Supplementation with Curcuma longa Reverses Neurotoxic and Behavioral Damage in Models of Alzheimer’s Disease: A Systematic Review

Author(s): Ianara Mendonça da Costa , Marco Aurelio de Moura Freire , José Rodolfo Lopes de Paiva Cavalcanti , Dayane Pessoa de Araújo , Bianca Norrara , Isleânia Maria Marques Moreira Rosa , Eduardo Pereira de Azevedo , Amália Cinthia Meneses do Rego , Irami Araújo Filho , Fausto Pierdoná Guzen* .

Journal Name: Current Neuropharmacology

Volume 17 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The formation of senile plaques and neurofibrillary tangles of the tau protein are the main pathological mechanism of Alzheimer’s disease (AD). Current therapies for AD offer discrete benefits to the clinical symptoms and do not prevent the continuing degeneration of neuronal cells. Therefore, novel therapeutic strategies have long been investigated, where curcumin (Curcuma longa) has shown some properties that can prevent the deleterious processes involved in neurodegenerative diseases.

Objective: The aim of the present work is to review studies that addressed the effects of curcumin in experimental models (in vivo and in vitro) for AD.

Method: This study is a systematic review conducted between January and June 2017, in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (PubMed), Cochrane Library and Scielo databases, using the following descriptors: “Curcuma longa”, “Curcumin” and “Alzheimer’s disease”.

Results: A total of 32 studies were analyzed, which indicated that curcumin supplementation reverses neurotoxic and behavioral damages in both in vivo and in vitro models of AD.

Conclusion: The administration of curcumin in experimental models seems to be a promising approach in AD, even though it is suggested that additional studies must be conducted using distinct doses and through other routes of administration.

Keywords: Alzheimer's disease, curcumin, Aβ aggregation, oxidative stress, therapeutics, brain.

