Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis

Author(s): Marcelo G. Roma*, Ismael R. Barosso, Gisel S. Miszczuk, Fernando A. Crocenzi and Enrique J. Sánchez Pozzi

Volume 26, Issue 7, 2019

Page: [1113 - 1154] Pages: 42

DOI: 10.2174/0929867325666171205153204

Price: $65

Abstract

Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.

Keywords: Bile salts, cAMP, cholestasis, endocytosis, hepatocellular transporters, signaling pathways, ursodeoxycholate, vesicular trafficking.

[1]
Esteller, A. Physiology of bile secretion. World J. Gastroenterol., 2008, 14, 5641-5649.
[2]
Crocenzi, F.A.; Mottino, A.D.; Roma, M.G. Regulation of synthesis and trafficking of canalicular transporters and its alteration in acquired hepatocellular cholestasis: Experimental therapeutic strategies for its prevention. Curr. Med. Chem., 2004, 11, 501-524.
[3]
Jonker, J.W.; Stedman, C.A.M.; Liddle, C.; Downes, M. Hepatobiliary ABC transporters: physiology, regulation and implications for disease. Front. Biosci (Landmark Ed.)., 2009, 14, 4904-4920.
[4]
Staudinger, J.L.; Woody, S.; Sun, M.; Cui, W. Nuclear-receptor-mediated regulation of drug- and bile-acid-transporter proteins in gut and liver. Drug Metab. Rev., 2013, 45, 48-59.
[5]
Dolganiuc, A. Role of lipid rafts in liver health and disease. World J. Gastroenterol., 2011, 17, 2520-2535.
[6]
Spector, A.A.; Yorek, M.A. Membrane lipid composition and cellular function. J. Lipid Res., 1985, 26, 1015-1035.
[7]
Crocenzi, F.A.; Zucchetti, A.E.; Boaglio, A.C.; Barosso, I.R.; Sanchez Pozzi, E.J.; Mottino, A.D.; Roma, M.G. Localization status of hepatocellular transporters in cholestasis. Front. Biosci (Landmark Ed.)., 2012, 17, 1201-1218.
[8]
Roth, M.; Obaidat, A.; Hagenbuch, B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol., 2012, 165, 1260-1287.
[9]
Reichen, J. The Role of the Sinusoidal Endothelium in Liver Function. News Physiol. Sci., 1999, 14, 117-121.
[10]
Stieger, B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb. Exp. Pharmacol., 2011, 201, 205-259.
[11]
Stieger, B.; Hagenbuch, B. Organic anion-transporting polypeptides. Curr. Top. Membr., 2014, 73, 205-232.
>[12] Hofmann, A.F. Bile acids: The good, the bad, and the ugly. News Physiol. Sci., 1999, 14, 24-29.
[13]
Dawson, P.A.; Lan, T.; Rao, A. Bile acid transporters. J. Lipid Res., 2009, 50, 2340-2357.
[14]
Trauner, M.; Boyer, J.L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev., 2003, 83, 633-671.
[15]
Hagenbuch, B.; Meier, P.J. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta, 2003, 1609, 1-18.
[16]
Niemi, M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics, 2007, 8, 787-802.
[17]
van Montfoort, J.E.; Muller, M.; Groothuis, G.M.; Meijer, D.K.; Koepsell, H.; Meier, P.J. Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J. Pharmacol. Exp. Ther., 2001, 298, 110-115.
[18]
Fei, Y.J.; Sugawara, M.; Nakanishi, T.; Huang, W.; Wang, H.; Prasad, P.D.; Leibach, F.H.; Ganapathy, V. Primary structure, genomic organization, and functional and electrogenic characteristics of human system N 1, a Na+- and H+-coupled glutamine transporter. J. Biol. Chem., 2000, 275, 23707-23717.
[19]
Marin, J.J.G. Plasma Membrane Transporters in Modern Liver Pharmacology. Scientifica (Cairo), 2012, 2012, 1-15.
[20]
Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos., 2014, 42, 623-631.
[21]
Muller, M.; Jansen, P.L. Molecular aspects of hepatobiliary transport. Am. J. Physiol. Gastrointest. Liver Physiol., 1997, 272, G1285-G1303.
[22]
Jani, M.; Ambrus, C.; Magnan, R.; Jakab, K.T.; Beéry, E.; Zolnerciks, J.K.; Krajcsi, P. Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch. Toxicol., 2014, 88, 1205-1248.
[23]
Moriyama, Y.; Hiasa, M.; Matsumoto, T.; Omote, H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica, 2008, 38, 1107-1118.
