Evaluation of Nanotechniques and Conventional Techniques for the Removal of Dioxins

Author(s): Vaishali V. Shahare*, Rajni Grover, Suman Meena.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The persistent dioxins/furans has caused a worldwide concern as they influence the human health. Recent research indicates that nonmaterial may prove effective in the degradation of Dioxins/furans. The nanomaterials are very reactive owing to their large surface area to volume ratio and large number of reactive sites. However, nanotechnology applications face both the challenges and the opportunities to influence the area of environmental protection.

Objective: i) To study the impact of oil mediated UV-irradiations on the removal of 2,3,7,8-TCDD, 2,3,7,8-TCDF, OCDD and OCDF in simulated soil samples.

ii) To compare the conventional treatment methods with the modern available nanotechniques for the removal of selected Dioxins/furans from soil samples.

Methods: The present work has investigated an opportunity of the degradation of tetra and octachlorinated dioxins and furans by using oil mediated UV radiations with subsequent extraction of respective dioxins/furans from soils. The results have been compared with the available nanotechniques.

Results: The dioxin congeners in the simulated soil sample showed decrease in concentration with the increase in the exposure time and intensity of UV radiations. The dechlorination of PCDD/Fs using palladized iron has been found to be effective.

Conclusion: Both the conventional methods and nanotechnology have a dramatic impact on the removal of Dioxins/furans in contaminated soil. However, the nanotechniques are comparatively costlier and despite the relatively high rates of PCDDs dechlorination by Pd/nFe, small fraction of the dioxins are recalcitrant to degradation over considerable exposure times.

Keywords: Nanomaterials, dioxins/furans, contaminated soil samples, ultra-violet radiations, groundnut oil, soil contamination, degradation.