[1]
Cole, G.M.; Frautschy, S.A. Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr. Health, 2006, 18(3), 249-259. [http://dx.doi.org/10.1177/026010600601800307]. [PMID: 17180870].
[2]
Small, D.H.; Cappai, R. Alois Alzheimer and Alzheimer’s disease: a centennial perspective. J. Neurochem., 2006, 99(3), 708-710. [http://dx.doi.org/10.1111/j.1471-4159.2006.04212.x]. [PMID: 17076655].
[3]
2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509. [http://dx.doi.org/10.1016/j.jalz.2016.03.001]. [PMID: 27570871].
[4]
Norrara, B.; Doerl, J.G.; Guzen, F.P.; Cavalcanti, J.R.L.P.; Freire, M.A.M. Commentary: Localized vs. systematic neurodegeneration: A paradigm shift in understanding neurodegenerative diseases. Front. Syst. Neurosci., 2017, 11, 91. [http://dx.doi.org/10.3389/fnsys.2017.00091]. [PMID: 29270113].
[5]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A.M. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206. [http://dx.doi.org/10.3389/fnagi.2014.00206]. [PMID: 25221506].
[6]
Heneka, M.T.; O’Banion, M.K. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol., 2007, 184(1-2), 69-91. [http://dx.doi.org/10.1016/j.jneuroim.2006.11.017]. [PMID: 17222916].
[7]
Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 430(7000), 631-639. [http://dx.doi.org/10.1038/nature02621]. [PMID: 15295589].
[8]
Kasper, D.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, J.L.; Loscalzo, J. Harrison’s Principles of Internal Medicine, 19th ed; , 2015.
[9]
Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(Suppl. 2), S357-S367. [http://dx.doi.org/10.3233/JAD-2010-100498]. [PMID: 20421690].
[10]
Freire, M.A.M. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med. J., 2012, 61(7), 751-755. [PMID: 23620976].
[11]
Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 2006, 440(7086), 944-948. [http://dx.doi.org/10.1038/nature04634]. [PMID: 16612386].
[12]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. [http://dx.doi.org/10.2174/157015909787602823]. [PMID: 19721819].
[13]
Van Dam, D.; De Deyn, P.P. Drug discovery in dementia: the role of rodent models. Nat. Rev. Drug Discov., 2006, 5(11), 956-970. [http://dx.doi.org/10.1038/nrd2075]. [PMID: 17080031].
[14]
Sachan, A.; Singh, S.; Singh, H.K.; Shankar, P.; Kumar, D.; Sachan, A.K.; Nath, R.; Dixit, R. An experimental study to evaluate the effect of mucuna pruriens on learning and memory in mice. Int J Innov Sci Res, 2015, 4, 144-148.
[15]
Izzo, A.A.; Hoon-Kim, S.; Radhakrishnan, R.; Williamson, E.M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother. Res., 2016, 30(5), 691-700. [http://dx.doi.org/10.1002/ptr.5591]. [PMID: 26887532].
[16]
Bisht, K.; Wagner, K.H.; Bulmer, A.C. Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology, 2010, 278(1), 88-100. [http://dx.doi.org/10.1016/j.tox.2009.11.008]. [PMID: 19903510].
[17]
Mattson, M.P.; Son, T.G.; Camandola, S. Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response, 2007, 5(3), 174-186. [http://dx.doi.org/10.2203/dose-response.07-004.Mattson]. [PMID: 18648607].
[18]
Aggarwal, B.B.; Gupta, S.C.; Sung, B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol., 2013, 169(8), 1672-1692. [http://dx.doi.org/10.1111/bph.12131]. [PMID: 23425071].
[19]
Di Carlo, G.; Mascolo, N.; Izzo, A.A.; Capasso, F. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci., 1999, 65(4), 337-353. [http://dx.doi.org/10.1016/S0024-3205(99)00120-4]. [PMID: 10421421].
[20]
Shakibaei, M.; Harikumar, K.B.; Aggarwal, B.B. Resveratrol addiction: to die or not to die. Mol. Nutr. Food Res., 2009, 53(1), 115-128. [http://dx.doi.org/10.1002/mnfr.200800148]. [PMID: 19072742].
[21]
Hossen, M.S.; Tanvir, E.M.; Prince, M.B.; Paul, S.; Saha, M.; Ali, M.Y.; Gan, S.H.; Khalil, M.I.; Karim, N. Protective mechanism of turmeric (Curcuma longa) on carbofuran-induced hematological and hepatic toxicities in a rat model. Pharm. Biol., 2017, 55(1), 1937-1945. [http://dx.doi.org/10.1080/13880209.2017.1345951]. [PMID: 28675957].
[22]
