeota, E.; Magazzù, D.; de la Haba-Rodríguez, J.; Oh, D.Y.; Poirier, B.; Pedrini, J.L.; Semiglazov, V.; Valagussa, P.; Gianni, L. Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial. Ann. Oncol., 2015, 26(12), 2429-2436.
[70]
Solinas, C.; Ceppi, M.; Lambertini, M.; Scartozzi, M.; Buisseret, L.; Garaud, S.; Fumagalli, D.; de Azambuja, E.; Salgado, R.; Sotiriou, C.; Willard-Gallo, K.; Ignatiadis, M. Tumor-infiltrating lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: A meta-analysis of randomized controlled trials. Cancer Treat. Rev., 2017, 57, 8-15.
[71]
Attard, C.L.; Pepper, A.N.; Brown, S.T.; Thompson, M.F.; Thuresson, P.O.; Yunger, S.; Dent, S.; Paterson, A.H.; Wells, G.A. Cost-effectiveness analysis of neoadjuvant pertuzumab and trastuzumab therapy for locally advanced, inflammatory, or early HER2-positive breast cancer in Canada. J. Med. Econ., 2015, 18(3), 173-188.
[72]
Schneeweiss, A.; Chia, S.; Hegg, R.; Tausch, C.; Deb, R.; Ratnayake, J.; McNally, V.; Ross, G.; Kiermaier, A.; Cortés, J. Evaluating the predictive value of biomarkers for efficacy outcomes in response to pertuzumab- and trastuzumab-based therapy: An exploratory analysis of the TRYPHAENA study. Breast Cancer Res., 2014, 16(4), R73.
[73]
Nahta, R. Pharmacological strategies to overcome HER2 cross-talk and Trastuzumab resistance. Curr. Med. Chem., 2012, 19(7), 1065-1075.
[74]
Andre, F.; Campone, M.; O’Regan, R.; Manlius, C.; Massacesi, C.; Sahmoud, T.; Mukhopadhyay, P.; Soria, J.C.; Naughton, M.; Hurvitz, S.A. Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J. Clin. Oncol., 2010, 28(34), 5110-5115.
[75]
Jerusalem, G.; Fasolo, A.; Dieras, V.; Cardoso, F.; Bergh, J.; Vittori, L.; Zhang, Y.; Massacesi, C.; Sahmoud, T.; Gianni, L. Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res. Treat., 2011, 125(2), 447-455.
[76]
Hurvitz, S.A.; Dalenc, F.; Campone, M.; O’Regan, R.M.; Tjan-Heijnen, V.C.; Gligorov, J.; Llombart, A.; Jhangiani, H.; Mirshahidi, H.R.; Tan-Chiu, E.; Miao, S.; El-Hashimy, M.; Lincy, J.; Taran, T.; Soria, J.C.; Sahmoud, T.; André, F. A phase 2 study of everolimus combined with trastuzumab and paclitaxel in patients with HER2-overexpressing advanced breast cancer that progressed during prior trastuzumab and taxane therapy. Breast Cancer Res. Treat., 2013, 141(3), 437-446.
[77]
O’Regan, R.; Ozguroglu, M.; Andre, F.; Toi, M.; Jerusalem, G.; Wilks, S. Phase III, randomized, double-blind, placebo-controlled multicenter trial of daily everolimus plus weekly trastuzumab and vinorelbine in trastuzumab- resistant, advanced breast cancer (BOLERO-3). J. Clin. Oncol., 2013, 31(15)(Suppl.), 505-505.
[78]
Toi, M.; Shao, Z.; Hurvitz, S.; Tseng, L.M.; Zhang, Q.; Shen, K.; Liu, D.; Feng, J.; Xu, B.; Wang, X.; Lee, K.S.; Ng, T.Y.; Ridolfi, A.; Noel-Baron, F.; Ringeisen, F.; Jiang, Z. Efficacy and safety of everolimus in combination with trastuzumab and paclitaxel in Asian patients with HER2+ advanced breast cancer in BOLERO-1. Breast Cancer Res., 2017, 19(1), 47.
[79]
Hurvitz, S.A.; Andre, F.; Jiang, Z.; Shao, Z.; Mano, M.S.; Neciosup, S.P.; Tseng, L.M.; Zhang, Q.; Shen, K.; Liu, D.; Dreosti, L.M.; Burris, H.A.; Toi, M.; Buyse, M.E.; Cabaribere, D.; Lindsay, M.A.; Rao, S.; Pacaud, L.B.; Taran, T.; Slamon, D. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): A phase 3, randomised, double-blind, multicentre trial. Lancet Oncol., 2015, 16(7), 816-829.
