Antifungal Activity of Arginine-Based Surfactants

Author(s): Maria E. Fait , Helen P. S. da Costa , Cleverson D. T. Freitas , Laura Bakás , Susana R. Morcelle* .

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Amino acid based surfactants constitute an important class of surface active biomolecules showing remarkable biocompatible properties. Antimicrobial activity is one of the most remarkable biological properties of this kind of surfactants, which have been widely studied against a broad spectrum of microorganisms. However, the antifungal activity of this kind of compound has been less well investigated. The aim of this work is the study of the antifungal activity of two novel argininebased surfactants (Nα-benzoyl-arginine decylamide, Bz-Arg-NHC10 and Nα-benzoyl-arginine dodecylamide, Bz-Arg-NHC12), obtained by an enzymatic strategy, against phytopathogenic filamentous fungi and dermatophyte strains.

Methods: Four phytopathogenic fungi (Fusarium oxysporum, Fusarium solani, Colletotrichum gloeosporioides and Colletotrichum lindemuthianum) and two human pathogenic fungi (dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes) were tested. Inhibition of vegetative growth and conidia germination was investigated for the phytopathogenic fungi. In order to elucidate the possible mechanism of biocide action, membrane integrity, as well as the production of reactive oxygen species (ROS) were evaluated. Additionally, the inhibition of germination of dermatophyte microconidia due to both arginine-based surfactants was studied. Minimum inhibitory concentration, as well as the concentration that inhibits 50% of germination were determined for both compounds and both fungal strains.

Results: For the vegetative growth of phytopathogenic fungi, the most potent arginine-based compound was Bz-Arg-NHC10. All the tested compounds interfered with the conidia development of the studied species. Investigation of the possible mechanism of toxicity towards phytopathogenic fungi indicated direct damage of the plasma membrane and production of ROS. For the two strains of dermatophyte fungi tested, all the proved compounds showed similar fungistatic efficacy.

Conclusion: Bz-Arg-NHC10 and Bz-Arg-NHC12 were demonstrated to have broad biocidal ability against the proliferative vegetative form and the asexual reproductive conidia. Results suggest that both membrane permeabilization and induction of oxidative stress are part of the antifungal mechanisms involved in the interruption of normal conidia development by Bz-Arg-NHCn, leading to cell death.

Keywords: Arginine-based surfactants, antifungal activity, phytopathogenic fungi, dermatophytes, membrane damage, ROS production.