Kita, T.; Imai, S.; Sawada, H.; Kumagai, H.; Seto, H. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Biosci. Biotechnol. Biochem., 2008, 72(7), 1789-1798. [http://dx.doi.org/10.1271/bbb.80075]. [PMID: 18603793].
[23]
Sandhu, A.K.; Gray, D.J.; Lu, J.; Gu, L. Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem., 2011, 126, 982-988. [http://dx.doi.org/10.1016/j.foodchem.2010.11.105].
[24]
Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr., 2015, 6(1), 64-72. [http://dx.doi.org/10.3945/an.114.007500]. [PMID: 25593144].
[25]
Lorenzi, H.; Matos, F.J.A. Plantas medicinais no Brasil: nativas e exóticas cultivadas., 2002. 512
[26]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-Peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525. [http://dx.doi.org/10.1371/journal.pone.0131525]. [PMID: 26114940].
[27]
da Costa, I.M.; Cavalcanti, J.R.L.P.; de Queiroz, D.B.; de Azevedo, E.P.; do Rêgo, A.C.M.; Araújo Filho, I.; Parente, P.; Botelho, M.A.; Guzen, F.P. Supplementation with herbal Extracts to promote behavioral and neuroprotective effects in experimental models of Parkinson’s Disease: A systematic review. Phytother. Res., 2017, 31(7), 959-970. [http://dx.doi.org/10.1002/ptr.5813]. [PMID: 28544038].
[28]
Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Novotny, N.A.; Geldenhuys, W.J.; Van der Schyf, C.J. Curcumin and neurodegenerative diseases: a perspective. Expert Opin. Investig. Drugs, 2012, 21(8), 1123-1140. [http://dx.doi.org/10.1517/13543784.2012.693479]. [PMID: 22668065].
[29]
Strimpakos, A.S.; Sharma, R.A. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox Signal., 2008, 10(3), 511-545. [http://dx.doi.org/10.1089/ars.2007.1769]. [PMID: 18370854].
[30]
Ahmed, T.; Gilani, A.H. Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother. Res., 2014, 28(4), 517-525. [http://dx.doi.org/10.1002/ptr.5030]. [PMID: 23873854].
[31]
Wright, L.E.; Frye, J.B.; Gorti, B.; Timmermann, B.N.; Funk, J.L. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr. Pharm. Des., 2013, 19(34), 6218-6225. [http://dx.doi.org/10.2174/1381612811319340013]. [PMID: 23448448].
[32]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348. [http://dx.doi.org/10.1111/bph.13621]. [PMID: 27638428].
[33]
Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 2007, 102(4), 1095-1104. [http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x]. [PMID: 17472706].
[34]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377. [http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001]. [PMID: 11606625].
[35]
Park, S.Y.; Kim, H.S.; Cho, E.K.; Kwon, B.Y.; Phark, S.; Hwang, K.W.; Sul, D. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem. Toxicol., 2008, 46(8), 2881-2887. [http://dx.doi.org/10.1016/j.fct.2008.05.030]. [PMID: 18573304].
[36]
Huang, H.C.; Chang, P.; Dai, X.L.; Jiang, Z.F. Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage. Neurochem. Res., 2012, 37(7), 1584-1597. [http://dx.doi.org/10.1007/s11064-012-0754-9]. [PMID: 22476982].
[37]
Fan, C.D.; Li, Y.; Fu, X.T.; Wu, Q.J.; Hou, Y.J.; Yang, M.F.; Sun, J.Y.; Fu, X.Y.; Zheng, Z.C.; Sun, B.L. Reversal of beta-amyloid-induced neurotoxicity in PC12 cells by curcumin, the important role of ROS-mediated signaling and ERK pathway. Cell. Mol. Neurobiol., 2017, 37(2), 211-222. [http://dx.doi.org/10.1007/s10571-016-0362-3]. [PMID: 26971524].
[38]
Thapa, A.; Vernon, B.C.; De la Peña, K.; Soliz, G.; Moreno, H.A.; López, G.P.; Chi, E.Y. Membrane-mediated neuroprotection by curcumin from amyloid-β-peptide-induced toxicity. Langmuir, 2013, 29(37), 11713-11723. [http://dx.doi.org/10.1021/la4020459]. [PMID: 24004419].
[39]
Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep., 2011, 63(5), 1101-1108. [http://dx.doi.org/10.1016/S1734-1140(11)70629-6]. [PMID: 22180352].
[40]
Huang, H.C.; Xu, K.; Jiang, Z.F. Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J. Alzheimers Dis., 2012, 32(4), 981-996. [http://dx.doi.org/10.3233/JAD-2012-120688]. [PMID: 22886017].
[41]
Huang, H.C.; Chang, P.; Lu, S.Y.; Zheng, B.W.; Jiang, Z.F. Protection of curcumin against amyloid-β-induced cell damage and death involves the prevention from NMDA receptor-mediated intracellular Ca2+ elevation. J. Recept. Signal Transduct. Res., 2015, 35(5), 450-457. [http://dx.doi.org/10.3109/10799893.2015.1006331]. [PMID: 26053510].