[80]
André, F.; O’Regan, R.; Ozguroglu, M.; Toi, M.; Xu, B.; Jerusalem, G.; Masuda, N.; Wilks, S.; Arena, F.; Isaacs, C.; Yap, Y.S.; Papai, Z.; Lang, I.; Armstrong, A.; Lerzo, G.; White, M.; Shen, K.; Litton, J.; Chen, D.; Zhang, Y.; Ali, S.; Taran, T.; Gianni, L. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol., 2014, 15(6), 580-591.
[81]
Cazzaniga, M.E.; Airoldi, M.; Arcangeli, V.; Artale, S.; Atzori, F.; Ballerio, A.; Bianchi, G.V.; Blasi, L.; Campidoglio, S.; Ciccarese, M.; Cursano, M.C.; Piezzo, M.; Fabi, A.; Ferrari, L.; Ferzi, A.; Ficorella, C.; Frassoldati, A.; Fumagalli, A.; Garrone, O.; Gebbia, V.; Generali, D.; La Verde, N.; Maur, M.; Michelotti, A.; Moretti, G.; Musolino, A.; Palumbo, R.; Pistelli, M.; Porpiglia, M.; Sartori, D.; Scavelli, C.; Schirone, A.; Turletti, A.; Valerio, M.R.; Vici, P.; Zambelli, A.; Clivio, L.; Torri, V. Efficacy and safety of Everolimus and Exemestane in hormone-receptor positive (HR+) human-epidermal-growth-factor negative (HER2-) advanced breast cancer patients: New insights beyond clinical trials. The EVA study. Breast, 2017, 35, 115-121.
[82]
Nahta, R.; Yuan, L.X.; Zhang, B.; Kobayashi, R.; Esteva, F.J. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res., 2005, 65(23), 11118-11128.
[83]
Di Cosimo, S.; Sathyanarayanan, S.; Bendell, J.C.; Cervantes, A.; Stein, M.N.; Braña, I.; Roda, D.; Haines, B.B.; Zhang, T.; Winter, C.G.; Jha, S.; Xu, Y.; Frazier, J.; Klinghoffer, R.A.; Leighton-Swayze, A.; Song, Y.; Ebbinghaus, S.; Baselga, J. Combination of the mTOR inhibitor ridaforolimus and the anti-IGF1R monoclonal antibody dalotuzumab: Preclinical characterization and phase I clinical trial. Clin. Cancer Res., 2015, 21(1), 49-59.
[84]
Seiler, M.; Ray-Coquard, I.; Melichar, B.; Yardley, D.A.; Wang, R.X.; Dodion, P.F.; Lee, M.A. Oral ridaforolimus plus trastuzumab for patients with HER2+ trastuzumab-refractory metastatic breast cancer. Clin. Breast Cancer, 2015, 15(1), 60-65.
[85]
Zhang, S.; Huang, W.C.; Li, P.; Guo, H.; Poh, S.B.; Brady, S.W.; Xiong, Y.; Tseng, L.M.; Li, S.H.; Ding, Z.; Sahin, A.A.; Esteva, F.J.; Hortobagyi, G.N.; Yu, D. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat. Med., 2011, 17(4), 461-469.
[86]
Higgins, M.J.; Gabrail, N.Y.; Miller, K.; Agresta, S.V.; Sharma, S.; McDonagh, C.; Murray, J.; Andreas, K.; Frye, S.; Moyo, V.M.; Niyikiza, C.; Ryan, P.D. A phase I/II study of MM-111, a novel bispecific antibody that targets the ErB2/ErB3 heterodimer, in combination with trastuzumab in advanced refractory HER2-positive breast cancer. J. Clin. Oncol. 2011. 29(S), abstr TPS119.
[87]
Denlinger, C.S.; Beeram, M.; Tolcher, A.W.; Goldstein, L.J.; Slichenmyer, W.J.; Murray, J.; McDonagh, C.; Andreas, K.; Moyo, V.M. A phase I/II and pharmacologic study of MM-111 in patients with advanced, refractory HER2-positive (HER2) cancers. J. Clin. Oncol 2010. 28(S), abstr. TPS169.
[88]
Korkola, J.E.; Liu, M.; Liby, T.; Heisler, L.; Feiler, H.; Gray, J.W. Detrimental effects of sequential compared to concurrent treatment of pertuzumab plus T-DM1 in HER2+ breast cancer cell lines. San Antonio Breast Cancer Symposium, 2014, pp. S6-07.
[89]
Miller, K.D.; Diéras, V.; Harbeck, N.; Andre, F.; Mahtani, R.L.; Gianni, L.; Albain, K.S.; Crivellari, D.; Fang, L.; Michelson, G.; de Haas, S.L.; Burris, H.A. Phase IIa trial of trastuzumab emtansine with pertuzumab for patients with human epidermal growth factor receptor 2-positive, locally advanced, or metastatic breast cancer. J. Clin. Oncol., 2014, 32(14), 1437-1444.
[90]
Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med., 2007, 357(26), 2666-2676.