[1]
Lukic, M.; Pantelic, I.; Savic, S. An Overview of Novel Surfactants for Formulation of Cosmetics with Certain Emphasis on Acidic Active Substances. Tenside Surf. Det., 2016, 53, 7-19.
[2]
Surfactants (Anionic, Cationic, Non-ionic, Amphoteric, and Others) Market for Household Detergents, Personal Care, In-dustrial and Institutional Care, Food Processing, Oilfield Chem-icals, Textile and Leather, and Other Applications - Global In-dustry Analysis, Size, Share, Growth, Trends and Forecast. Transparency Market Research, www.transparencymarketresearch.com/surfactants-market.html 2015 pp. (Accessed 04/20/2017).
[3]
Florence, A.T.; Attwood, D. Surfactants. In:Physicochemical Principles of Pharmacy, 4th ed; Pharmaceutical Press: London, 2006, pp. 177-228.
[4]
Mollica, A.; Macedonio, G.; Stefanucci, A.; Constante, R.; Carradori, S.; Cataldi, V.; Di Giulio, M.; Cellini, L.; Silvestri, R.; Giordano, C.; Scipioni, A.; Morosetti, S.; Punzi, P.; Mirzaie, S. Arginine- and lysine- rich peptides: synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov., 2017, 14, 1-7.
[5]
Pinazo, A.; Manresa, M.A.; Marques, A.M.; Bustelo, M.; Espuny, M.J.; Pérez, L. Amino acid-based surfactants: New antimicrobial agents. Adv. Colloid Interface Sci., 2016, 228, 17-39.
[6]
Singh, A.; Tyagi, V.K. Arginine based novel cationic surfactants: a review. Tenside Surf. Det., 2015, 51, 202-214.
[7]
Loeffler, M.; McClements, D.J.; McLandsborough, L.; Terjung, N.; Chang, Y.; Weiss, J. Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. J. Appl. Microbiol., 2014, 117(1), 28-39.
[8]
Pérez, L.; Pinazo, A.; Pons, R.; Infante, M. Gemini surfactants from natural amino acids. Adv. Colloid Interface Sci., 2014, 205, 134-155.
[9]
Infante, M.R.; Pérez, L.; Morán, C.; Pons, R.; Pinazo, A. Synthesis, aggregation properties and applications of biosurfactants derived from arginine. In: Biobased surfactants and detergents. Synthesis, properties and applications; Hayes D.G.; Kitamoto, D.; Solaiman, D.K.Y.; Ashby, R.D. Ed., 1st Edition; AOCS Press: Urbana, Illinois, 2009; pp. 374-380.
[10]
Fait, M.E.; Garrote, G.L.; Clapés, P.; Tanco, S.; Lorenzo, J.; Morcelle, S.R. Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants. Amino Acids, 2015, 47(7), 1465-1477.
[11]
Obłąk, E.; Piecuch, A.; Krasowska, A.; Luczyński, J. Antifungal activity of gemini quaternary ammonium salts. Microbiol. Res., 2013, 168(10), 630-638.
[12]
Kanjilal, S.; Sunitha, S.; Reddy, P.S.; Kumar, K.P.; Murty, U.S.N.; Prasad, R.N.B. Synthesis and evaluation of micellar properties and antimicrobial activities of imidazole-based surfactants. Eur. J. Lipid Sci. Technol., 2009, 111, 941-948.
[13]
Badawi, A.M.; Mekawi, M.A.; Mohamed, A.S.; Mohamed, M.Z.; Kowdairy, M.M. Surface and biological activity of some novel cationic surfactants. J. Surfact. Det., 2007, 10, 243-255.
[14]
Vieira, D.B.; Carmona-Ribeiro, A.M. Cationic lipids and surfactants as antifungal agents: mode of action. J. Antimicrob. Chemother., 2006, 58(4), 760-767.
[15]
Ziani, K.; Chang, Y.; McLandsborough, L.; McClements, D.J. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J. Agric. Food Chem., 2011, 59(11), 6247-6255.
[16]
Murguía, M.C.; Vaillard, V.A.; Sánchez, V.G.; Conza, J.D.; Grau, R.J. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants. J. Oleo Sci., 2008, 57(5), 301-308.
[17]
Castillo, J.A.; Infante, M.R.; Manresa, A.; Vinardell, M.P.; Mitjans, M.; Clapés, P. Chemoenzymatic synthesis and antimicrobial and haemolytic activities of amphiphilic bis(phenylacetylarginine) derivatives. ChemMedChem, 2006, 1(10), 1091-1098.
[18]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13.
[19]
Kistler, H.C.; Alabouvette, C.; Baayen, R.P.; Bentley, S.; Brayford, D.; Coddington, A.; Correll, J.; Daboussi, M-J.; Elias, K.; Fernandez, D.; Gordon, T.R.; Katan, T.; Kim, H.G.; Leslie, J.F.; Martyn, R.D.; Migheli, Q.; Moore, N.Y.; O’Donnell, K.; Ploetz, R.C.; Rutherford, M.A.; Summerell, B.; Waalwijk, C.; Woo, S. Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxysporum. Phytopathology, 1998, 88(1), 30-32.
