Nanotechnology: Nanomedicine, Nanotoxicity and Future Challenges

Author(s): Vinod Kumar*, Ashish K. Choudhary, Prashant Kumar, Saurabh Sharma.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Introduction: This review gives an overview of interesting properties of nanoparticles finding potential applications in nanomedicines and their considerations that need to be made such as toxicity while developing a nanomedicine by providing an understanding of a relationship between nanocarrier, targeting moieties and drugs with optical and magnetic properties. Here, we correlate the interesting properties of nanomaterials to their applications in living cells/body simultaneously promises, prospects and toxicity challenges of nanomedicines have also been discussed in detail. Exemplifying the usage of gold nanoparticles and its derivatives such as hetero and homo hybrid nanostructures that allow their use as contrast agents, therapeutic entities and supports to attach functional molecules and targeting ligand along with molecular framework structures. Here, we present the future prospects for potential applications in nanomedicines. These nanomaterials have been used for varieties of biomedical applications such as targeted drug delivery, photothermal cancer therapies, MRI, optical imaging, etc. in vitro and in vivo.

Conclusion: In summary, this review provides innumerable aspects in the emerging field of nanomedicine and possible nanotoxicity.

Keywords: Cancer, magnetic, MRI, photodynamic therapy, gold, nanoparticles.

[1]
Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2, 22-32.
[2]
Donglu. S. Nanoscience in Biomedicine. Tsinghua University Press, Beijing and Springer-Verlag gmbh Berlin Heidelberg, 2009.
[3]
Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev., 2016, 116, 2826-2885.
[4]
Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 2003, 36, R167-R181.
[5]
Bhandare, N.; Narayana, A. Applications of nanotechnology in cancer: A literature review of imaging and treatment. J. Nucl. Med. Radiat. Ther., 2014, 5, 1-9.
[6]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62, 90-99.
[7]
Gunasekera, U.A.; Pankhurst, Q.A.; Douek, M. Imaging applications of nanotechnology in cancer. Target. Oncol., 2009, 4, 169-181.
[8]
Davis, M.E. Chen. Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7, 771-782.
[9]
Kamaleddin, M.A. Nano-opthalmology: Applications and considerations. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1459-1472.
[10]
Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles in diagnostic and therapeutic tools for highly prevalent viral infections. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 219-230.
[11]
Elkassas, D.; Arafa, A. The innovative applications of therapeutic nanostructures in dentistry. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1543-1562.
[12]
Ajdari, N.; Vyas, C.; Bogan, S.L.; Lwaleed, B.A.; Cousins, B.G. Nanoparticle interactions in human blood: A model evaluation. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1531-1542.
[15]
Savolainen, K. (coordinator), Backman, U.; Brouwer, D.; Fadeel, B.; Fernandes, T.; Kuhlbusch, T.; Landsiedel, R.; Lynch, I.; Pylkkänen, L., Nanosafety in Europe 2015-2025: Towards safe and sustainable nanomaterials and nanotechnology innovations; Nanosafety Research Center, Finnish Institute of Occupational Health: Helhsinki, Finland, 2013.
[16]
Shapiro, E.M.; Skrtic, S.; Koretsky, A.P. Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med., 2005, 53, 329-338.
[17]
Wu, W.T.; Aiello, M.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical ph-sensing, tumor cell imaging, and drug delivery. Biomaterials, 2010, 31, 3023-3031.
[18]
Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X.H. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev., 2013, 65, 703-718.
[19]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J. Sundaresan, G.; Wu, A.M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2007, 307, 538-544.
[20]
Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectr., 2013, 67, 215-252.
[21]
Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-rarth based nanoparticles. ACS Nano, 2011, 5, 8488-8505.
[22]
Li, R.; Ji, Z.X.; Dong, J.; Chang, C.H.; Wang, X.; Sun, B.; Wang, M.; Liao, Y.P.; Zink, J.I.; Nel, A.E.; Xia, T. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano, 2015, 9, 3293-3306.