[91]
Miles, D.W.; Chan, A.; Dirix, L.Y.; Cortés, J.; Pivot, X.; Tomczak, P.; Delozier, T.; Sohn, J.H.; Provencher, L.; Puglisi, F.; Harbeck, N.; Steger, G.G.; Schneeweiss, A.; Wardley, A.M.; Chlistalla, A.; Romieu, G. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol., 2010, 28(20), 3239-3247.
[92]
Miles, D.; Zielinski, C.; Martin, M.; Vrdoljak, E.; Robert, N. Combining capecitabine and bevacizumab in metastatic breast cancer: a comprehensive review. Eur. J. Cancer, 2012, 48(4), 482-491.
[93]
Robert, N.J.; Diéras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.; Zhou, X.; Phan, S.C.; O’Shaughnessy, J. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol., 2011, 29(10), 1252-1260.
[94]
O'Shaughnessy, J.; Miles, D.; Gray, R.J.; Dieras, V.; Perez, E.A.; Zon, R.; Cortes, J.; Zhou, X.; Phan, S.; Miller, K. A meta-analysis of overall survival data from three randomized trials of bevacizumab (BV) and first-line chemotherapy as treatment for patients with metastatic breast cancer (MBC). J. Clin. Oncol 2010. 28(S), abs 1005.
[95]
Zielinski, C.; Láng, I.; Inbar, M.; Kahán, Z.; Greil, R.; Beslija, S.; Stemmer, S.M.; Zvirbule, Z.; Steger, G.G.; Melichar, B.; Pienkowski, T.; Sirbu, D.; Petruzelka, L.; Eniu, A.; Nisenbaum, B.; Dank, M.; Anghel, R.; Messinger, D.; Brodowicz, T. Bevacizumab plus paclitaxel versus bevacizumab plus capecitabine as first-line treatment for HER2-negative metastatic breast cancer (TURANDOT): Primary endpoint results of a randomised, open-label, non-inferiority, phase 3 trial. Lancet Oncol., 2016, 17(9), 1230-1239.
[96]
Schneeweiss, A.; Förster, F.; Tesch, H.; Aktas, B.; Gluz, O.; Geberth, M.; Hertz-Eichenrode, M.M.; Schönegg, W.; Schumacher, C.; Kutscheidt, A.; Kiewitz, C.; Klawitter, S.; Schmidt, M. First-line bevacizumab-containing therapy for HER2-negative metastatic breast cancer: Final Results from a Prospective German Study. Anticancer Res., 2016, 36(3), 967-974.
[97]
Welt, A.; Marschner, N.; Lerchenmueller, C.; Decker, T.; Steffens, C.C.; Koehler, A.; Depenbusch, R.; Busies, S.; Hegewisch-Becker, S. Capecitabine and bevacizumab with or without vinorelbine in first-line treatment of HER2/neu-negative metastatic or locally advanced breast cancer: final efficacy and safety data of the randomised, open-label superiority phase 3 CARIN trial. Breast Cancer Res. Treat., 2016, 156(1), 97-107.
[98]
Sini, V.; Cassano, A.; Corsi, D.; De Laurentiis, M.; Gamucci, T.; Mauri, M.; Naso, G.; Roselli, M.; Ruggeri, E.M.; Tonini, G.; Vici, P.; Zampa, G.; Marchetti, P. Bevacizumab as first-line treatment in HER2-negative advanced breast cancer: pros and cons. Tumori, 2016, 102(5), 472-480.
[99]
Mendiola, M.; Martínez-Marin, V.; Herranz, J.; Heredia, V.; Yébenes, L.; Zamora, P.; Castelo, B.; Pinto, Á.; Miguel, M.; Díaz, E.; Gámez, A.; Fresno, J.Á.; Ramírez de Molina, A.; Hardisson, D.; Espinosa, E.; Redondo, A. Predictive value of angiogenesis-related gene profiling in patients with HER2-negative metastatic breast cancer treated with bevacizumab and weekly paclitaxel. Oncotarget, 2016, 7(17), 24217-24227.
[100]
Miles, D.; Cameron, D.; Bondarenko, I.; Manzyuk, L.; Alcedo, J.C.; Lopez, R.I.; Im, S.A.; Canon, J.L.; Shparyk, Y.; Yardley, D.A.; Masuda, N.; Ro, J.; Denduluri, N.; Hubeaux, S.; Quah, C.; Bais, C.; O’Shaughnessy, J. Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2-negative metastatic breast cancer (MERiDiAN): A double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation. Eur. J. Cancer, 2017, 70, 146-155.
[101]
Milani, A.; Sangiolo, D.; Aglietta, M.; Valabrega, G. Recent advances in the development of breast cancer vaccines. Breast Cancer (Dove Med. Press), 2014, 6, 159-168.