[24]
Yonezawa, A.; Inui, K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br. J. Pharmacol., 2011, 164, 1817-1825.
[25]
Tanihara, Y.; Masuda, S.; Sato, T.; Katsura, T.; Ogawa, O.; Inui, K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem. Pharmacol., 2007, 74, 359-371.
[26]
Clark, M.R. Flippin’ lipids. Nat. Immunol., 2011, 12, 373-375.
[27]
Crawford, A.R.; Smith, A.J.; Hatch, V.C.; Oude Elferink, R.P.; Borst, P.; Crawford, J.M. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy. J. Clin. Invest., 1997, 100, 2562-2567.
[28]
Elferink, R.; Paulusma, C.; Groen, A. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology, 2006, 130, 908-925.
[29]
Wittenburg, H.; Carey, M.C. Biliary cholesterol secretion by the twinned sterol half-transporters ABCG5 and ABCG8. J. Clin. Invest., 2002, 110, 605-609.
[30]
Suchy, F.J.; Ananthanarayanan, M. Bile salt excretory pump: biology and pathobiology. J. Pediatr. Gastroenterol. Nutr., 2006, 43(Suppl. 1), S10-S16.
[31]
Blazquez, A.G.; Briz, O.; Romero, M.R.; Rosales, R.; Monte, M.J.; Vaquero, J.; Macias, R.I.; Cassio, D.; Marin, J.J. Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta. Mol. Pharmacol., 2012, 81, 273-283.
[32]
Akita, H.; Suzuki, H.; Ito, K.; Kinoshita, S.; Sato, N.; Takikawa, H.; Sugiyama, Y. Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim. Biophys. Acta, 2001, 1511, 7-16.
[33]
Paulusma, C.C.; van Geer, M.A.; Evers, R.; Heijn, M.; Ottenhoff, R.; Borst, P.; Oude Elferink, R.P. Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione. Biochem. J., 1999, 338(Pt. 2), 393-401.
[34]
Yang, B.; Hill, C.E. Nifedipine modulation of biliary GSH and GSSG/conjugate efflux in normal and regenerating rat liver. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281, G85-G94.
[35]
Ballatori, N.; Truong, A.T. Glutathione as a primary osmotic driving force in hepatic bile formation. Am. J. Physiol. Gastrointest. Liver Physiol., 1992, 263, G617-G624.
[36]
Banales, J.M.; Prieto, J.; Medina, J.F. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J. Gastroenterol., 2006, 12, 3496-3511.
[37]
Hardison, W.G.; Wood, C.A. Importance of bicarbonate in bile salt independent fraction of bile flow. Am. J. Physiol. Gastrointest. Liver Physiol., 1978, 235, E158-E164.
[38]
Aranda, V.; Martínez, I.; Melero, S.; Lecanda, J.; Banales, J.M.; Prieto, J.; Medina, J.F. Shared apical sorting of anion exchanger isoforms AE2a, AE2b1, and AE2b2 in primary hepatocytes. Biochem. Biophys. Res. Commun., 2004, 319, 1040-1046.
[39]
Medina, J.F.; Lecanda, J.; Acín, A.; Ciesielczyk, P.; Prieto, J. Tissue-specific N-terminal isoforms from overlapping alternate promoters of the human AE2 anion exchanger gene. Biochem. Biophys. Res. Commun., 2000, 267, 228-235.
[40]
Bernardino, R.; Marinelli, R.; Maggio, A.; Gena, P.; Cataldo, I.; Alves, M.; Svelto, M.; Oliveira, P.; Calamita, G. Hepatocyte and Sertoli cell aquaporins, recent advances and research trends. Int. J. Mol. Sci., 2016, 17, pii E1096.
[41]
Marinelli, R.A.; Lehmann, G.L.; Soria, L.R.; Marchissio, M.J. Hepatocyte aquaporins in bile formation and cholestasis. Front. Biosci (Landmark Ed.)., 2011, 16, 2642-2652.
[42]
Benedetti, A.; Strazzabosco, M.; Ng, O.C.; Boyer, J.L. Regulation of activity and apical targeting of the Cl-/HCO3- exchanger in rat hepatocytes. Proc. Natl. Acad. Sci. USA, 1994, 91, 792-796.
[43]
Garcia, F.; Kierbel, A.; Larocca, M.C.; Gradilone, S.A.; Splinter, P.; LaRusso, N.F.; Marinelli, R.A. The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J. Biol. Chem., 2001, 276, 12147-12152.
[44]
Marinelli, R.A.; Tietz, P.S.; Caride, A.J.; Huang, B.Q.; LaRusso, N.F. Water transporting properties of hepatocyte basolateral and canalicular plasma membrane domains. J. Biol. Chem., 2003, 278, 43157-43162.
