Non-Viral Vectors for Gene Delivery

Author(s): Aparna Bansal*, Himanshu.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors.

Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.

Keywords: Non-viral vectors, gene transfection efficiency, Ultra Sound waves (US waves), electroporation, lipoplexes, polyplexes.

[1]
Al-Dosari, M.S.; Gao, X. Non-viral gene delivery: Principle, limitations and recent progress. AAPS J., 2009, 11(4), 671-681.
[2]
Niidome, T.; Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther., 2002, 9, 1647-1652.
[3]
Ramamoorth, M.; Narvekar, A. Non-viral vectors in gene therapy-an overview. J. Clin. Res., 2015, 9(1), GE01-GE06.
[4]
Gascon, A.R.; Pozo-Rodriguez, A.D.; Solinis, M.A. Non-viral delivery systems in gene therapy In gene therapy-tools and potential application., 2013.www.inthechopen.com
[5]
Herwiger, H.; Wolff, J.A. Progress and prospects: Naked gene transfer and therapy. Gene Ther., 2003, 10, 453-458.
[6]
Klein, R.M.; Wolf, E.D.; Wu, R.; Sanford, J.C. High velocity micro-projectiles for delivering nucleic acids into living cells. Biotechnology, 1992, 24, 384-386.
[7]
Uchida, M.; Natsume, H.; Kobayashi, D.; Sugibayashi, K.; Morimoto, Y. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin loaded poly-L-lactic acid microspheres using a Helios gun system. Biol. Pharm. Bull., 2002, 25, 690-693.
[8]
Li, S.D.; Huang, S.L. Gene therapy progress and prospects: Decade strategy. Gene Ther., 2006, 13, 1313-1319.
[9]
Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J., 1982, 1, 841-845.
[10]
Titomirov, A.V.; Sukharev, S.; Kistanova, E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta, 1991, 1088, 131-134.
[11]
Marti, G.; Ferguson, M.; Wang, J.; Byrnes, C.; Dieb, R.; Qaiser, R.; Bonde, P.; Duncan, M.D.; Harmon, J.W. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther., 2004, 11, 1780-1785.
[12]
Drabick, J.J.; Glasspool, M.J.; King, A.; Malone, R.W. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther., 2001, 3, 249-255.
[13]
Maruyama, H.; Ataka, K.; Higuchi, F.; Sakamoto, F.; Gejyo, F.; Miyazaki, J. Skin targeted gene transfer using in vivo electroporation. Gene Ther., 2001, 8, 1808-1812.
[14]
Widera, G.; Austin, M.; Rabussay, D.; Goldbeck, C.; Barnett, S.W.; Chen, M.; Leung, L.; Otten, G.R.; Thudium, K.; Selby, M.J.; Ulmer, J.B. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol., 2000, 164, 4635-4640.
[15]
Murakami, T.; Sunada, Y. Plasmid DNA gene therapy by electroporation: principles and recent advances. Curr. Gene Ther., 2011, 11(6), 447-456.
[16]
Chalberg, T.W.; Vankov, A.; Molnar, F.E.; Butterwick, A.F.; Huie, P.; Calos, M.P.; Palanker, D.V. Gene transfer to rabbit retina with electron avalanche transfection. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 4083-4090.
[17]
TerHaar, G. therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol., 2007, 93, 111-129.
[18]
Kim, H.J.; Greenleaf, J.F.; Kinnick, R.R.; Bronk, J.T.; Bolander, M.E. Ultrasound mediated transfection of mammalian cells. Hum. Gene Ther., 1996, 7, 1339-1346.
[19]
Endoh, M.; Koibuchi, N.; Sato, M.; Morishita, R.; Kanzaki, T.; Murata, Y.; Kaneda, Y. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol. Ther., 2002, 5, 501-508.
[20]
Newman, C.M.; Bettinger, T. Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther., 2007, 14(6), 465-475.
[21]
Tsunoda, S.; Mazda, O.; Oda, Y.; Ida, Y.; Akabame, S.; Kishida, T.; Shin-Ya, M.; Asada, H.; Gojo, S.; Imanishi, J.; Matsubara, H.; Yoshikawa, T. Sonoporation using microbubble using BR14 promotes pDNA/siRNA transduction to murine heart. Biochem. Biophys. Res. Commun., 2005, 336, 118-127.
[22]
Tan, J.K.; Pham, B.; Zong, Y.; Perez, C.; Maris, D.O.; Hemphill, A.; Miao, C.H.; Matula, T.J.; Mourad, P.D.; Wei, H.; Sellers, D.L.; Horner, P.J.; Pun, S.H. Microbubbles and ultrasound increase intraventricularpolyplex gene transfer to the brain. J. Control. Release, 2016, 231, 86-93.
