Implications of Nanotechnology in Healthcare

Author(s): Preeti , Mahaveer Genwa* , Pradeep Kumar .

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Nanotechnology is a science, engineering conducted at nanoscale level for the manipulation of matter to create materials with significantly unusual, varied and new properties. Attributes of these synthesized nanomaterials promise to provide a number of applications in health including nanomedicine, nanorobots/nanobots, nanostars, nanofibers, chemotherapy and many more. There has been a remarkable interest in identification of adverse health effects associated with the use of nanotechnology too. The focus of this review is to highlight the current techniques and development of new technologies advancing medical science and disease treatment in human healthcare. Firstly, several Nano-pharmaceuticals and Nano-diagnostic methods offer numerous potential ways for targeted drug delivery, gene therapy, cancer treatment and clinical diagnosis to provide best rational use of the medicine and minimize the toxic effects. These techniques can also help to design certain drugs in a controlled way to avoid their structural complexity by dealing at the atomic and molecular level. Secondly, along with the discussion of potential applications of nanotechnology, some of the examples will be given to elaborate the various scientific and technical aspects in the real life.

Conclusion: Finally, conclusion with the future scope and challenges of nanotechnology in health will be described and discussed.

Keywords: Nanotechnology, nanomedicine, medical imaging, nanoparticles, drug delivery, nanorobots.