[20]
Lim, H-S.; Kim, Y-S.; Kim, S-D. Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol., 1991, 57(2), 510-516.
[21]
Podila, G.K.; Rogers, L.M.; Kolattukudy, P.E. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol., 1993, 103(1), 267-272.
[22]
Balardin, R.S.; Jarosz, A.M.; Kelly, J.D. Virulence and Molecular Diversity in Colletotrichum lindemuthianum from South, Central, and North America. Phytopathology, 1997, 87(12), 1184-1191.
[23]
Patiny, L.; Borel, A. ChemCalc: a building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model., 2013, 53(5), 1223-1228.
[24]
Broekaert, W.F.; Terras, F.R.G.; Cammue, B.P.A.; Vanderleyden, J. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett., 1990, 69, 55-59.
[25]
Ji, C.; Kuć, J. Antifungal activity of cucumber β-1,3-glucanase and chitinase. Physiol. Mol. Plant Pathol., 1996, 49, 257-265.
[26]
de Freitas, C.D.T.; Lopes, J.L.S.; Beltramini, L.M.; de Oliveira, R.S.B.; Oliveira, J.T.A.; Ramos, M.V. Osmotin from Calotropis procera latex: new insights into structure and antifungal properties. Biochim. Biophys. Acta, 2011, 1808(10), 2501-2507.
[27]
Thordal-Christensen, H.; Zhang, Z.; Wei, Y.; Collinge, D.B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J., 1997, 11, 1187-1194.
[28]
Pereira, F.O.; Wanderley, P.A.; Viana, F.A.C.; de Lima, R.B.; de Sousa, F.B.; dos Santos, S.G.; Lima, E.O. Effects of Cymbopogon winterianus Jowitt ex Bor essential oil on the growth and morphogenesis of Trichophyton mentagrophytes. Braz. J. Pharm. Sci., 2011, 47, 145-153.
[29]
Santos, D.A.; Barros, M.E.S.; Hamdan, J.S. Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J. Clin. Microbiol., 2006, 44(1), 98-101.
[30]
Barchiesi, F.; Arzeni, D.; Camiletti, V.; Simonetti, O.; Cellini, A.; Offidani, A.M.; Scalise, G. In vitro activity of posaconazole against clinical isolates of dermatophytes. J. Clin. Microbiol., 2001, 39(11), 4208-4209.
[31]
Santos, D.A.; Hamdan, J.S. Evaluation of broth microdilution antifungal susceptibility testing conditions for Trichophyton rubrum. J. Clin. Microbiol., 2005, 43(4), 1917-1920.
[32]
Morán, M.C.; Clapés, P.; Comelles, F.; García, T.; Pérez, L.; Vinardell, P.; Mitjans, M.; Infante, M.R. Chemical structure/property relationship in single-chain arginine surfactants. Langmuir, 2001, 17, 5071-5075.
[33]
Huang, M.; Hebert, A.S.; Coon, J.J.; Hull, C.M. Protein composition of infectious spores reveals novel sexual development and germination factors in Cryptococcus. PLoS Genet., 2015, 11(8), e1005490.
[34]
Chitarra, G.S.; Breeuwer, P.; Nout, M.J.R.; van Aelst, A.C.; Rombouts, F.M.; Abee, T. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol., 2003, 94(2), 159-166.
[35]
Mesquita, N.; Portugal, A.; Piñar, G.; Loureiro, J.; Coutinho, A.P.; Trovão, J.; Nunes, I.; Botelho, M.L.; Freitas, H. Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. Int. Biodeterior. Biodegradation, 2013, 84, 250-257.
[36]
Carmona-Ribeiro, A.M.; Carrasco, L.D.M. Fungicidal assemblies and their mode of action. OA Biotechnology, 2013, 2, 25.
[37]
Vieira, O.V.; Hartmann, D.O.; Cardoso, C.M.P.; Oberdoerfer, D.; Baptista, M.; Santos, M.A.S.; Almeida, L.; Ramalho-Santos, J.; Vaz, W.L.C. Surfactants as microbicides and contraceptive agents: a systematic in vitro study. PLoS One, 2008, 3(8), e2913.
[38]
Nakata, K.; Tsuchido, T.; Matsumura, Y. Antimicrobial cationic surfactant, cetyltrimethylammonium bromide, induces superoxide stress in Escherichia coli cells. J. Appl. Microbiol., 2011, 110(2), 568-579.
[39]
Yu, Q.; Zhang, B.; Ma, F.; Jia, C.; Xiao, C.; Zhang, B.; Xing, L.; Li, M. Novel mechanisms of surfactants against Candida albicans growth and morphogenesis. Chem. Biol. Interact., 2015, 227, 1-6.
[40]
Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 2001, 31(11), 1287-1312.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [351 - 359]
Pages: 9
DOI: 10.2174/1573407214666180131161302
Price: $58

Article Metrics

PDF: 40
HTML: 3