[102]
Disis, M.L.; Pupa, S.M.; Gralow, J.R.; Dittadi, R.; Menard, S.; Cheever, M.A. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J. Clin. Oncol., 1997, 15(11), 3363-3367.
[103]
Miles, D.; Papazisis, K. Rationale for the clinical development of STn-KLH (Theratope) and anti-MUC-1 vaccines in breast cancer. Clin. Breast Cancer, 2003, 3(Suppl. 4), S134-S138.
[104]
Marmé, F. Immunotherapy in Breast Cancer. Oncol. Res. Treat., 2016, 39(6), 335-345.
[105]
Zhang, Y.; Ma, B.; Zhou, Y.; Zhang, M.; Qiu, X.; Sui, Y.; Zhang, X.; Ma, B.; Fan, Q. Dendritic cells fused with allogeneic breast cancer cell line induce tumor antigen-specific CTL responses against autologous breast cancer cells. Breast Cancer Res. Treat., 2007, 105(3), 277-286.
[106]
Rossi, G.R.; Mautino, M.R.; Awwad, D.Z.; Husske, K.; Lejukole, H.; Koenigsfeld, M.; Ramsey, W.J.; Vahanian, N.; Link, C.J. Allogeneic melanoma vaccine expressing alphaGal epitopes induces antitumor immunity to autologous antigens in mice without signs of toxicity. J. Immunother., 2008, 31(6), 545-554.
[107]
Gallo, P.; Dharmapuri, S.; Nuzzo, M.; Maldini, D.; Iezzi, M.; Cavallo, F.; Musiani, P.; Forni, G.; Monaci, P. Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int. J. Cancer, 2005, 113(1), 67-77.
[108]
Prud’homme, G.J. DNA vaccination against tumors. J. Gene Med., 2005, 7(1), 3-17.
[109]
Hui, K.M.; Ang, P.T.; Huang, L.; Tay, S.K. Phase I study of immunotherapy of cutaneous metastases of human carcinoma using allogeneic and xenogeneic MHC DNA-liposome complexes. Gene Ther., 1997, 4(8), 783-790.
[110]
Pecher, G.; Spahn, G.; Schirrmann, T.; Kulbe, H.; Ziegner, M.; Schenk, J.A.; Sandig, V. Mucin gene (MUC1) transfer into human dendritic cells by cationic liposomes and recombinant adenovirus. Anticancer Res., 2001, 21(4A), 2591-2596.
[111]
Liu, Z.; Lv, D.; Liu, S.; Gong, J.; Wang, D.; Xiong, M.; Chen, X.; Xiang, R.; Tan, X. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: Effect against breast cancer in mice. PLoS One, 2013, 8(4), e60190.
[112]
Disis, M.L.; Wallace, D.R.; Gooley, T.A.; Dang, Y.; Slota, M.; Lu, H.; Coveler, A.L.; Childs, J.S.; Higgins, D.M.; Fintak, P.A.; dela Rosa, C.; Tietje, K.; Link, J.; Waisman, J.; Salazar, L.G. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J. Clin. Oncol., 2009, 27(28), 4685-4692.
[113]
Hamilton, E.; Blackwell, K.; Hobeika, A.C.; Clay, T.M.; Broadwater, G.; Ren, X.R.; Chen, W.; Castro, H.; Lehmann, F.; Spector, N.; Wei, J.; Osada, T.; Lyerly, H.K.; Morse, M.A. Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition.[corrected]. J. Transl. Med., 2012, 10, 28.
[114]
Curigliano, G.; Romieu, G.; Campone, M.; Dorval, T.; Duck, L.; Canon, J.L.; Roemer-Becuwe, C.; Roselli, M.; Neciosup, S.; Burny, W.; Callegaro, A.; de Sousa Alves, P.M.; Louahed, J.; Brichard, V.; Lehmann, F.F. A phase I/II trial of the safety and clinical activity of a HER2-protein based immunotherapeutic for treating women with HER2-positive metastatic breast cancer. Breast Cancer Res. Treat., 2016, 156(2), 301-310.
[115]
Domchek, S.M.; Recio, A.; Mick, R.; Clark, C.E.; Carpenter, E.L.; Fox, K.R.; DeMichele, A.; Schuchter, L.M.; Leibowitz, M.S.; Wexler, M.H.; Vance, B.A.; Beatty, G.L.; Veloso, E.; Feldman, M.D.; Vonderheide, R.H. Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance. Cancer Res., 2007, 67(21), 10546-10555.
[116]
Miles, D.; Roché, H.; Martin, M.; Perren, T.J.; Cameron, D.A.; Glaspy, J.; Dodwell, D.; Parker, J.; Mayordomo, J.; Tres, A.; Murray, J.L.; Ibrahim, N.K. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist, 2011, 16(8), 1092-1100.
[117]
Emens, L.A. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev. Anticancer Ther., 2012, 12(12), 1597-1611.
