Electrochemical Formation of Self-Organized Nanotubular Oxide Layers on Niobium (Review)

Author(s): Agnieszka Stróż, Tomasz Goryczka, Bożena Łosiewicz*.

Journal Name: Current Nanoscience

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: This mini-review paper is focused on the anodic formation of selforganized nanotubular oxide layers on niobium as a nontoxic and allergy-free metallic biomaterial.

Objective: The main purpose of the work was to outline the research activities being undertaken on the electrochemical modification of niobium to obtain its porous oxide with enhanced biocompatibility.

Method: The effect of various parameters, such as concentration of fluoride anions in electrolyte, pH of electrolyte, and current-voltage-time conditions on the anodic formation of Nb2O5 nanotubes, was summarized.

Results: Thirty-seven references were included in this mini-review and they were divided into main five parts. First part outlined the electrochemical formation of self-organized nanotubular oxide layers on niobium via anodic oxidation. The mechanism of the electrochemical formation of niobium oxide nanotubes was discussed. Second part presented the influence of the electrolyte type used for anodic oxidation of niobium and the fluoride ion concentration in the electrolyte on the type and dimensions of the obtained oxide niobium nanotubes. The influence of the applied voltage during anodic oxidation of niobium on the morphological parameters of the formed nanotube arrays was described in third part. The importance of the selection of the electrolyte pH for tailoring the length of niobium oxide nanotubes was demonstrated in fourth part. The last part outlined the structure of niobium oxide nanotubes.

Conclusion: Key results were extracted and reviewed from publications of research activity in anodic oxidation of niobium introduced basics of that process and the current trends in electrochemical improvement of biocompatibility of metallic nanobiomaterials were presented.

Keywords: Anodic oxide, anodization, electrochemical modification, nanotubes, niobium, oxide layers.