[23]
Yan, H.; Teh, C.; Sreejith, S.; Zhu, L.; Kwok, A.; Fang, W.; Ma, X.; Nguyen, K.T.; Korzh, V.; Zhao, Y. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew. Chem., 2012, 51, 8373-8377.
[24]
Cao, M.; Wang, P.; Kou, Y.; Wang, J.; Liu, J.; Li, Y.; Li, J.; Wang, L.; Chen, C. Gadolinium(III)-chelated silica nanospheres integrating chemotherapy and photothermal therapy for cancer treatment and magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2015, 7, 25014-25023.
[25]
Singh, R.K.; Patel, K.D.; Mahapatra, C.; Kang, M.S.; Kim, H.W. C-Dot generated bioactive organosilica nanospheres in theranostics: Multicolor luminescent and photothermal properties combined with drug delivery capacity. ACS Appl. Mater. Interfaces, 2016, 8, 24433-24444.
[26]
Wang, X.; Zhang, J.; Wang, Y.; Wang, C.; Xiao, J.; Zhang, Q.; Cheng, Y. Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials, 2016, 81, 114-124.
[27]
Sano, D.; Berlin, J.M.; Pham, T.T.; Marcano, D.C.; Valdecanas, D.R.; Zhou, G.; Milas, L.; Myers, J.N.; Tour, J.M. Noncovalent assembly of targeted carbon nanovectors enables synergistic drug and radiation cancer therapy in vivo. ACS Nano, 2012, 6, 2497-2505.
[28]
Haque, F.; Shu, D.; Shu, Y.; Shlyakhtenko, L.S.; Rychahou, P.G.; Evers, B.M.; Guo, P. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today, 2012, 7, 245-257.
[29]
Shu, Y.; Pi, F.; Sharma, A.; Rajabi, M.; Haque, F.; Shua, D.; Leggas, M.; Evers, B.M.; Guo, P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Delivery . Rev., 2014, 66, 74-89.
[30]
Chou, L.Y.T.; Zagorovsky, K.; Chan, W.C.W. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nature . Nanotech., 2014, 9, 148-155.
[31]
Jones, M.R.; Macfarlane, R.J.; Lee, B.; Zhang, J.; Young, K.L.; Senesi, A.J.; Mirkin, C.A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater., 2010, 9, 913-917.
[32]
Afonin, K.A.; Viard, M.; Koyfman, A.Y. Martins. A.N.; Kasprzak, W.K.; Panigaj, M.; Desai, R.; Santhanam, A.; Grabow, W.W.; Jaeger, L.; Heldman, E.; Reiser, J.; Chiu. W.; Freed, E.O.; Shapiro, B.A. Multifunctional RNA nanoparticles. Nano Lett., 2014, 14, 5662-5671.
[33]
Rychahou, P.; Haque, F.; Shu, Y.; Zaytseva, Y.; Weiss, H.L.; Lee, E.Y.; Mustain, W.; Valentino, J.; Guo, P. Evers; B.M. Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration. ACS Nano, 2015, 9, 1108-1116.
[34]
Estrada, L.P.H.; Champion, J.A. Protein nanoparticles for therapeutic protein delivery. Biomater. Sci., 2015, 3, 787-799.
[35]
Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasaku, Y. Protein Nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int., 2014, Article ID 180549.
[http://dx.doi.org/10.1155/2014/180549]
[36]
Swierczewska, M.; Han, H.S.; Kim, K.; Park, J.H.; Lee, S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev., 2016, 99, 70-84.
[37]
Palao-Suay, R.; Gómez-Mascaraque, L.G.; Aguilar, M.R.; Vázquez-Lasa, B.; Román, J.S. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog. Polym. Sci., 2016, 53, 207-248.