[118]
Beatson, R.E.; Taylor-Papadimitriou, J.; Burchell, J.M. MUC1 immunotherapy. Immunotherapy, 2010, 2(3), 305-327.
[119]
Tiriveedhi, V.; Tucker, N.; Herndon, J.; Li, L.; Sturmoski, M.; Ellis, M.; Ma, C.; Naughton, M.; Lockhart, A.C.; Gao, F.; Fleming, T.; Goedegebuure, P.; Mohanakumar, T.; Gillanders, W.E. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin. Cancer Res., 2014, 20(23), 5964-5975.
[120]
Heery, C.R.; Ibrahim, N.K.; Arlen, P.M.; Mohebtash, M.; Murray, J.L.; Koenig, K.; Madan, R.A.; McMahon, S.; Marté, J.L.; Steinberg, S.M.; Donahue, R.N.; Grenga, I.; Jochems, C.; Farsaci, B.; Folio, L.R.; Schlom, J.; Gulley, J.L. Docetaxel alone or in combination with a therapeutic cancer vaccine (panvac) in patients with metastatic breast cancer: A randomized clinical trial. JAMA Oncol., 2015, 1(8), 1087-1095.
[121]
de la Torre, A.; Pérez, K.; Vega, A.M.; Santiesteban, E.; Ruiz, R.; Hernández, L.; Durrutí, D.; Viada, C.E.; Sánchez, L.; Álvarez, M.; Durán, Y.; Moreno, Y.G.; Arencibia, M.; Cepeda, M.; Domecq, M.; Cabrera, L.; Sánchez, J.L.; Hernández, J.J.; Valls, A.R.; Fernández, L.E. Superior efficacy and safety of a nonemulsive variant of the ngcgm3/vssp vaccine in advanced breast cancer patients. Breast Cancer (Auckl.), 2016, 10, 5-11.
[122]
Park, J.W.; Melisko, M.E.; Esserman, L.J.; Jones, L.A.; Wollan, J.B.; Sims, R. Treatment with autologous antigen-presenting cells activated with the HER-2 based antigen Lapuleucel-T: Results of a phase I study in immunologic and clinical activity in HER-2 overexpressing breast cancer. J. Clin. Oncol., 2007, 25(24), 3680-3687.
[123]
Svane, I.M.; Pedersen, A.E.; Johansen, J.S.; Johnsen, H.E.; Nielsen, D.; Kamby, C.; Ottesen, S.; Balslev, E.; Gaarsdal, E.; Nikolajsen, K.; Claesson, M.H. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol. Immunother., 2007, 56(9), 1485-1499.
[124]
Emens, L.A.; Asquith, J.M.; Leatherman, J.M.; Kobrin, B.J.; Petrik, S.; Laiko, M.; Levi, J.; Daphtary, M.M.; Biedrzycki, B.; Wolff, A.C.; Stearns, V.; Disis, M.L.; Ye, X.; Piantadosi, S.; Fetting, J.H.; Davidson, N.E.; Jaffee, E.M. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: A chemotherapy dose-ranging factorial study of safety and immune activation. J. Clin. Oncol., 2009, 27(35), 5911-5918.
[125]
Chen, G.; Leatherman, J.M.; Sunay, M.E.; Emens, L.A. Cyclophosphamide induces dose dependent apoptosis of CD4+FoxP3+ regulatory T cells relative to CD4+FoxP3- effector T cells in breast cancer patients. [abstract]. Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, 2013 Apr 6-10Washington, DC2013.
[126]
Wang, X.; Ren, J.; Zhang, J.; Yan, Y.; Jiang, N.; Yu, J.; Di, L.; Song, G.; Che, L.; Jia, J.; Zhou, X.; Yang, H.; Lyerly, H.K. Prospective study of cyclophosphamide, thiotepa, carboplatin combined with adoptive DC-CIK followed by metronomic cyclophosphamide therapy as salvage treatment for triple negative metastatic breast cancers patients (aged <45). Clin. Transl. Oncol., 2016, 18(1), 82-87.
[127]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[128]
Carey, L.; Winer, E.; Viale, G.; Cameron, D.; Gianni, L. Triple-negative breast cancer: disease entity or title of convenience? Nat. Rev. Clin. Oncol., 2010, 7(12), 683-692.
[129]
Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med., 2010, 363(20), 1938-1948.
[130]
Rakha, E.A.; Tan, D.S.; Foulkes, W.D.; Ellis, I.O.; Tutt, A.; Nielsen, T.O.; Reis-Filho, J.S. Are triple-negative tumours and basal-like breast cancer synonymous? Breast Cancer Res., 2007, 9(6), 404.
[131]
Rakha, E.; Ellis, I.; Reis-Filho, J. Are triple-negative and basal-like breast cancer synonymous? Clin. Cancer Res., 2008, 14(2), 618.