[1]
Hiraoka, M.; Okajima, S. Source control technologies in MSW incineration plants. Organohalogen Compd., 1994, 19, 275.
[2]
Casanovas, J.; Muro, R.; Eljarrat, E.; Caixach, J.; Rivera, J. PCDF and PCDD levels in different types of environmental samples in Spain. Fresenius J. Anal. Chem., 1994, 348, 167-170.
[3]
Choi, K.Y.; Lee, D.H. PCDD/DF in leachates from Korean MSW landfills. Chemosphere, 2006, 63, 1353-1360.
[4]
Weber, R.; Gaus, C.; Tysklind, M.; Johnston, P.; Forter, M.; Hollert, H.; Heinisch, E.; Holoubek, I.; Lloyd-Smith, M.; Masunaga, S.; Moccarelli, P.; Santillo, D.; Seike, N.; Symons, R.; Torres, J.P.; Verta, M.; Varbelow, G.; Vijgen, J.; Watson, A.; Costner, P.; Woelz, J.; Wycisk, P.; Zennegg, M. Dioxin- and POP contaminated Sites-contemporary and future relevance and challenges. Environ. Sci. Pollut. Res., 2008, 15, 363-393.
[5]
Khairy, M.; Barrett, K.; Lohmann, R. Changing sources of polychlorinated dibenzo-p-dioxins and furans in sediments and ecological risk for nekton in the lower Passaic River and Newark Bay, New Jersey, USA. Environ. Toxicol. Chem., 2016, 35, 550-562.
[6]
Thacker, N.P.; Nitnaware, V.C.; Das, S.K.; Devotta, S. Dioxin formation in pulp and paper mills of India. Environ. Sci. Pollut. Res. Int., 2007, 14(4), 225-226.
[7]
Thacker, N.P.; Nitnaware, V.C.; Pandya, G.H.; Deshpande, V. Characterization of 2,3,7,8-substituted chlorodibenzo-p-dioxin using LRGC-MS/MS. Asian J. Chem., 2007, 19(2), 1122-1130.
[8]
Aziz, S.Q.; Aziz, H.A.; Yusoff, M.S.; Bashir, M.J.; Umar, M. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. J. Environ. Manage., 2010, 91, 2608-2614.
[9]
Rocha, E.M.R.; Vilar, V.J.P.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R. Landfill Leachate treatment by solar-driven AOPs. Sol. Energy, 2011, 85, 46-56.
[10]
Parsons, J.R.; de Bruijne, J.A.; Weiland, A.R. Biodegradation pathway of 2-chlorodibenzo-p-dioxin and 2-chlorodibenzofuran in the biphenyl- utilising strain JB1. Chemosphere, 1998, 37, 1915-1922.
[11]
Nam, P.; Liu, Q.; Kapila, S.; Tumiatti, W.; Porciani, A. Assessment radiolysis and chemical dehalogenation for decontamination of PCBs and PCDDs in soil. Organohalogen Compd., 1999, 40, 507-510.
[12]
Nakamiya, K. Ishi,i K.; Yoshizaki, K.; Furuichi, T. Solvent-washing of dioxin-contaminated soil and ultraviolet treatment of the extracted dioxins. Organohalogen Compd., 2000, 45, 423-426.
[13]
USEPA. Superfund treatability clearing house: Technical Resource Document: treatment technologies for dioxin-containing wastes. EPA/540/2-89/041,. 1986.
[14]
E.P.A, Method. 1613, Tetra-through octa-chlorinated dioxins and furans by isotope dilution by HRGC/HRMS; U.S. Environmental Protection Agency: Washington, D.C., 1995.
[15]
Foester, C.J.B.D.; Hites, R.A. Photodegradation of polychlorinated dioxins and dibenzofurans adsorbed to fly ash. Environ. Sci. Technol., 1992, 26, 502-507.
[16]
Adriaens, P.; Fu, Q.; Grbic-Galic, D. Bioavailibility and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ. Sci. Technol., 1995, 29, 2252-2260.
[17]
Buser, H.R. Preparation of qualitative standard mixtures of polychlorinated dibenzo-p-dioxins and dibenzofurans by ultraviolet irradiation of the octachloro compounds. J. Chromatogr., 1976, 129, 303-307.
[18]
Nestrick, T.J.; and Lamparski, L.L. Identification of tetrachlorodibenzo-p-dioxin isomers at the 1-ng level by photolytic degradation and pattern recognition techniques. Anal. Chem., 1980, 52, 1865-1874.
[19]
Choudry, G.G.; and Webster, G.R.B. Environmental photochemistry of polycholorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs): A review. Toxicol. Environ. Chem., 1987, 14, 43-61.
[20]
Buser, H.R. Rapid photolytic decomposition of brominated and brominated/chlorinated dibenzodioxins and dibenzofurans. Chemosphere, 1988, 17, 889-903.
[21]
Hung, W.; Huang, W.Y.; Lin, C.; Vu, C.T.; Yotapukdee, S.; Kaewlaoyoong, A.; Chen, J.R.; Shen, Y.H. The use of ultrasound-assisted anaerobic compost tea washing to remove poly-chlorinated dibenzo-p-dioxins (PCDDs), dibenzo-furans (PCDFs) from highly contaminated field soils. Environ. Sci. Poll. Res., 2017, 24(23), 18936-18945.
[22]
Weidemann, E.; Lundin, L.; Boily, J.F. Thermal decomposition of municipal solid waste fly ash and desorption of polychlorinated dibenzo-p-dioxins and furans from fly ash surfaces. Environ. Sci. Poll. Res., 2016, 23(22), 22843-22851.
[23]
Nagpal, V.; Bokare, A.D.; Chikate, R.C.; Rode, C.V.; Pakinikar, K.M. Reductive dechlorination of hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles. J. Hazard. Mater., 2010, 175, 680-687.
[24]
Cwiertny, D.M.; Bransfield, S.J.; Livi, K.J.T.; Fairbrother, D.H.; Roberts, A.L. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environ. Sci. Technol., 2006, 40, 6837-6843.
[25]
Kim, J.H.; Tratnyek, P.G.; Chang, Y.S. Rapid Dechlorination of Polychlorinated Dibenzo-p-dioxins by Bimetallic and Nanosized Zerovalent Iron. Environ. Sci. Technol., 2008, 42, 4106.
[26]
Obare, S.O.; Meyer, G.J. Nanostructured materials for environmental remediation of organic contaminants in water. J. Environ. Sci. Health, 2004, A39, 2549-2582.
[27]
Li, L.; Fan, M.; Brown, R.C.; van Leeuwen, J.; Wang, J.; Wang, W.; Song, Y.; Zhang, P. Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Crit. Rev. Environ. Sci. Technol., 2006, 36, 405-431.
[28]
Scherer, M.M.; Balko, B.A.; Gallagher, D.A.; Tratnyek, P.G. Correlation analysis of rate constants for dechlorination by zerovalent iron. Environ. Sci. Technl., 1998, 32, 3026-3033.
[29]
Tratnyek, P.G.; Weber, E.J.; Schwarzenbach, R.P. Quantitative structure-activity relationships for chemical reductions of organic contaminants. Environ. Toxicol. Chem., 2003, 22, 1733-1742.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2019
Page: [79 - 84]
Pages: 6
DOI: 10.2174/2210681208666180110153919
Price: $58

Article Metrics

PDF: 20
HTML: 1