[23]
Lu, F.; Song, Y.; Liu, D. Hydrodynamics based transfection in animals by systematic administration of plasmid DNA. Gene Ther., 1999, 6, 1258-1266.
[24]
Zhang, G.; Gao, X.; Song, Y.K.; Vollmer, R.; Stolz, D.B.; Gasiorowski, J.Z.; Dean, D.A.; Liu, D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther., 2004, 11, 675-682.
[25]
Herweiger, H.; Wolff, J.A. Progress and prospects: Hydrodynamic gene delivery. Gene Ther., 2006, 14, 99-107.
[26]
Eastman, S.J.; Baskin, K.M.; Hodges, B.L.; Chu, Q.; Gates, A.; Dreusicke, R.; Anderson, S.; Scheule, R.K. Development of catheter-based procedures for transducing the isolated rabbit liverwith plasmid DNA. Hum. Gene Ther., 2002, 13, 2065-2077.
[27]
Dizaj, S.M.; Jafari, S.; Khosroushahi, A.Y. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res. Lett., 2014, 9, 1-9.
[28]
Jin, L.; Zeng, X.; Liu, M.; Deng, Y.; He, N. Current progress in gene delivery technology based on chemical methods and nano carriers. Theranostics, 2014, 4(3), 240-255.
[29]
Su, C.H.; Wu, Y.J.; Wang, H.H.; Yeh, H.I. Non-viral gene therapy targeting cardiovascularsystem. Am. J. Physiol. Heart Circ. Physiol., 2012, 303, 629-638.
[30]
Graham, F.L.; Van der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 1973, 52(2), 456-467.
[31]
Cao, X.; Deng, W.; Wei, Y.; Su, W.; Yang, Y.; Wei, Y.; Yu, J.; Xu, X. Encapsulation of plasmid DNAin calcium phosphate nanoparticles: Stem cells uptake and gene transfer efficiency. Int. J. Nanomedicine, 2011, 6, 3335-3349.
[32]
Hu, J.; Kovtun, A.; Tomaszewski, A.; Singer, B.B.; Seitz, B.; Epple, M.; Steuhl, K.P.; Ergun, S.; Fuchsluger, T.A. A new tool for the transfection of corneal endothelial cells: Calcium phosphate nanoparticles. Acta Biomater., 2012, 8(3), 1156-1163.
[33]
Shekhar, S.; Roy, A.; Honq, D.; Kumta, P.N. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles-efficient calcium phosphate based non-viral gene delivery systems. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 69, 489-495.
[34]
Zhou, J.; Deng, W.; Wang, Y.; Cao, X.; Chen, J.; Wang, Q.; Xu, W.; Du, P.; Yu, Q.; Chen, J.; Spector, M.; Yu, J.; Xu, X. Cationic carbon quantum dots derived from alginate for gene delivery: One step synthesis and cellular uptake. Acta Biomaterialia., 2016, 42, 209-219.
[35]
Kneuer, C.; Sameti, M.; Bakowsky, U.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C.M. A non viral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconj. Chem., 2000, 11(6), 926-932.
[36]
Csogor, Z.; Nacken, M.; Sameti, M.; Lehr, C.M.; Scimdt, H. Modified silica particlesfor gene delivery. Mat. Sci. Eng. C, 2003, 23, 93-97.
[37]
Sandhu, K.K.; Mcintosh, C.M.; Simard, J.M.; Smith, S.W.; Rotello, V.M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem., 2002, 13, 3-6.
[38]
Thomas, M.; Klibanov, A.M. Conjugation to gold nanoparticles enhances polyethylenimine,s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA, 2002, 100, 9138-9143.
[39]
Tsai, C.Y.; Shiau, A.L.; Cheng, P.C.; Shieh, D.B.; Chen, D.H.; Chou, C.H.; Yeh, C.H.; Wu, C.L. A biological strategy for fabrication of Au/EGFP nanoparticle conjugates retaining bioactivity. Nano Lett., 2004, 4, 1209-1212.
[40]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J. Binding and condensation of plasmid DNAonto functionalized carbon nanotubes: Toward the construction of nanotube based gene delivery vectors. J. Am. Chem. Soc., 2005, 127, 4388-4396.
[41]
Liu, Y.; Wu, D.C.; Zhang, W.E.; Jiang, X.; He, C.B.; Partidos, C.D.; Briand, J.P.; Prato, M.; Bianco, A.; Kostarelos, K. Polyethylenimine grafted multiwalled carbon nanotubes for secure non covalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed., 2005, 44, 4782-4785.