[38]
Park, J.H.; Lee, S.; Kim, J.H.; Park, K.; Kim, K.; Kwon, I.C. Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci., 2008, 33, 113-137.
[39]
Davis, M.E. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7, 771-782.
[40]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A. Tuček, Jiří.; Zbořil, R., Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116, 5338-5431.
[41]
Mccarthy, J.R.; Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Delivery . Rev., 2008, 60, 1241-1251.
[42]
Xu, F.; Inci, F.; Mullick, O.; Gurkan, U.A.; Sung, Y.; Kavaz, D.; Li, B.; Denkbas, E.B.; Demirci, U. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS Nano, 2012, 6(8), 6640-6649.
[43]
Horcajada, P.; Chalati, T.; Serre, C.; Baati, T.; Eubank, J.F.; Heurteux, D.; Clayette, P.; Krauz, C.; Chang, J-S. Hwang, K. Y.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9, 172-178.
[44]
Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. Chem. Soc, 2006, 128, 9024-9025.
[45]
Cai, W.; Chu, C.C.; Liu, G. Wang, Yì-Xiáng. J. Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small, 2015, 11, 4806-4822.
[46]
Rocca, J.D.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44, 957-968.
[47]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1, 482-501.
[48]
Tan, M.C.; Chow, G.M.; Ren, L.L.; Zhang, Q. NanoScience in Biomedicine. In: Inorganic nanoparticles for biomedical applications., 2009, pp. 272-289.
[49]
Soenen, S.J.; Gil, P.R.; Montenegro, J.M.; Parak, W.J.; Smedt, S.C.D.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6, 446-465.
[50]
West, J.L.; Halas, N.J. Applications of nanotechnology to biotechnology. Curr. Opin. Biotechnol., 2000, 11, 215-217.
[51]
Rivera Gil, P.; Huhn, D. delmercato, L.L.; Sasse, D.; Parak, W.J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res., 2010, 62, 115-125.
[52]
Sun, C.; Lee, H.H.J.; Zhang, Q.M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60, 1252-1265.
[53]
Chithrani, D.B. Nanoparticles for improved therapeutics and imaging in cancer therapy. Recent Pat. Nanotechnol., 2010, 4, 171-180.
[54]
Fornara, A.; Johansson, P.; Petersson, K.; Gustafsson, S.; Qin, J.; Olsson, E.; Ilver, D.; Krozer, A.; Muhammed, M.; Johansson, C. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett., 2008, 8, 3423-3428.
[55]
Koneracka, M.; Kopcansky, P.; Antalk, M.; Timko, M.; Ramchand, C.N.; Lobo, D.; Mehta, R.V.; Upadhyay, R. Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater., 1999, 201, 427-430.
[56]
Koneracka, M.; Kopcansky, P.; Timko, M.; Ramchand, C.N.; de Sequeira, A.; Trevan, M. Direct binding procedure of proteins and enzymes to fine magnetic particles. J. Mol. Catal., B Enzym., 2002, 18, 13-18.
[57]
Alexiou, C.; Arnold, W.; Klein, R.J.; Parak, F.G.; Hulin, P.; Bergemann, C.; Erhardt, W.; Wagenpfeil, S.; Lubbe, A. Loco regional cancer treatment with magnetic drug targeting. Cancer Res., 2000, 60, 6641-6648.
[58]
Soenen, S.J.; Hodenius, M.; De Cuyper, M. Magnetoliposomes: Versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine, 2009, 4, 177-191.
[59]
Namiki, Y.; Namiki, T.; Yoshida, H.; Ishii, Y.; Tsubota, A.; Koido, S. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol., 2009, 4, 598-606.
[60]
Hergt, R. Dutz, S.; Muller, R.; Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2919.
[61]
Shen, S.; Ding, B.; Zhang, S.; Qi, X.; Wang, K.; Tian, J.; Yan, Y.; Ge, Y.; Wu, L. Near- infrared light- responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomed. Nanotechnol. Biol. Med., 2017, 13, 1607-1616.