[45]
Gregoire, F.; Lucidi, V.; Zerrad-Saadi, A.; Virreira, M.; Bolaky, N.; Delforge, V.; Lemmers, A.; Donckier, V.; Devière, J.; Demetter, P.; Perret, J.; Delporte, C. Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem. Cell Biol., 2015, 144, 347-363.
[46]
Lindskog, C.; Asplund, A.; Catrina, A.; Nielsen, S.; Rützler, M. A Systematic characterization of aquaporin-9 expression in human normal and pathological tissues. J. Histochem. Cytochem., 2016, 64, 287-300.
[47]
Larocca, M.C.; Soria, L.R.; Espelt, M.V.; Lehmann, G.L.; Marinelli, R.A. Knockdown of hepatocyte aquaporin-8 by RNA interference induces defective bile canalicular water transport. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296, G93-G100.
[48]
Sun, A.Q.; Swaby, I.; Xu, S.; Suchy, F.J. Cell-specific basolateral membrane sorting of the human liver Na+-dependent bile acid cotransporter. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280, G1305-G1313.
[49]
Dranoff, J.A.; McClure, M.; Burgstahler, A.D.; Denson, L.A.; Crawford, A.R.; Crawford, J.M.; Karpen, S.J.; Nathanson, M.H. Short-term regulation of bile acid uptake by microfilament-dependent translocation of rat ntcp to the plasma membrane. Hepatology, 1999, 30, 223-229.
[50]
Webster, C.R.; Anwer, M.S. Role of the PI3K/PKB signaling pathway in cAMP-mediated translocation of rat liver Ntcp. Am. J. Physiol. Gastrointest. Liver Physiol., 1999, 277, G1165-G1172.
[51]
Sarkar, S.; Bananis, E.; Nath, S.; Anwer, M.S.; Wolkoff, A.W.; Murray, J.W. PKCζ is required for microtubule-based motility of vesicles containing the Ntcp transporter. Traffic, 2006, 7, 1078-1091.
[52]
Kühlkamp, T.; Keitel, V.; Helmer, A.; Häussinger, D.; Kubitz, R. Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system. Biol. Chem., 2005, 386, 1065-1074.
[53]
Appelman, M.D.; Chakraborty, A.; Protzer, U.; McKeating, J.A.; van de Graaf, S.F.J. N-Glycosylation of the Na+-taurocholate cotransporting polypeptide (NTCP) determines its trafficking and stability and is required for hepatitis B virus infection. PLoS One, 2017, 12, e0170419.
[54]
Molina, H.; Azocar, L.; Ananthanarayanan, M.; Arrese, M.; Miquel, J.F. Localization of the Sodium-taurocholate cotransporting polypeptide in membrane rafts and modulation of its activity by cholesterol in vitro. Biochim. Biophys. Acta, 2008, 1778, 1283-1291.
[55]
Sun, A-Q.; Ponamgi, V.M.; Boyer, J.L.; Suchy, F.J. Membrane trafficking of the human organic anion-transporting polypeptide C (hOATPC). Pharm. Res., 2008, 25, 463-474.
[56]
Wang, P.; Wang, J.J.; Xiao, Y.; Murray, J.W.; Novikoff, P.M.; Angeletti, R.H.; Orr, G.A.; Lan, D.; Silver, D.L.; Wolkoff, A.W. Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J. Biol. Chem., 2005, 280, 30143-30149.
[57]
Wang, W-J.; Murray, J.W.; Wolkoff, A.W. Oatp1a1 requires PDZK1 to traffic to the plasma membrane by selective recruitment of microtubule-based motor proteins. Drug Metab. Dispos., 2013, 42, 62-69.
[58]
Choi, J.H.; Murray, J.W.; Wolkoff, A.W. PDZK1 binding and serine phosphorylation regulate subcellular trafficking of organic anion transport protein 1a1. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300, G384-G393.
[59]
Glavy, J.S.; Wu, S.M.; Wang, P.J.; Orr, G.A.; Wolkoff, A.W. Down-regulation by extracellular ATP of rat hepatocyte organic anion transport is mediated by serine phosphorylation of oatp1. J. Biol. Chem., 2000, 275, 1479-1484.
[60]
Kipp, H.; Arias, I.M. Trafficking of canalicular ABC transporters in hepatocytes. Annu. Rev. Physiol., 2002, 64, 595-608.
[61]
Kipp, H.; Arias, I.M. Newly synthesized canalicular ABC Transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J. Biol. Chem., 2000, 275, 15917-15925.
[62]
Kipp, H.; Pichetshote, N.; Arias, I.M. Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J. Biol. Chem., 2000, 276, 7218-7224.