[132]
Masuda, H.; Baggerly, K.A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A.M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B.D.; Pietenpol, J.A.; Hortobagyi, G.N.; Symmans, W.F.; Ueno, N.T. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res., 2013, 19(19), 5533-5540.
[133]
Cheang, M.C.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.; Chia, S.K.; Perou, C.M.; Nielsen, T.O. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res., 2008, 14(5), 1368-1376.
[134]
Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res., 2007, 13(8), 2329-2334.
[135]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[136]
Székely, B.; Silber, A.L.; Pusztai, L. New therapeutic strategies for triple-negative breast cancer. Oncology (Williston Park), 2017, 31(2), 130-137.
[137]
Kummar, S.; Wade, J.L.; Oza, A.M.; Sullivan, D.; Chen, A.P.; Gandara, D.R.; Ji, J.; Kinders, R.J.; Wang, L.; Allen, D.; Coyne, G.O.; Steinberg, S.M.; Doroshow, J.H. Randomized phase II trial of cyclophosphamide and the oral poly (ADP-ribose) polymerase inhibitor veliparib in patients with recurrent, advanced triple-negative breast cancer. Invest. New Drugs, 2016, 34(3), 355-363.
[138]
Rayson, D.; Lupichuk, S.; Potvin, K.; Dent, S.; Shenkier, T.; Dhesy-Thind, S.; Ellard, S.L.; Prady, C.; Salim, M.; Farmer, P.; Allo, G.; Tsao, M.S.; Allan, A.; Ludkovski, O.; Bonomi, M.; Tu, D.; Hagerman, L.; Goodwin, R.; Eisenhauer, E.; Bradbury, P. Canadian Cancer Trials Group IND197: a phase II study of foretinib in patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-negative recurrent or metastatic breast cancer. Breast Cancer Res. Treat., 2016, 157(1), 109-116.
[139]
Carey, L.A.; Rugo, H.S.; Marcom, P.K.; Mayer, E.L.; Esteva, F.J.; Ma, C.X.; Liu, M.C.; Storniolo, A.M.; Rimawi, M.F.; Forero-Torres, A.; Wolff, A.C.; Hobday, T.J.; Ivanova, A.; Chiu, W.K.; Ferraro, M.; Burrows, E.; Bernard, P.S.; Hoadley, K.A.; Perou, C.M.; Winer, E.P. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J. Clin. Oncol., 2012, 30(21), 2615-2623.
[140]
Baselga, J.; Gómez, P.; Greil, R.; Braga, S.; Climent, M.A.; Wardley, A.M.; Kaufman, B.; Stemmer, S.M.; Pêgo, A.; Chan, A.; Goeminne, J.C.; Graas, M.P.; Kennedy, M.J.; Ciruelos Gil, E.M.; Schneeweiss, A.; Zubel, A.; Groos, J.; Melezínková, H.; Awada, A. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2013, 31(20), 2586-2592.
[141]
Ribatti, D.; Nico, B.; Ruggieri, S.; Tamma, R.; Simone, G.; Mangia, A. Angiogenesis and antiangiogenesis in triple-negative breast cancer. Transl. Oncol., 2016, 9(5), 453-457.
[142]
Gray, R.; Bhattacharya, S.; Bowden, C.; Miller, K.; Comis, R.L. Independent review of E2100: a phase III trial of bevacizumab plus paclitaxel versus paclitaxel in women with metastatic breast cancer. J. Clin. Oncol., 2009, 27(30), 4966-4972.
[143]
Ferrero, J.M.; Hardy-Bessard, A.C.; Capitain, O.; Lortholary, A.; Salles, B.; Follana, P.; Herve, R.; Deblock, M.; Dauba, J.; Atlassi, M.; Largillier, R. Weekly paclitaxel, capecitabine, and bevacizumab with maintenance capecitabine and bevacizumab as first-line therapy for triple-negative, metastatic, or locally advanced breast cancer: Results from the GINECO A-TaXel phase 2 study. Cancer, 2016, 122(20), 3119-3126.
[144]
Fridman, W.H.; Galon, J.; Pagès, F.; Tartour, E.; Sautès-Fridman, C.; Kroemer, G. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res., 2011, 71(17), 5601-5605.
[145]
Matsumoto, H.; Koo, S.L.; Dent, R.; Tan, P.H.; Iqbal, J. Role of inflammatory infiltrates in triple negative breast cancer. J. Clin. Pathol., 2015, 68(7), 506-510.
[146]
Finak, G.; Bertos, N.; Pepin, F.; Sadekova, S.; Souleimanova, M.; Zhao, H.; Chen, H.; Omeroglu, G.; Meterissian, S.; Omeroglu, A.; Hallett, M.; Park, M. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med., 2008, 14(5), 518-527.