[1]
Robert, A. Freitas, What is nanomedicine? Nanomedicine, 2005, 1(1), 2-9.
[2]
Shetty, P. Can developing countries use nanotechnology to improve health?, scidev.net/global/health/feature (Accessed on: 19th April 2016)
[3]
Paolo, F.; Larry, J.K. Nanotechnology: Improving clinical testing. Clin. Chem., 2010, 56, 1384-1389.
[4]
Jain, K.K. The handbook of nanomedicine; Humana Press: Totowa, NJ, USA, 2008.
[5]
Jain, K.K. Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta, 2005, 358, 37-54.
[6]
Nanoscience and nanotechnologies: Opportunities and uncertainties. The Royal Society and Royal Academy of Engineering’s Report, 2004.
[7]
Feynman, R.P. There’s plenty of room at the bottom. Eng. Sci. (CalTech), 1960, 23, 22-36.
[8]
Taniguchi, N. On the basic concept of‚ nano-technology., In: Proceedings of the Intersnational Conference on Production Engineering, part II, Japan Society of Precision Engineering, Tokyo,. 1974.
[9]
Nano in Healthcare - Nanotechnology applications. European Commission, Research & Innovation - Key Enabling Technologies. (Accessed on: 28th April, 2016)..
[10]
The FHE Team. The Promise of Nanomedicine and Future Human Evolution. (Accessed on: 21st april, 2016)..
[11]
Omid, C.F.; Robert, L. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58, 1456-1459.
[13]
Shelton, D.C.; Samuel, A.W.; Gregory, M.L. Nanotechnological applications in medicine. Curr. Opin. Biotechnol., 2007, 18, 26-30.
[14]
Alexandrina, SOLDATENKO University of Strasbourg. Current uses of nanotechnology. (Accessed on: 25th April,. 2016.
[15]
Rajesh, S.; James, W.; Lillard, J. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86, 215-223.
[16]
Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly (lactide-coglycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70, 353-363.
[17]
NSET: National nanotechnology initiative and its implementation plan, fiscal year 2001.. nano.gov/node/243 (Accessed on: 26th April, 2016).
[18]
National nanotechnology investment in FY 2016 Budge. M.C. Raco.. aaas.org/fy16budget/national-nanotechnology-investment-fy-2016-budget (Accessed on: 27th April, 2016).
[19]
John, C.B.; Victoria, L.K.; Susanna, H.P. Expert opinion on nanotechnology: Risks, benefits, and regulation. J. Nanopart. Res., 2008, 10, 549-558.
[20]
Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther., 2003, 3(4), 655-663.
[21]
Freitas, J. Jr.; Robert, A. Nanomedicine, Volume I: Basic capabilities. Landes Bioscience, Georgetown, TX, USA, 1999.
[22]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J., 2005, 19, 311-330.
[23]
Khang, D.; Carpenter, J.; Chun, Y.W.; Pareta, R.; Webster, T.J. Nanotechnology for regenerative medicine. Biomed. Microdevices, 2008, 12(8), 575-587.
[24]
Drexler, K.E.; Peterson, C.; Pergamit, G. Unbounding the Future: The nanotechnology revolution; William Morrow and Company: New York, 1991.
[25]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83, 761-769.
[26]
National Science Foundation. National Nanotechnology Initiative: research and Development FY 2017.. nano.gov/node/1573 (Accessed on: 15th April, 2016).
[27]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13, 238-252.
[28]
Ghosh, P. Colloid and interface science, 1st ed; PHI Learning: New Delhi, India, 2009, p. 410 ISBN 978-8120338579..
[29]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281, 2016-2018.
[30]
Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293, 1289-1292.
[31]
Buhleier, E.; Wehner, W.; Vogtle, F. Cascade- and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis, 1978, 2, 155-158.
[32]
Zhang, L.; Granick, S. How to stabilize phospholipid liposome (using nanoparticles). Nano Lett., 2006, 6, 694-698.
[33]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4, 145-159.
[34]
Lin, Y-Y.; Kao, H-W.; Li, J-J.; Hwang, J-J.; Tseng, Y-L.; Lin, W-J. Tumor burden talks in cancer treatment with PEGylated liposomal drugs. PLoS One, 2013, 8(5), e63078.
[35]
Woodle, M.C. Controlling liposome blood clearance by surface grafted polymers. Adv. Drug Deliv. Rev., 1998, 32, 139-152.
[36]
Nagayama, S. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int. J. Pharm., 2007, 342, 215-221.
[37]
Zahra, M. How many liposome based drugs are in the market?, quora.com/How-many-liposome-based-drugs-are-in-the-market (Accessed on: 22nd April 2016).
[38]
Daan, C. Dutch Top Institute Pharma. Liposomes, ema.europa.eu/docs/en_GB/document_library/Presentation/2010/09/WC500096191.pdf (Accessed on: 22nd April, 2016).
[39]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[40]
Betsley, T.A.; Hessler, J.A.; Mecke, A.; Banaszak, H.M.M.; Orr, B.G.; Uppuluri, S. Tapping mode atomic force microscopy investigation of poly(amidoamine) core-shell tecto(dendrimers) using carbon nanoprobes. Langmuir, 2002, 18, 3127-3133.
[41]
Tomalia, D.A.; Brothers, II, H.M.; Piehler, L.T.; Durst, H.D.; Swanson, D.R. Partial shell-filled core-shell tecto(dendrimers): A strategy to surface differentiated nano-clefts and cusps. Proc. Natl. Acad. Sci. USA, 2002, 99, 5081-5087.
[42]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Mue, A.; Majoros, I. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceut. Res., 2000, 19, 1310-1316.
[43]
West, J.L.; Halas, N.J. Applications of nanotechnology to biotechnology. Curr. Opin. Biotechnol., 2000, 11, 215-227.
[44]
Sershen, S.R.; Westcott, S.L.; Halas, N.J.; West, J.L. Temperature-sensitive polymer-nanoshell composite for photothermally modulated drug delivery. J. Biomed. Mater. Res., 2000, 51, 293-308.
[45]
Wang, Y.; Chen, L. Quantum dots, lighting up the research and development of nanomedicine. Nanomed. NBM, 2011, 7, 385-402.
[46]