[42]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234. [http://dx.doi.org/10.1136/jim-2016-000240]. [PMID: 27521081].
[43]
Thapa, A.; Jett, S.D.; Chi, E.Y. Curcumin attenuates Amyloid-β aggregate Ttoxicity and modulates amyloid-β aggregation pathway. ACS Chem. Neurosci., 2016, 7(1), 56-68. [http://dx.doi.org/10.1021/acschemneuro.5b00214]. [PMID: 26529184].
[44]
Yin, W.; Zhang, X.; Shi, X.; Li, Y. Curcumin protects SH-SY5Y cells from oxidative stress by up-regulating HO-1 via Phosphatidylinositol 3 Kinase/Akt/Nrf-2 and down-regulating HO-2. Mol. Neurodegener., 2012, 7(Suppl. 1), S14. [http://dx.doi.org/10.1186/1750-1326-7-S1-S14].
[45]
Xiao, Z.; Lin, L.; Liu, Z.; Ji, F.; Shao, W.; Wang, M.; Liu, L.; Li, S.; Li, F.; Bu, X. Potential therapeutic effects of curcumin: relationship to microtubule-associated proteins 2 in Aβ1-42 insult. Brain Res., 2010, 1361, 115-123. [http://dx.doi.org/10.1016/j.brainres.2010.09.019]. [PMID: 20840842].
[46]
Xiao, Z.; Zhang, A.; Lin, J.; Zheng, Z.; Shi, X.; Di, W.; Qi, W.; Zhu, Y.; Zhou, G.; Fang, Y. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro. PLoS One, 2014, 9(7), e101251. [http://dx.doi.org/10.1371/journal.pone.0101251]. [PMID: 24983737].
[47]
Qin, X.Y.; Cheng, Y.; Yu, L.C. Potential protection of curcumin against intracellular amyloid beta-induced toxicity in cultured rat prefrontal cortical neurons. Neurosci. Lett., 2010, 480(1), 21-24. [http://dx.doi.org/10.1016/j.neulet.2010.05.062]. [PMID: 20638958].
[48]
Sun, Q.; Jia, N.; Wang, W.; Jin, H.; Xu, J.; Hu, H. Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening. PLoS One, 2014, 9(6), e98866. [http://dx.doi.org/10.1371/journal.pone.0098866]. [PMID: 24905226].
[49]
Zhang, C.; Browne, A.; Child, D.; Tanzi, R.E. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem., 2010, 285(37), 28472-28480. [http://dx.doi.org/10.1074/jbc.M110.133520]. [PMID: 20622013].
[50]
Zhang, C.; Browne, A.; Divito, J.R.; Stevenson, J.A.; Romano, D.; Dong, Y.; Xie, Z.; Tanzi, R.E. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. J. Alzheimers Dis., 2010, 22(2), 683-984. [http://dx.doi.org/10.3233/JAD-2010-100816]. [PMID: 20847415].
[51]
Ye, M.X.; Li, Y.; Yin, H.; Zhang, J. Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int. J. Mol. Sci., 2012, 13(3), 3959-3978. [http://dx.doi.org/10.3390/ijms13033959]. [PMID: 22489192].
[52]
Wang, J.; Zhang, Y.J.; Du, S. The protective effect of curcumin on Aβ induced aberrant cell cycle reentry on primary cultured rat cortical neurons. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(4), 445-454. [PMID: 22696871].
[53]
Shi, X.; Zheng, Z.; Li, J.; Xiao, Z.; Qi, W.; Zhang, A.; Wu, Q.; Fang, Y. Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways. Neurosci. Lett., 2015, 594, 105-110. [http://dx.doi.org/10.1016/j.neulet.2015.03.045]. [PMID: 25818332].
[54]
Wang, Y.; Yin, H.; Wang, L.; Shuboy, A.; Lou, J.; Han, B.; Zhang, X.; Li, J. Curcumin as a potential treatment for Alzheimer’s disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am. J. Chin. Med., 2013, 41(1), 59-70. [http://dx.doi.org/10.1142/S0192415X13500055]. [PMID: 23336507].
[55]
Feng, H.L.; Dang, H.Z.; Fan, H.; Chen, X.P.; Rao, Y.X.; Ren, Y.; Yang, J.D.; Shi, J.; Wang, P.W.; Tian, J.Z. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int. J. Immunopathol. Pharmacol., 2016, 29(4), 734-741. [http://dx.doi.org/10.1177/0394632016659494]. [PMID: 27466310].
[56]
Wang, P.; Su, C.; Li, R.; Wang, H.; Ren, Y.; Sun, H.; Yang, J.; Sun, J.; Shi, J.; Tian, J.; Jiang, S. Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J. Neurosci. Res., 2014, 92(2), 218-231. [http://dx.doi.org/10.1002/jnr.23322]. [PMID: 24273069].
[57]
Hoppe, J.B.; Coradini, K.; Frozza, R.L.; Oliveira, C.M.; Meneghetti, A.B.; Bernardi, A.; Pires, E.S.; Beck, R.C.; Salbego, C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol. Learn. Mem., 2013, 106, 134-144. [http://dx.doi.org/10.1016/j.nlm.2013.08.001]. [PMID: 23954730].