[147]
Liu, S.; Lachapelle, J.; Leung, S.; Gao, D.; Foulkes, W.D.; Nielsen, T.O. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res., 2012, 14(2), R48.
[148]
Denkert, C.; von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.D.; Schem, C.; Fisch, K.; Darb-Esfahani, S.; Mehta, K.; Sotiriou, C.; Wienert, S.; Klare, P.; André, F.; Klauschen, F.; Blohmer, J.U.; Krappmann, K.; Schmidt, M.; Tesch, H.; Kümmel, S.; Sinn, P.; Jackisch, C.; Dietel, M.; Reimer, T.; Untch, M.; Loibl, S. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol., 2015, 33(9), 983-991.
[149]
Stagg, J.; Allard, B. Immunotherapeutic approaches in triple-negative breast cancer: Latest research and clinical prospects. Ther. Adv. Med. Oncol., 2013, 5(3), 169-181.
[150]
Badovinac Črnjević, T.; Spagnoli, G.; Juretić, A.; Jakić-Razumović, J.; Podolski, P.; Šarić, N. High expression of MAGE-A10 cancer-testis antigen in triple-negative breast cancer. Med. Oncol., 2012, 29(3), 1586-1591.
[151]
Curigliano, G.; Viale, G.; Ghioni, M.; Jungbluth, A.A.; Bagnardi, V.; Spagnoli, G.C.; Neville, A.M.; Nolè, F.; Rotmensz, N.; Goldhirsch, A. Cancer-testis antigen expression in triple-negative breast cancer. Ann. Oncol., 2011, 22(1), 98-103.
[152]
Lakshminarayanan, V.; Thompson, P.; Wolfert, M.A.; Buskas, T.; Bradley, J.M.; Pathangey, L.B.; Madsen, C.S.; Cohen, P.A.; Gendler, S.J.; Boons, G.J. Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc. Natl. Acad. Sci. USA, 2012, 109(1), 261-266.
[153]
Assadipour, Y.; Zacharakis, N.; Crystal, J.S.; Prickett, T.D.; Gartner, J.J.; Somerville, R.P.T.; Xu, H.; Black, M.A.; Jia, L.; Chinnasamy, H.; Kriley, I.; Lu, L.; Wunderlich, J.R.; Zheng, Z.; Lu, Y.C.; Robbins, P.F.; Rosenberg, S.A.; Goff, S.L.; Feldman, S.A. Characterization of an immunogenic mutation in a patient with metastatic triple-negative breast cancer. Clin. Cancer Res., 2017, 23(15), 4347-4353.
[154]
Gornowicz, A.; Bielawska, A.; Czarnomysy, R.; Gabryel-Porowska, H.; Muszyńska, A.; Bielawski, K. The combined treatment with novel platinum(II) complex and anti-MUC1 increases apoptotic response in MDA-MB-231 breast cancer cells. Mol. Cell. Biochem., 2015, 408(1-2), 103-113.
[155]
Gornowicz, A.; Kałuża, Z.; Bielawska, A.; Gabryel-Porowska, H.; Czarnomysy, R.; Bielawski, K. Cytotoxic efficacy of a novel dinuclear platinum(II) complex used with anti-MUC1 in human breast cancer cells. Mol. Cell. Biochem., 2014, 392(1-2), 161-174.
[156]
Gentzler, R.; Hall, R.; Kunk, P.R.; Gaughan, E.; Dillon, P.; Slingluff, C.L., Jr; Rahma, O.E. Beyond melanoma: Inhibiting the PD-1/PD-L1 pathway in solid tumors. Immunotherapy, 2016, 8(5), 583-600.
[157]
Migali, C.; Milano, M.; Trapani, D.; Criscitiello, C.; Esposito, A.; Locatelli, M.; Minchella, I.; Curigliano, G. Strategies to modulate the immune system in breast cancer: Checkpoint inhibitors and beyond. Ther. Adv. Med. Oncol., 2016, 8(5), 360-374.
[158]
Dieci, M.V.; Criscitiello, C.; Goubar, A.; Viale, G.; Conte, P.; Guarneri, V.; Ficarra, G.; Mathieu, M.C.; Delaloge, S.; Curigliano, G.; Andre, F. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann. Oncol., 2014, 25(3), 611-618.
[159]
Ono, M.; Tsuda, H.; Shimizu, C.; Yamamoto, S.; Shibata, T.; Yamamoto, H.; Hirata, T.; Yonemori, K.; Ando, M.; Tamura, K.; Katsumata, N.; Kinoshita, T.; Takiguchi, Y.; Tanzawa, H.; Fujiwara, Y. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res. Treat., 2012, 132(3), 793-805.
[160]
Dushyanthen, S.; Beavis, P.A.; Savas, P.; Teo, Z.L.; Zhou, C.; Mansour, M.; Darcy, P.K.; Loi, S. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med., 2015, 13, 202.