[42]
Kakizawa, Y.; Miyata, K.; Furukawa, S.; Kataoka, K. Size controlled formation of a calcium phosphate based organic -inorganic hybrid vector for gene delivery using poly (ethylene glycol)-block -poly (aspartic acid). Adv. Mater., 2004, 16, 699-702.
[43]
Fraley, R.; Subramani, S.; Berg, P.; Papahadijopoulos, D. Introduction of liposome-encapsulated SV40 DNA into cells. J. Biol. Chem., 1980, 255, 10431-10435.
[44]
Wasungu, L.; Hoekstra, D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release, 2006, 116, 255-264.
[45]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: Advances in siRNAdelivery. Nat. Rev. Drug Discov., 2009, 8, 129-138.
[46]
Lonez, C.; Vandenbranden, M.; Ruysschaert, J.M. Cationic liposomal lipids: From gene carriers to cell signalling. Prog. Lipid Res., 2008, 47, 340-347.
[47]
Hersey, P.; Gallagher, S. Intralesional immunotherapy for melanoma. J. Surg. Oncol., 2014, 109, 320-326.
[48]
Olins, D.E.; Olins, A.L.; Von Hippel, P.H. Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J. Mol. Biol., 1967, 24, 157-176.
[49]
Laemmli, U.K. Characterization of DNA condensates induced by poly (ethylene oxide) and polylysine. Proc. Natl. Acad. Sci. USA, 1975, 72, 4288-4292.
[50]
Wu, G.Y.; Wu, C.H. Receptor mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem., 1987, 262, 4429-4432.
[51]
Choi, Y.H.; Liu, F.; Kim, J.S.; Choi, Y.K.; Park, J.S.; Kim, S.W. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J. Control. Release, 1998, 54, 39-48.
[52]
Kim, S.W. Polylysine copolymers for gene delivery. Cold Spring Harb. Protoc., 2012, 433-438.
[53]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5, 505-515.
[54]
Bazile, D.; Prud’homme, C.; Bassoullet, M.T.; Marlard, M.; Spenlehauer, G.; Veillard, M.; Me, S. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci., 1995, 84, 493-498.
[55]
Konstan, M.W.; Davis, P.B.; Wagener, J.S.; Hilliard, K.A.; Stern, R.C.; Milgram, L.J.; Kowalczyk, T.H.; Hyatt, S.L.; Fink, T.L.; Gedeon, C.R.; Oette, S.M.; Payne, J.M.; Muhammad, O.; Ziady, A.G.; Moen, R.C.; Cooper, M.J. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther., 2004, 15, 1255-1269.
[56]
Lungwitz, U.; Breunig, M.; Blunk, T.; Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm., 2005, 60, 247-266.
[57]
Gosangi, M.; Mujahid, T.H.; Gopal, V.; Patri, S.V. Effect of heterocyclic-based head group modifications on the structure-activity relationship of tocopherol-based lipids for non-viral gene delivery. Org. Biomol. Chem., 2016, 14, 6857-6870.
[58]
Meissner, J.M.; Toporkiewicz, M.; Czogalla, A.; Matusewicz, L.; Kuliczkowski, K.; Sikorski, A.F. Novel antisense therapeutics delivery systems: in vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. J. Control. Release, 2015, 220, 515-528.
[59]
Das, J.; Han, J.W.; Choi, Y.J.; Song, H.; Cho, S.G.; Park, C.; Seo, H.G.; Kim, J.H. Cationic lipid-nanoceria hybrids, a novel non-viral vector-mediated gene delivery into mammalian cells: Investigation of the cellular uptake mechanism. Sci. Reports., 2016, 1-13.
[60]
Li, W.; Szoka, F.C., Jr Lipid based nanoparticles for nucleic acid delivery. Pharm. Res., 2007, 24, 438-449.
[61]
Durcan, N.; Murphy, C.; Cryan, S.A. Inhalable siRNA: Potential as a therapeutic agent in the lungs. Mol. Pharm., 2008, 5, 559-566.
[62]
Farjo, R.; Skaggs, J.; Quiambao, A.B.; Cooper, M.J.; Naash, M.I. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles PLoS ONE., 2006, 1e38 1-8.
[63]
Warashina, S.; Nakamura, T.; Sato, Y.; Fujiwara, Y.; Hyodo, M.; Hiroto, H.; Harashima, H. A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J. Control. Release, 2016, 225, 183-191.
[64]
Wang, Y.; Rajala, A.; Cao, B.; Ranjo-Bishop, M.; Agbaga, M.P.; Mao, C.; Rajala, R.V.S. Cell specific promoters enable lipid based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics, 2016, 6(10), 1514-1527.