Huang, H.C.; Barua, S.; Sharma, G.; Dey, S.K.; Rege, K. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release, 2011, 155, 344-357.
[47]
Weissleder, R.; Elizondo, G.; Wittenberg, J.; Lee, A.S.; Josephson, L.; Brady, T.J. Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology, 1990, 175, 494-498.
[48]
Logothetidis, S. Nanotechnology in medicine: The medicine of tomorrow and nanomedicine. Hippokratia, 2006, 10, 7-21.
[49]
Saini, S.; Edelman, R.R.; Sharma, P.; Li, W.; Mayo-Smith, W.; Slater, G.J.; Eisenberg, P.J.; Hahn, P.F. Blood-pool MR contrast material for detection and characterization of focal hepatic lesions: Initial clinical experience with ultrasmall superparamagnetic iron oxide (AMI-227). AJR Am. J. Roentgenol., 1995, 164, 1147-1152.
[50]
Mali, S. Nanotechnology for Surgeons. Indian J. Surg., 2013, 75(6), 485-492.
[51]
Mamo, T.; Moseman, E.A.; Kolishetti, N.; Salvador-Morales, C.; Shi, J.; Kuritzkes, D.R.; Langer, R.; Von Andrian, U.; Farokhzad, O.C. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond.), 2010, 5(2), 269-285.
[52]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6, 688-701.
[53]
Davis, F.F. The origin of pegnology. Adv. Drug Deliv. Rev., 2002, 54, 457-458.
[54]
Kievit, F.M.; Zhang, M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res., 2011, 44, 853-862.
[55]
Gaumet, M. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm., 2008, 69, 1-9.
[56]
Emerich, D.F.; Thanos, C.G. Targeted nanoparticle-based drug delivery and diagnosis. J. Drug Target., 2007, 15, 163-183.
[57]
Groneberg, D.A.; Giersig, M.; Welte, T.; Pison, U. Nanoparticle-based diagnosis and therapy. Curr. Drug Targets, 2006, 7, 643-648.
[58]
Muthu, M.S.; Singh, S. Targeted nanomedicines: Effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine, 2009, 4, 105-118.
[59]
Gao, W.; Liu, W.; Christensen, T.; Zalutsky, M.R.; Chilkoti, A. In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl. Acad. Sci. USA, 2010, 107(38), 16432-16437.
[60]
Lamprecht, A.; Ubrich, N.; Yamamoto, H.; Schafer, U.; Takeuchi, H.; Maincent, P.; Kawashima, Y.; Lehr, C.M. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther., 2001, 299, 775-781.
[61]
Duncan, R.; Sat, Y-N. Tumour targeting by Enchanced Permeability and Retention (EPR) effect. Ann. Oncol., 1998, 9(2), 39.
[62]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumours. Nat. Rev. Clin. Oncol., 2010, 7, 653-664.
[63]
Samina, N.; Tajammul, H.; Attiya, A.; Umer, R.; Alexander, J.M. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomed. Nanotechnol. Biol. Med., 2014, 10, 19-34.
[64]
Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev., 2010, 62, 1052-1063.
[65]
Dean, Ho Fighting cancer with nanomedicine The scientist magazine., the-scientist.com/?articles.view/articleNo/39488/title/ Fighting-Cancer-with-Nanomedicine/ (Accessed on: 16th April, 2016).
[66]
Mark, E.D.; Jonathan, E.Z.; Chung, H.J.; Choi, C.H.; David, S.; Anthony, T.; Christopher, A.A.; Yun, Y.; Jeremy, D.H.; Antoni, R. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464, 1067-1070.
[67]
Milane, L.J.; Daun, Z.; Amiji, M. Development of EGFR-targeted polymer blend nanocarriers for paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol. Pharmacol., 2010, 8(1), 185-203.
[68]
Kam, N.W. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. In: Proceedings of the National Academy of Sciences, USA2009, pp. 11600-11605.
[69]
Lee, H.; Yoon, T.J.; Figueiredo, J.L.; Swirski, F.K.; Weisseleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. In: Proceedings of the National Academy of Sciences, USA2009, pp. 12459-12464.
[70]
Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), 869-876.
[71]
Danhier, F. Lecouturier, N.; Vroman, B.; Jerome, C.; Marchand-Brynaert, J.; Feron, O.; Preat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control. Release, 2009, 133(1), 11-17.
[72]
Gryparis, E.C.; Hatziapostolou, M.; Papadimitriou, E.; Avgoustakis, K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur. J. Pharm. Biopharm., 2007, 67(1), 1-8.
[73]
Harisinghani, M.G.; Weissleder, R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med., 2004, 1, e66.
[74]
Johannsen, M.; Gneveckow, U.; Taymoorian, K.; Thiesen, B.; Waldofner, N. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int. J. Hyperthermia, 2007, 23, 315-323.
[75]
Ogawara, K.; Un, K.; Tanaka, K.; Hiqaki, K.; Kimura, T. In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearingmice: involvement of cytotoxic effect onvascular endothelial cells. J. Control. Release, 2009, 133(1), 4-10.
[76]
MacKay, J.A.; Chen, M.; McDaniel, J.R.; Liu, W.; Simnick, A.J.; Chilkoti, A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumors after a single injection. Nat. Mater., 2009, 8(12), 993-999.
[77]
Murakami, M.; Cabral, H.; Matsumoto, Y.; Wu, S.; Kano, M.R.; Yamori, T.; Nishiyama, N.; Kataoka, K. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Transl. Med., 2011, 3(64), 64ra2.
[78]
Tokumasu, F.; Fairhurst, R.M.; Ostera, G.R.; Brittain, N.J.; Hwanq, J.; Wellems, T.E.; Dvorak, J.A. Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J. Cell Sci., 2005, 118, 1091-1098.
[79]
Andrew, D.M.; Robert, J.A.; Tilman, B.; Vicki, C.; Ken, D.; Gunter, O.; Martin, A.P.; John, R.; Anthony, S.; Vicki, S.; Sally, S.T.; Lang, T.; Nigel, J.W.; David, B.W. Safe handling of nanotechnology. Nature, 2006, 444, 267-269.
[80]
Pourmand, A.; Abdollahi, M. Current opinion on nanotoxicology. Daru, 2012, 20(1), 2008-2031.
[81]
Syed, A.A.; Muhammad, T. Nanotechnology and its implication in medical science. J. Pak. Med. Assoc., 2014, 64, 984-986.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2019
Page: [44 - 57]
Pages: 14
DOI: 10.2174/2210681208666180110153435
Price: $58

Article Metrics

PDF: 25
HTML: 1