[62]
Pankhurst, Q.A.; Thanh, N.K.T.; Jones, S.K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys.,, 2009, 42, 224001 (1-15).
[63]
Berry, C.C.; Curtis, A.S.J. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2003, 36, 198-206.
[64]
Gilchrist, R.; Medal, R.; Shorey, W.; Hanselman, R.; Parrot, J.; Taylor, C. Selective inductive heating of lymph nodes. Ann. Surg., 1957, 146, 596-606.
[65]
Han, G.; Ghosh, P.; Rotello, V.M. Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond.), 2007, 2, 113-123.
[66]
Murphy, C.J.; Gole, A.M.; Hunyadi, S.E.; Stone, J.W.; Sisco, P.N.; Alkilany, A. Chemical sensing and imaging with metallic nanorods. Chem. Commun., 2008, 5, 544-557.
[67]
Au, L.; Zhang, Q.; Cobley, M.C.; Gidding, M.; Schwartz, G.A.; Chen, Y.J. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano, 2010, 4, 35-42.
[68]
Song, H.K.; Kim, H.C.; Cobley, M.C.; Xia, N.Y.; Wang, V.L. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett., 2009, 9, 183-188.
[69]
Jaque, D.; Martinez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Martin Rodriguez, E.; Garcia Sole, J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494-9530.
[70]
Hasan, W.; Stender, C.L.; Lee, M.H.; Nehl, C.L.; Lee, J.; Odom, T.W. Tailoring the structure of nanopyramids for optical heat generation. Nano Lett., 2009, 9, 1555-1558.
[71]
Hainfeld, J.F.; Smilowitz, H.M.; O’Connor, M.J.; Dilmanian, F.A.; Slatkin, D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine, 2013, 8, 1601-1609.
[72]
Kah, J.C.; Wong, K.Y.; Neoh, K.G.; Song, J.H.; Fu, J.W.; Mhaisalkar, S. Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. J. Drug Target., 2009, 17, 181-193.
[73]
Hainfeld, J.F.; Slatkin, D.N.; Smilowitz, H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol., 2004, 49, 309-315.
[74]
Zhang. X. Gold Nanoparticles: Recent advances in the biomedical applications. Cell Biochem. Biophys., 2015, 72, 771-775.
[75]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61, 250-281.
[76]
Abdoon, A.S.; Al-Ashkar, E.A.; Kandil, O.M.; Shaban, A.M.; Khaled, H.M.; Sayed, M.A.; Shaer, M.M.; Shaalan, A.H.; Eisa, W.H.; Eldin, A.A.G.; Hussein, H.A.; Ashkar, M.R.; Ali, M.R.; Shabaka, A.A. Efficacy and toxicity of plasmonic photothermal therapy (PPTT) using gold nanorods (GNRs) against mammary tumors in dogs and cats. Nanomed. Nanotech. Biol. Med., 2016, 12, 2291-2297.
[77]
Cheng, L.C.; Huang, J.H.; Chen, H.M.; Lai, T.C.; Yang, K.Y.; Liu, R.S.; Hsiao, M.; Chen, C.H.; Her, L.J.; Tsai, D.P. Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J. Mater. Chem., 2012, 22, 2244-2253.
[78]
Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.N. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Nat. Am. Sci., 2003, 100, 13549-13554.
[79]
Cheheltani, R.; Ezzibdeh, R.M.; Chhour, P.; Pulaparthi, K.; Kim, P.; Jurcova, M.; Hsu, J.C.; Blundell, C.; Litt, H.I.; Ferrari, V.A.; Allcock, H.R.; Sehgal, C.M.; Cormode, D.P. Tunable biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials, 2016, 102, 87-97.
[80]
Modo, M.; Beech, J.S.; Meade, T.J.; Williams, S.C.; Price, J. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage, 2009, 47, T133-T142.