[1]
Jurczyk, M. Bionanomaterials for Dental Applications; Pan Stanford Publishing, 2013, pp. 42-50.
[2]
Stróż, A.; Łosiewicz, B.; Zubko, M.; Chmiela, B.; Balin, K.; Dercz, G.; Gawlikowski, M.; Goryczka, T. Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications. Mater. Charact., 2017, 132, 363-372.
[3]
Smołka, A.; Dercz, G.; Rodak, K.; Łosiewicz, B. Evaluation of corrosion resistance of nanotubular oxide layers on the Ti13Zr13Nb alloy in physiological saline solution. Arch. Metal. Mater., 2015, 60, 2681-2686.
[4]
Smołka, A.; Rodak, K.; Dercz, G.; Dudek, K.; Łosiewicz, B. Electrochemical formation of self-organized nanotubular oxide layers on Ti13Zr13Nb alloy for biomedical applications. Acta Phys. Pol. A, 2014, 125, 932-935.
[5]
Stróż, A.; Dercz, G.; Chmiela, B.; Stróż, D.; Łosiewicz, B. Electrochemical formation of second generation TiO2 nanotubes on Ti13Nb13Zr alloy for biomedical applications. Acta Phys. Pol. A, 2016, 130, 1079-1080.
[6]
Sobieszczyk, S. Self-organized nanotubular oxide layers on Ti and Ti alloys. Adv. Mater. Sci., 2009, 9, 25-41.
[7]
Jang, S-H.; Choe, H-C.; Ko, Y-M.; Brantley, W.A. Electrochemical characteristics of nanotubes formed on Ti–Nb alloys. Thin Solid Films, 2009, 517, 5038-5043.
[8]
Feng, X.J.; Macak, J.M.; Albu, S.P.; Schumuki, P. Electrochemical formation of self-organized nanotube coating on Ti-28Zr-8Nb biomedcal alloy surface. Acta Biomater., 2008, 4, 4318-4323.
[9]
Kim, W-G.; Choe, H-C. Nanostructure and corrosion behaviors of nanotube formed Ti-Zr alloy. Trans. Nonferrous Met. Soc. China, 2009, 19, 1005-1008.
[10]
Tan, A.W.; Pingguan-Murphy, B.; Ahmad, R.; Akbar, S.A. Review of titania nanotubes: Fabrication and cellular response. Ceram. Int., 2012, 38, 4421-4435.
[11]
Lelatko, J.; Goryczka, T.; Wierzchon, T.; Ossowski, M.; Losiewicz, B.; Rowinski, E.; Morawiec, H. Structure of low temperature nitrided/oxidized layer formed on NiTi shape memory alloy. Sol. St. Phenom., 2010, 163, 127-130.
[12]
Freitag, M.; Losiewicz, B.; Goryczka, T.; Lelatko, J. Application of EIS to study the corrosion resistance of passivated NiTi shape memory alloy in simulated body fluid. Sol. St. Phenom, 2012, 183, 57-64.
[13]
Minagar, S.; Berndt, C.C.; Wang, J.; Ivanowa, E.; Wen, C. A review of the application of anodization for the fabrication of nanotubes on metal implants surfaces. Acta Biomater., 2012, 8, 2875-2888.
[14]
Stojadinovic, S.; Vasilic, R.; Petkovic, M.; Belca, I.; Kasalica, B.; Peric, M.; Zekovic, L. Luminescence during the anodization of zirconium. Electrochim. Acta, 2012, 79, 133-140.
[15]
Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Formation of self-organized niobium porous oxide on niobium. Electrochem. Commun., 2005, 7, 97-100.
[16]
Aagard, R.L. Optical waveguide characteristics of reactive dc-sputtered niobium pentoxide films. Appl. Phys. Lett., 1975, 27, 605-607.
[17]
Velten, D.; Eisenbarth, E.; Schanne, N.; Breme, J. Biocompatible Nb2O5 thin films prepared by means sol-gel process. J. Mater. Sci. Mater. Med., 2004, 15, 457-461.
[18]
Mozalev, A.; Sakairi, M.; Saeki, I.; Takahashi, H. Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film. Electrochim. Acta, 2003, 48, 3155-3170.
[19]
Rani, R.A.; Zoolfakar, A.S.; O’Mullane, A.P.; Austina, M.W.; Zadeh, K.K. Thin films and nanostructures of niobium pentoxide: Fundamental properties, synthesis methods and applications. J. Mater. Chem. A, 2014, 2, 15683-15703.
[20]
Choi, J.; Lim, J.H.; Lee, J.; Kim, K.J. Porous niobium oxide films prepared by anodization–annealing–anodization. Nanotechnology, 2007, 18, 055603.
[21]
Choi, J.; Lim, J.H.; Lee, S.C.; Chang, J.H.; Kim, K.J.; Cho, M.A. Porous niobium oxide films prepared by anodization in HF/H3PO4. Electrochim. Acta, 2006, 51, 5502-5507.
[22]
Yu, X.; Li, Y.; Wlodarski, W.; Kandasamy, S.; Kalantar-Zadeh, K. Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. Sens. Actuator B, 2008, 130, 25-31.
[23]
Xu, Z.; Li, Q.; Gao, S.; Shang, J. Synthesis and characterization of niobium-doped TiO2 nanotube arrays by anodization of Ti–20Nb alloys. J. Mater. Sci. Technol., 2012, 28, 865-870.
[24]
Bai, S.; Ding, D.; Ning, C.; Qin, R.; Huang, L.; Li, M.; Mao, D. Anodic growth of uniform nanotube arrays on biphase Ti35Nb5Zr alloy. Electrochem. Commun., 2010, 12, 152-155.
[25]
Liu, Q.; Ding, D.; Ning, C. Anodic fabrication of Ti-Nb-Zr-O nanotube arrays. J. Nanomater., 2014, 2014, Article ID 240346.
[26]
Sulka, G.D.; Kapusta-Kołodziej, J.; Brzózka, A.; Jaskuła, M. Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim. Acta, 2010, 55, 4359-4367.
[27]
Macak, J.M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Shmuki, P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci., 2007, 11, 3-18.
[28]
Wei, W.; Lee, K.; Shaw, S.; Schmuki, P. Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chem. Commun., 2012, 48, 4244-4246.
[29]
Oikawa, Y.; Minami, T.; Mayama, H.; Tsujii, K.; Fushimi, K.; Aoki, Y.; Skeldon, P.; Thompson, G.E.; Habazaki, H. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability. Acta Mater., 2009, 57, 3941-3946.
[30]
Ghicov, A.; Schmuki, P. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun., 2009, 20, 2791-2808.
[31]
Bestetti, M.; Franz, S.; Cuzzolin, M.; Arosio, P.; Cavallotti, P.L. Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4/HF solutions. Thin Solid Films, 2007, 515, 5253-5258.
[32]
Grimes, C.A.; Mor, G.K. TiO2 Nanotube Arrays. Synthesis, Properties, and Applications; Springer Science + Business Media: New York, 2009.
[33]
Venkataraj, S.; Drese, R.; Liesch, C.; Kappertz, O.; Jayavel, R.; Wuttig, M. Temperature stability of sputtered niobium–oxide films. J. Appl. Phys., 2002, 91, 4863-4871.
[34]
Wells, A.F. Structural Inorganic Chemistry, 5th ed; Oxford Science: Oxford, UK, 1984.
[35]
Bayot, D.A.; Devillers, M.M. Precursors Routes for the Preparation of Nb Based Multimetallic Oxides in Progress in Solid State Chemistry Research; Arte M. Newman; Ronald W. Buckley; Nova Publishers, 2007.
[36]
Gatehouse, B.M.; Wadsley, A.D. The crystal structure of the high temperature form of niobium pentoxide. Acta Crystallogr., 1964, 17, 1545-1554.
[37]
Sayama, K.; Sugihara, H.; Arakawa, H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater., 1998, 10, 3825-3832.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [42 - 48]
Pages: 7
DOI: 10.2174/1573413714666180115141012
Price: $58

Article Metrics

PDF: 18
HTML: 3