[58]
He, Y.; Wang, P.; Wei, P.; Feng, H.; Ren, Y.; Yang, J.; Rao, Y.; Shi, J.; Tian, J. Effects of curcumin on synapses in APPswe/PS1dE9 mice. Int. J. Immunopathol. Pharmacol., 2016, 29(2), 217-225. [http://dx.doi.org/10.1177/0394632016638099]. [PMID: 26957323].
[59]
Feng, H.L.; Fan, H.; Dang, H.Z.; Chen, X.P.; Ren, Y.; Yang, J.D.; Wang, P.W. [Neuroprotective effect of curcumin to Aβ of double transgenic mice with Alzheimer’s disease]. Zhongguo Zhongyao Zazhi, 2014, 39(19), 3846-3849. [PMID: 25612452]
[60]
Liu, Z.J.; Li, Z.H.; Liu, L.; Tang, W.X.; Wang, Y.; Dong, M.R.; Xiao, C. Curcumin attenuates beta-Amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease. Front. Pharmacol., 2016, 7, 261. [http://dx.doi.org/10.3389/fphar.2016.00261]. [PMID: 27594837].
[61]
Zheng, K.; Dai, X.; Xiao, N.; Wu, X.; Wei, Z.; Fang, W.; Zhu, Y.; Zhang, J.; Chen, X. Curcumin ameliorates memory decline via inhibiting BACE1 expression and β-Amyloid Pathology in 5×FAD transgenic mice. Mol. Neurobiol., 2017, 54(3), 1967-1977. [http://dx.doi.org/10.1007/s12035-016-9802-9]. [PMID: 26910813].
[62]
Ray, B.; Bisht, S.; Maitra, A.; Maitra, A.; Lahiri, D.K. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J. Alzheimers Dis., 2011, 23(1), 61-77. [http://dx.doi.org/10.3233/JAD-2010-101374]. [PMID: 20930270].
[63]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103. [http://dx.doi.org/10.1021/nn405077y]. [PMID: 24467380].
[64]
Masters, C.L.; Selkoe, D.J. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(6), a006262. [http://dx.doi.org/10.1101/cshperspect.a006262]. [PMID: 22675658].
[65]
Zheng, X.Y. Pharmacopoeia of the Peoples Republic of China, Chinese edn.; , 2005, Vol. 1, .
[66]
Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann. N. Y. Acad. Sci., 2008, 1147, 70-78. [http://dx.doi.org/10.1196/annals.1427.010]. [PMID: 19076432].
[67]
Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615. [http://dx.doi.org/10.1016/j.tips.2008.09.001]. [PMID: 18838179].
[68]
Fukui, K.; Takatsu, H.; Shinkai, T.; Suzuki, S.; Abe, K.; Urano, S. Appearance of amyloid beta-like substances and delayed-type apoptosis in rat hippocampus CA1 region through aging and oxidative stress. J. Alzheimers Dis., 2005, 8(3), 299-309. [http://dx.doi.org/10.3233/JAD-2005-8309]. [PMID: 16340088].
[69]
Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med., 2002, 32(11), 1050-1060. [http://dx.doi.org/10.1016/S0891-5849(02)00794-3]. [PMID: 12031889].
[70]
Abdul, H.M.; Calabrese, V.; Calvani, M.; Butterfield, D.A. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. J. Neurosci. Res., 2006, 84(2), 398-408. [http://dx.doi.org/10.1002/jnr.20877]. [PMID: 16634066].
[71]
Xiao, X.Q.; Wang, R.; Tang, X.C. Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J. Neurosci. Res., 2000, 61(5), 564-569. [http://dx.doi.org/10.1002/1097-4547(20000901)61:5<564:AID-JNR11>3.0.CO;2-X]. [PMID: 10956426].
[72]
Canevari, L.; Abramov, A.Y.; Duchen, M.R. Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem. Res., 2004, 29(3), 637-650. [http://dx.doi.org/10.1023/B:NERE.0000014834.06405.af]. [PMID: 15038611].
[73]
Ban, J.Y.; Jeon, S.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25-35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci., 2006, 79(24), 2251-2259. [http://dx.doi.org/10.1016/j.lfs.2006.07.021]. [PMID: 16978655].
[74]
Fu, H.; Li, W.; Lao, Y.; Luo, J.; Lee, N.T.; Kan, K.K.; Tsang, H.W.; Tsim, K.W.; Pang, Y.; Li, Z.; Chang, D.C.; Li, M.; Han, Y. Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J. Neurochem., 2006, 98(5), 1400-1410. [http://dx.doi.org/10.1111/j.1471-4159.2006.03960.x]. [PMID: 16771827].
[75]
Swerdlow, R.H. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J. Neurosci. Res., 2007, 85(15), 3416-3428. [http://dx.doi.org/10.1002/jnr.21167]. [PMID: 17243174].
[76]
Bertram, L.; Tanzi, R.E. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778. [http://dx.doi.org/10.1038/nrn2494]. [PMID: 18802446].
[77]