[81]
Mogilireddy, V.; Dechamps-Olivier, I.; Alric, C.; Laurent, G.; Laurent, S.; Vander Elst, L.; Muller, R.; Bazzi, R.; Roux, S.; Tillement, O.; Chuburu, F. Thermodynamic stability and kinetic inertness of a Gd-DTPA bisamide complex grafted onto gold nanoparticles. Contrast Media Mol. Imag., 2015, 10, 179-187.
[82]
Nicholls, F.J.; Rotz, M.W.; Ghuman, H.; MacRenaris, K.W. Meade. T.J.; Modo, M. DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials, 2016, 77, 291-306.
[83]
Wu, C.D.; Hu, A.; Zhang, L.; Lin, W. A homochiral porous metal−organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc., 2005, 127, 8940-8941.
[84]
Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R.V.; Kobayashi, T.C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature, 2005, 436, 238-241.
[85]
Horcajada, P.; Serre, C.; Gref, R.; Férey, G.; Couvreur, P. Nanoparticules hybrids organiques inorganiques à base de carboxylates de fer PCT applications PCT/FR2008/001366, 01 October., 2008.
[86]
Liu, D.; Lu, K.; Poon, C.; Lin, W. Metal-organic frameworks as sensory materials and imaging agents. Inorg. Chem., 2014, 53(4), 1916-1924.
[87]
Dawson, K.A.; Salvati, A.; Lynch, I. Nanotoxicology: nanoparticles reconstruct lipids. Nat. Nanotechnol., 2009, 4, 84-85.
[88]
Balas, F.; Arruebo, M.; Urrutia, J.; Santamaria, J. Reported nanosafety practices in research laboratories worldwide. Nat. Nanotechnol., 2010, 5, 93-96.
[89]
Fischer, H.C.; Chan, W.C.W. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol., 2007, 18, 565-571.
[90]
Rivera Gil, P.; Oberdorster, G.; Elder, A.; Puntes, V.; Parak, W.J. Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future. ACS Nano, 2010, 4, 5527-5531.
[91]
Kahru, A.; Dubourguier, H.C.; Blinova, I.; Ivask, A.; Kasemets, K. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A mini review. Sensors., 2008, 8, 5153-5170.
[92]
Oberdorster, G.; Sharp, Z.; Atudorei, A.; Elder, A.; Gelein, G.; Luntsm, A.; Kreyling, W.; Cox, C. Extra pulmonary translocation of ultrafine carbon particles following whole body inhalation exposure of rats. J. Toxicol. Environ. Health Part A, 2002, 65, 1531-1543.
[93]
Oberdorster, G.; Sharp, Z.; Atudonrei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 2004, 16, 437-445.
[94]
Ávalos, A.; Haza, A.; Mateo, D.; Morales, P. Effects of silver and gold nanoparticles of different sizes in human pulmonary fibroblasts. Toxicol. Mech. Methods, 2015, 25, 287-295.
[95]
Whiteley, C.M.; Valle, M.D.; Jones, K.C.; Sweetman, A.J. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment. Environ. Sci. Process. Impacts, 2013, 15, 2050-2058.
[96]
Song, M.; Yuan, S.; Yin, J.; Wang, X.; Meng, Z.; Wang, H.; Jiang, G. Size-Dependent Toxicity of Nano-C60 Aggregates: More sensitive indication by apoptosis-related bax translocation in cultured human cells. Environ. Sci. Technol., 2012, 46, 3457-3464.
[97]
Sayes, C.M.; Marchione, A.A.; Reed, K.L.; Warheit, D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett., 2007, 7, 2399-2406.
[98]
Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechol., 2016, 11, 479-486.
[99]
L’Azou, B.; Passagne, I.; Mounicou, S.; Trequer-Delapierre, M.; Puljalté, I.; Szpunar, I.; Lobinski, R.; Ohayan-Courtès, C. Comparative cytotoxicity of cadmium forms (CdCl2, CdO, CdS micro- and nanoparticles) in renal cells. Toxicol. Res., 2014, 3, 32-41.