[161]
Muenst, S.; Soysal, S.D.; Gao, F.; Obermann, E.C.; Oertli, D.; Gillanders, W.E. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat., 2013, 139(3), 667-676.
[162]
Stagg, J.; Loi, S.; Divisekera, U.; Ngiow, S.F.; Duret, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl. Acad. Sci. USA, 2011, 108(17), 7142-7147.
[163]
Jacquemier, J.; Bertucci, F.; Finetti, P.; Esterni, B.; Charafe-Jauffret, E.; Thibult, M.L.; Houvenaeghel, G.; Van den Eynde, B.; Birnbaum, D.; Olive, D.; Xerri, L. High expression of indoleamine 2,3-dioxygenase in the tumour is associated with medullary features and favourable outcome in basal-like breast carcinoma. Int. J. Cancer, 2012, 130(1), 96-104.
[164]
Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; Chawla, A.; Curran, M.; Hwu, P.; Sharma, P.; Litton, J.K.; Molldrem, J.J.; Alatrash, G. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res., 2014, 2(4), 361-370.
[165]
Beckers, R.K.; Selinger, C.I.; Vilain, R.; Madore, J.; Wilmott, J.S.; Harvey, K.; Holliday, A.; Cooper, C.L.; Robbins, E.; Gillett, D.; Kennedy, C.W.; Gluch, L.; Carmalt, H.; Mak, C.; Warrier, S.; Gee, H.E.; Chan, C.; McLean, A.; Walker, E.; McNeil, C.M.; Beith, J.M.; Swarbrick, A.; Scolyer, R.A.; O’Toole, S.A. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology, 2016, 69(1), 25-34.
[166]
Schalper, K.A.; Velcheti, V.; Carvajal, D.; Wimberly, H.; Brown, J.; Pusztai, L.; Rimm, D.L. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin. Cancer Res., 2014, 20(10), 2773-2782.
[167]
Polónia, A.; Pinto, R.; Cameselle-Teijeiro, J.F.; Schmitt, F.C.; Paredes, J. Prognostic value of stromal tumour infiltrating lymphocytes and programmed cell death-ligand 1 expression in breast cancer., J Clin Pathol., . 2017. , jclinpath-2016-20399
[168]
Sabatier, R.; Finetti, P.; Mamessier, E.; Adelaide, J.; Chaffanet, M.; Ali, H.R.; Viens, P.; Caldas, C.; Birnbaum, D.; Bertucci, F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget, 2015, 6(7), 5449-5464.
[169]
Wimberly, H.; Brown, J.R.; Schalper, K.; Haack, H.; Silver, M.R.; Nixon, C.; Bossuyt, V.; Pusztai, L.; Lannin, D.R.; Rimm, D.L. PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Immunol. Res., 2015, 3(4), 326-332.
[170]
Gatalica, Z.; Snyder, C.; Maney, T.; Ghazalpour, A.; Holterman, D.A.; Xiao, N.; Overberg, P.; Rose, I.; Basu, G.D.; Vranic, S.; Lynch, H.T.; Von Hoff, D.D.; Hamid, O. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol. Biomarkers Prev., 2014, 23(12), 2965-2970.
[171]
Barrett, M.T.; Anderson, K.S.; Lenkiewicz, E.; Andreozzi, M.; Cunliffe, H.E.; Klassen, C.L.; Dueck, A.C.; McCullough, A.E.; Reddy, S.K.; Ramanathan, R.K.; Northfelt, D.W.; Pockaj, B.A. Genomic amplification of 9p24.1 targeting JAK2, PD-L1, and PD-L2 is enriched in high-risk triple negative breast cancer. Oncotarget, 2015, 6(28), 26483-26493.
[172]
Nanda, R.C.; Laura, Q.; Dees, E.C.; Berger, R. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple negative breast cancer. Abs S1-09. 37th Annual CTRC-AACR San Antonio Breast Cancer Symposium, 2014.
[173]
Emens, L.; Braiteh, F.; Cassier, P.; DeLord, J.; Eder, J.; Shen, X.; Xiao, Y.; Wang, Y.; Hegde, P.S.; Chen, D.S.; Krop, I. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Proceedings of the Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium, 2014 Dec 9-13San Antonio, TX2015, pp. PD1-6.
[174]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[175]
Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L.J.; Musselli, C.; Zhang, X.F.; Bornmann, W.G.; Spassova, M.; Bencsath, K.P.; Panageas, K.S.; Chin, J.; Hudis, C.A.; Norton, L.; Houghton, A.N.; Livingston, P.O.; Danishefsky, S.J. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3270-3275.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 6
Year: 2019
Page: [941 - 962]
Pages: 22
DOI: 10.2174/0929867325666180209124052
Price: $58

Article Metrics

PDF: 48
HTML: 2
EPUB: 1
PRC: 1