[65]
Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M. Lipofection: A highly efficient, lipid mediated DNA transfection procedure. Proct. Natl. Acad. Sci. USA, 1987, 84, 7413-7417.
[66]
Del Pozo Rodriquez, A.; Solinis, M.A.; Rodriquez-Gascon, A. Applications of lipid nanoparticles in gene therapy. Eur. J. Pharm. Bioparm., 2016, 109, 184-193.
[67]
Li, W.B.; Yuan, W.; Xu, F.J.; Zhao, C.; Ma, J.; Zhan, Q.M. Functional study of dextran-graft-poly ((2-dimethyl amino) ethyl methacrylate) gene delivery vector for tumor therapy. J. Biomater. Appl., 2013, 28, 125-135.
[68]
Wang, Y.Q.; Su, J.; Wu, F.; Lu, P.; Yuan, L.F.; Yuan, W.E.; Sheng, J.; Jin, T. Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Int. J. Nanomed., 2012, 7, 693-704.
[69]
Zhou, J.; Liu, J.; Cheng, C.J.; Patel, T.R.; Weller, C.E.; Piepmeier, J.M.; Jiang, Z.; Saltzman, W.M. Biodegradable poly (amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater., 2012, 11, 82-90.
[70]
Choi, J.S.; Nam, K.; Park, J.Y.; Kim, J.B.; Lee, J.K.; Park, J.S. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J. Control. Release, 2004, 99, 445-456.
[71]
Pfeifer, B.A.; Burdick, J.A.; Little, S.R.; Langer, R. Poly (ester-anhydride): poly (beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. Int. J. Pharm., 2005, 304, 210-219.
[72]
Anderson, D.G.; Akinc, A.; Hossain, N.; Langer, R. Structure/property studies of polymeric gene delivery using a library of poly (beta-amino esters). Mol. Ther., 2005, 11, 426-434.
[73]
Hwang, S.J.; Bellocq, N.C.; Davis, M.E. Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconj. Chem., 2001, 12, 280-290.
[74]
Kean, T.; Roth, S.; Thanou, M. Trimethylatedchitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Control. Release, 2005, 103, 643-653.
[75]
Chandy, T.; Sharma, C.P. Chitosan - as a biomaterial. Biomater. Artif. Cells Artif. Organs, 1990, 18, 1-24.
[76]
Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 2008, 57, 397-430.
[77]
Mourya, V.K.; Inamdar, N.N. Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym., 2008, 68, 1013-1051.
[78]
Howard, K.A.; Rahbek, U.L.; Liu, X.; Damgaard, C.K.; Glud, S.Z.; Andersen, M.O.; Hovgaard, M.B.; Schmitz, A.; Nyengaard, J.R.; Besenbacher, F.; Kjems, J. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther., 2006, 14, 476-484.
[79]
Lavertu, M.; Methot, S.; Tran-Khanh, N.; Buschmann, M.D. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 2006, 27, 4815-4824.
[80]
Liu, C.C.; Zhu, Q.; Wu, W.H.; Xu, X.L.; Wang, X.Y.; Gao, S.; Liu, K.H. Degradable copolymer based on amphiphilic N-octyl-N-quatenary chitosan and low-molecular weight polyethylenimine for gene delivery. Int. J. Nanomed., 2012, 7, 5339-5350.
[81]
Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scheman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA, 1995, 92, 7297-7301.
[82]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Size matters: molecular weight affects the efficiency of poly (ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res., 1999, 45, 268-275.
[83]
Wightman, L.; Kircheis, R.; Rössler, V.; Carotta, S.; Ruzicka, R.; Kursa, M.; Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med., 2001, 3, 362-372.
[84]
Boch, J.; Scholze, H.; Schormack, S.; Landqraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326, 1509-1512.
[85]
Moscou, M.J.; Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326, 1501.
[86]
Liu, S.; Zhou, D.; Yang, J.; Zhou, H.; Chen, J.; Guo, T. Bioreducible Zinc (II)-coordinative polyethylenimine with low molecular weight for robust gne delivery of primary and stem cells. J. Am. Chem. Soc., 2017. [Epub ahead of print].
[87]
Jiang, H.L.; Islam, M.A.; Xing, L.; Firdous, J.; Cao, W.; He, Y.J.; Zhu, Y.; Cho, K.H.; Cho, C.S. Degradable polyethylenimine-based gene carriers for cancer therapy. Top. Curr. Chem., 2017, 375, 34.