[100]
Zhu, X.; Hondroulis, E.; Liu, W.; Li, C.Z. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small, 2013, 9, 1821-1830.
[101]
Zhang, W.; Yang, L.; Kuang, H.; Yang, P.; Aguilar, P.Z.; Wang, A.; Fu, F.; Xu, H. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating. J. Hazard. Mater., 2016, 318, 61-69.
[102]
Shiohara, A.; Hoshino, A.; Hanaki, K.; Suzuki, K.; Yamamoto, K. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol., 2004, 48, 669-675.
[103]
Kahru, A.; Savolainen, K. Potential hazard of nanoparticles: From properties to biological and environmental effects. Toxicology, 2010, 269, 89-91.
[104]
Kahru, A.; Dubourguier, H.C. From ecotoxicology to nanoecotoxicology. Toxicology, 2010, 269, 105-119.
[105]
Bondarenko, O.; Ivask, A.; Käkinen, A.; Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut., 2012, 169, 81-89.
[106]
Zhang, H.; He, X.; Zhang, Z.; Zhang, P.; Li, Y.; Ma, Y.; Kuang, Y.; Zhao, Y.; Chai, Z. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ. Sci. Technol., 2011, 45, 3725-3730.
[107]
Yokel, R.A.; Florence, R.L.; Unrine, J.M.; Tseng, M.T.; Graham, U.M.; Wu, P.; Grulke, E.A. Biodistribution and oxidative stress effects of a systemically- introduced commercial ceria engineered nanomaterial. Nanotoxicology, 2009, 3, 234-248.
[108]
Auffan, M.; Rose, J.; Orsiere, T.; De Meo, M.; Thill, A.; Zeyons, O.; Proux, O.; Masion, A.; Chaurand, P.; Spalla, O.; Botta, A.; Wiesner, M.R.; Bottero, J.Y. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology, 2009, 3, 161-171.
[109]
Setyawati, M.I.; Tay, C.Y.; Chia, S.L.; Goh, S.L.; Fang, W.; Neo, M.J.; Chong, H.C.; Tan, S.M.; Loo, S.C.; Ng, K.W.; Xie, J.P.; Ong, C.N.; Tan, N.S.; Leong, D.T. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun., 2013, 4 1673(1-12).
[110]
Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 2012, 46, 2242-2250.
[111]
Tay, C.Y.; Fang, W.; Setyawati, M.I.; Chia, S.L.; Tan, K.S.; Hong, C.H.L.; Leong, D.T. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl. Mater. Interfaces, 2014, 6, 6248-6256.
[112]
Canas, J.E.; Qi, B.; Li, S.; Maul, J.D.; Cox, B.S.; Das, S.; Green, M.J. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eiseniafetida). J. Environ. Monit., 2011, 13, 3351-3357.
[113]
Yan, X.; Rong, R.; Zhu, S.; Guo, M.; Gao, S.; Wang, S.; Xu, X. Effects of ZnO nanoparticles on dimethoate-induced toxicity in mice. J. Agric. Food Chem., 2015, 63, 8292-8298.
[114]
Wu, T.; Tang, M. Toxicity of quantum dots on respiratory system. Inhal. Toxicol., 2014, 26, 128-139.
[115]
Zhang, W.; Yang, L.; Kuang, H.; Yang, P.; Aguilar, Z.P.; Wang, A.; Fu, F.; Xu, H. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating. J. Hazard. Mater., 2016, 318, 61-69.
[116]
Li, X.; Yang, X.; Yuwen, L.; Yang, W.; Weng, L.; Teng, Z.; Wang, L. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials, 2016, 96, 24-32.