Tanzi, R.E.; Gusella, J.F.; Watkins, P.C.; Bruns, G.A.; St George-Hyslop, P.; Van Keuren, M.L.; Patterson, D.; Pagan, S.; Kurnit, D.M.; Neve, R.L. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 1987, 235(4791), 880-884. [http://dx.doi.org/10.1126/science.2949367]. [PMID: 2949367].
[78]
Morris, R.G.; Garrud, P.; Rawlins, J.N.; O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature, 1982, 297(5868), 681-683. [http://dx.doi.org/10.1038/297681a0]. [PMID: 7088155].
[79]
Leibrock, J.; Lottspeich, F.; Hohn, A.; Hofer, M.; Hengerer, B.; Masiakowski, P.; Thoenen, H.; Barde, Y.A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature, 1989, 341(6238), 149-152. [http://dx.doi.org/10.1038/341149a0]. [PMID: 2779653].
[80]
Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol., 2014, 220, 223-250. [http://dx.doi.org/10.1007/978-3-642-45106-5_9]. [PMID: 24668475].
[81]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356. [http://dx.doi.org/10.1055/s-2006-957450]. [PMID: 9619120].
[82]
Suresh, D.; Srinivasan, K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res., 2010, 131, 682-691. [PMID: 20516541].
[83]
Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. (Oxford), 2015, 29(5), 642-651. [http://dx.doi.org/10.1177/0269881114552744]. [PMID: 25277322].
[84]
Baum, L.; Lam, C.W.; Cheung, S.K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.; Goggins, W.B.; Zee, B.C.; Cheng, K.F.; Fong, C.Y.; Wong, A.; Mok, H.; Chow, M.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.; Chan, M.H.; Szeto, S.; Chan, I.H.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113. [http://dx.doi.org/10.1097/jcp.0b013e318160862c]. [PMID: 18204357].
[85]
Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208. [http://dx.doi.org/10.1124/jpet.108.137455]. [PMID: 18417733].
[86]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43. [http://dx.doi.org/10.1186/alzrt146]. [PMID: 23107780].
[87]
Hishikawa, N.; Takahashi, Y.; Amakusa, Y.; Tanno, Y.; Tuji, Y.; Niwa, H.; Murakami, N.; Krishna, U.K. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu, 2012, 33(4), 499-504. [http://dx.doi.org/10.4103/0974-8520.110524]. [PMID: 23723666].
[88]
Chandra, V.; Pandav, R.; Dodge, H.H.; Johnston, J.M.; Belle, S.H.; DeKosky, S.T.; Ganguli, M. Incidence of Alzheimer’s disease in a rural community in India: the Indo-US study. Neurology, 2001, 57(6), 985-989. [http://dx.doi.org/10.1212/WNL.57.6.985]. [PMID: 11571321].
[89]
Chang, C.H.; Chen, H.X.; Yü, G.; Peng, C.C.; Peng, R.Y. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity. Food Technol. Biotechnol., 2014, 52(4), 468-478. [http://dx.doi.org/10.17113/ftb.52.04.14.3622]. [PMID: 27904320].
[90]
Wang, R.; Li, Y.B.; Li, Y.H.; Xu, Y.; Wu, H.L.; Li, X.J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res., 2008, 1210, 84-91. [http://dx.doi.org/10.1016/j.brainres.2008.01.104]. [PMID: 18420184].
[91]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901. [http://dx.doi.org/10.1074/jbc.M404751200]. [PMID: 15590663].
[92]
Borchelt, D.R.; Lee, M.K.; Gonzales, V.; Slunt, H.H.; Ratovitski, T.; Jenkins, N.A.; Copeland, N.G.; Price, D.L.; Sisodia, S.S. Accumulation of proteolytic fragments of mutant presenilin 1 and accelerated amyloid deposition are co-regulated in transgenic mice. Neurobiol. Aging, 2002, 23(2), 171-177. [http://dx.doi.org/10.1016/S0197-4580(01)00280-9]. [PMID: 11804700].
[93]
Garcia-Alloza, M.; Robbins, E.M.; Zhang-Nunes, S.X.; Purcell, S.M.; Betensky, R.A.; Raju, S.; Prada, C.; Greenberg, S.M.; Bacskai, B.J.; Frosch, M.P. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol. Dis., 2006, 24(3), 516-524. [http://dx.doi.org/10.1016/j.nbd.2006.08.017]. [PMID: 17029828].
[94]
Wang, Y.; Yin, H.; Li, J.; Zhang, Y.; Han, B.; Zeng, Z.; Qiao, N.; Cui, X.; Lou, J.; Li, J. Amelioration of beta-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associat-ed with suppression of CRMP-2 hyperphosphorylation. Neurosci Lett, 2013, 557 (Pt B), 112-117


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2019
Page: [406 - 421]
Pages: 16
DOI: 10.2174/0929867325666180117112610
Price: $58

Article Metrics

PDF: 25
HTML: 4
EPUB: 1
PRC: 1