[88]
Li, L.; He, Z.Y.; Wei, X.W.; Wei, Y.Q. Recent advances of biomaterials in biotherapy. Regen. Biomater., 2016, 3(2), 99-105.
[89]
Mintzer, M.A.; Simanek, E.E. Nonviral vectors for gene delivery. Chem. Rev., 2009, 109(2), 259-302.
[90]
Yamagata, M.; Kawano, T.; Shiba, K.; Mori, T.; Katayama, Y.; Niidome, T. Structural advantage of dendritic poly (L-lysine) for gene delivery into cells. Bioorg. Med. Chem., 2007, 15, 526-532.
[91]
Bielinska, A.; Kukowskalatallo, J.; Piehler, L.T.; Yin, R.; Spindler, R.; Tomalia, D.A.; Baker, J.R. Starburst (R) PAMAM dendrimers - a novel synthetic vector for the transfection of DNA into mammalian cells. Am. Chem. Soc., 1995, 73, 273.
[92]
Shah, N.; Steptoe, R.J.; Parekh, H.S. Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA. J. Pept. Sci., 2011, 17, 470-478.
[93]
Pan, S.R.; Cao, D.W.; Huang, H.; Yi, W.; Qin, L.H.; Feng, M.A. Sserum-resistant low-generation polyamidoamine with PEI 423 outer layer for gene delivery vector. Macromol. Biosci., 2013, 13, 422-436.
[94]
Liu, H.M.; Wang, H.; Yang, W.J.; Cheng, Y.Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J. Am. Chem. Soc., 2012, 134, 17680-17687.
[95]
leiro, V.; Santos, S.D.; and Peqo, A.P. Delivering siRNA with dendrimers: In vivo applications. Curr. Gene Ther., 2017, 17(2), 105-119.
[96]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55, 1189-1193.
[97]
El-Andaloussi, S.; Jarver, P.; Johansson, H.J.; Langel, U. Cargo-dependent cytotoxicity and delivery efficacy of cell penetrating peptides: A comparative study. Biochem. J., 2007, 407, 285-292.
[98]
Alhakamy, N.A.; Niqatu, A.S.; Berkland, C.J.; Ramsey, J.D. Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther. Deliv., 2013, 4, 741-757.
[99]
Lehto, T.; Abes, R.; Oskolkov, N.; Suhorutsenko, J.; Copolovici, D.M.; Mager, I.; Viola, J.R.; Simonson, O.E.; Ezzat, K.; Guterstam, P.; Eriste, E.; Smith, C.I.E.; Lebleu, B.; ElAndaloussi, S.; Langel, U. Delivery of nucleic acids with a stearylated (RxR) (4) peptide using a non-covalent co-incubation strategy. J. Control. Release, 2010, 141, 42-51.
[100]
Yin, H.; Kanasty, R.L.; Ahmed, A.E.; Vegas, A.J.; Dorkin, R.; Anderson, D.G. Non-viral vectors for gene based therapies. Nat. Rev. Genet., 2014, 15, 541-555.
[101]
Izsvak, Z.; Chuah, M.K.L.; Vandendriessche, T.; Ivics, Z. Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. Methods San Diego Calif., 2009, 49, 287-297.
[102]
Jones, C.H.; Hill, A.; Chen, M.; Pfeifer, B.A. Contemporary approaches for non-viral Gene therapy. Discov. Med., 2015, 19, 447-454.
[103]
Cucchiarini, M. Human gene therapy: Novel approaches to improve the current gene delivery systems. Discov. Med., 2016, 21, 495-506.
[104]
Hill, A.B.; Chen, M.; Chen, C.K.; Pfeifer, B.A.; Jones, C.H. Overcoming gene delivery hurdles: Physiological considerations for non viral vectors. Trends Biotechnol., 2016, 34, 91-105.
[105]
Hardee, C.L.; Arevalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in non-viral DNA vectors for gene therapy. Genes (Basel), 2017, 8, 1-22.
[106]
Riley, M.K. II; Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomaterials., 2017, 7, 1-19.
[107]
Vaseqhi, G.; Rafiee, L.; Javanmard, S.H. Non-viral delivery systems for breast cancer gene therapy. Curr. Gene Ther., 2017, 17(2), 147-153.
[108]
Villate, B.I.; Puras, G.; Soto-Sanchez, C.; Aquirre, M.; Ojeda, E.; Zarate, J.; Fernandez, E.; Pedraz, J.L. Non- viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system mails. Int. J. Pharm., 2017, 521, 130-140.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 9
ISSUE: 1
Year: 2019
Page: [4 - 11]
Pages: 8
DOI: 10.2174/2210681208666180110154233
Price: $58

Article Metrics

PDF: 32
HTML: 5