[117]
Shiohara, A.; Hoshino, A.; Hanaki, K.; Suzuki, K.; Yamamoto, K. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol., 2004, 48, 669-675.
[118]
Lin, W.; Huang, Y.; Zhou, X.D.; Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol., 2006, 217, 252-259.
[119]
Wang, F.; Gao, F.; Lan, M.; Yuan, H.; Huang, Y.; Liu, J. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro, 2009, 23, 808-815.
[120]
McCarthy, J.; Inkielewicz-Stępniak, I.; Corbalan, J.J.; Radomski, M.W. Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: Protective effects of fisetin. Chem. Res. Toxicol., 2012, 25, 2227-2235.
[121]
Napierska, D.; Thomassen, L.C.; Rabolli, V.; Lison, D.; Gonzalez, L.; Kirsch-Volders, M.; Martens, J.A.; Hoet, P.H. Small size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small, 2009, 5, 846-853.
[122]
Choi, H.S.; Frangioni, J.V. Nanoparticles for biomedical imaging: Fundamentals of clinical translation. Mol. Imag, 2010, 9, 291-310.
[123]
Casarett, L.J. Doull. Toxicology: The Basic Science of Poisons (Ed: C.D. Klaassen), McGraw-Hill, New York,. 2001.
[124]
Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, C.P.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal.,, 2014, 22, 64-75.
[125]
Wang, B.; Yin, J.J.; Zhou, X. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicro environment: catalytic activities mediated by surface chemical states. J. Phys. Chem. C, 2012, 117, 383-392.
[126]
Limbach, K.L.; Wick, P.; Manser, P. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol., 2007, 41, 4158-4163.
[127]
Borm, P.; Klaessig, F.C.; Landry, T.D.; Moudgil, B.; Pauluhn, J.; Thomas, K.; Trottier, R.; Wood, S. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci., 2006, 90, 23-32.
[128]
Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311, 622-627.
[129]
Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 2006, 6, 1794-1807.
[130]
Macaroff, P. P.; Simioni, A.R.; Lacava, Z.G.M.; Lima, E.C.D.; Morais, P.C.; Tedesco, A.C. Studies of cell toxicity and binding of magnetic nanoparticles with blood stream macromolecules. J. Appl. Phys.,, 2006, 99, 08S102.
[131]
Park, S.I.; Kim, J.H.; Kim, J.H.; Yun, H.I.; Kim, C.O. Toxicity estimation of magnetic fluids in a biological test. J. Magn. Magn. Mater., 2006, 304, 406-408.
[132]
Shvedova, A.A.; Kisin, E.R.; Mercer, R.; Murray, A.R.; Johnson, V.J.; Potapovich, A.I. Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 283, L698-L708.
[133]
Ray, P.C.; Yu, H.T.; Fu, P.P. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J. Environ. Sci. Health Part C, 2009, 27, 1-35.
[134]
Shvedova, A.A.; Murray, A.R.; Kisin, E.R.; Schwegler-Berry, D.; Kagan, V.E.; Gandelsman, V.Z. Exposure to carbon nanotube material: evidence of exposure-induced oxidant stress in human keratinocyte and bronchial epithelial cells. Free Radic. Res., 2003, 37, 97.
[135]
Neuberger, T.; Schöpf, B.; Hofmann, H.; Hofmann, M.; Von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery syste. J. Magn. Magn. Mater., 2005, 293, 483-496.
[136]
Lübbe, A.S.; Bergemann, C.; Brock, J.; McClure, D.G. Physiological aspects in magnetic drug-targeting. J. Magn. Magn. Mater., 1999, 194, 149-155.
[137]
Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S.H.; Wu, L.P.; Moghimi, S.M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy and safety issues. Nanomed. NBM, 2011, 7, 521-540.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 9
ISSUE: 1
Year: 2019
Page: [64 - 78]
Pages: 15
DOI: 10.2174/2210681208666180125143953
Price: $58

Article Metrics

PDF: 21