[63]
Sai, Y.; Nies, A.T.; Arias, I.M. Bile acid secretion and direct targeting of mdr1-green fluorescent protein from Golgi to the canalicular membrane in polarized WIF-B cells. J. Cell Sci., 1999, 112, 4535-4545.
[64]
Bretscher, A.; Edwards, K.; Fehon, R.G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol., 2002, 3, 586-599.
[65]
Fehon, R.G.; McClatchey, A.I.; Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol., 2010, 11, 276-287.
[66]
Matsui, T.; Maeda, M.; Doi, Y.; Yonemura, S.; Amano, M.; Kaibuchi, K.; Tsukita, S.; Tsukita, S. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol., 1998, 140, 647-657.
[67]
Fukata, Y.; Kimura, K.; Oshiro, N.; Saya, H.; Matsuura, Y.; Kaibuchi, K. Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase and myosin phosphatase. J. Cell Biol., 1998, 141, 409-418.
[68]
Fouassier, L.; Duan, C.Y.; Feranchak, A.P.; Yun, C.H.; Sutherland, E.; Simon, F.; Fitz, J.G.; Doctor, R.B. Ezrin-radixin-moesin-binding phosphoprotein 50 is expressed at the apical membrane of rat liver epithelia. Hepatology, 2001, 33, 166-176.
[69]
Amieva, M.R.; Wilgenbus, K.K.; Furthmayr, H. Radixin is a component of hepatocyte microvilli in situ. Exp. Cell Res., 1994, 210, 140-144.
[70]
Wang, W.; Soroka, C.J.; Mennone, A.; Rahner, C.; Harry, K.; Pypaert, M.; Boyer, J.L. Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Gastroenterology, 2006, 131, 878-884.
[71]
Hung, A.Y.; Sheng, M. PDZ Domains: structural modules for protein complex assembly. J. Biol. Chem., 2002, 277, 5699-5702.
[72]
Li, M.; Wang, W.; Soroka, C.J.; Mennone, A.; Harry, K.; Weinman, E.J.; Boyer, J.L. NHERF-1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. J. Biol. Chem., 2010, 285, 19299-19307.
[73]
Venot, Q.; Delaunay, J-L.; Fouassier, L.; Delautier, D.; Falguières, T.; Housset, C.; Maurice, M.; Aït-Slimane, T. A PDZ-like motif in the biliary transporter ABCB4 interacts with the scaffold protein EBP50 and regulates ABCB4 cell surface expression. PLoS One, 2016, 11, e0146962.
[74]
Emi, Y.; Nomura, S.; Yokota, H.; Sakaguchi, M. ATP-binding cassette transporter isoform C2 localizes to the apical plasma membrane via interactions with scaffolding protein. J. Biochem., 2011, 149, 177-189.
[75]
Przybylla, S.; Stindt, J.; Kleinschrodt, D.; Schulte am Esch, J.; Häussinger, D.; Keitel, V.; Smits, S.H.; Schmitt, L. Analysis of the bile salt export pump (ABCB11) interactome employing complementary approaches. PLoS One, 2016, 11, e0159778.
[76]
Gallagher, A.R.; Cedzich, A.; Gretz, N.; Somlo, S.; Witzgall, R. The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc. Natl. Acad. Sci. USA, 2000, 97, 4017-4022.
[77]
Ortiz, D.F.; Moseley, J.; Calderon, G.; Swift, A.L.; Li, S.; Arias, I. Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J. Biol. Chem., 2004, 279, 32761-32770.
[78]
Ammer, A.G.; Weed, S.A. Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil. Cytoskeleton, 2008, 65, 687-707.
[79]
Cao, H.; Orth, J.D.; Chen, J.; Weller, S.G.; Heuser, J.E.; McNiven, M.A. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell. Biol., 2003, 23, 2162-2170.
[80]
Mochly-Rosen, D.; Khaner, H.; Lopez, J. Identification of intracellular receptor proteins for activated protein kinase C. Proc. Natl. Acad. Sci. USA, 1991, 88, 3997-4000.
[81]
Liedtke, C.M.; Yun, C.H.C.; Kyle, N.; Wang, D. Protein kinase Cε-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor. J. Biol. Chem., 2002, 277, 22925-22933.
[82]
Ikebuchi, Y.; Takada, T.; Ito, K.; Yoshikado, T.; Anzai, N.; Kanai, Y.; Suzuki, H. Receptor for activated C-kinase 1 regulates the cellular localization and function of ABCB4. Hepatol. Res., 2009, 39, 1091-1107.
[83]
Kato, Y.; Watanabe, C.; Tsuji, A. Regulation of drug transporters by PDZ adaptor proteins and nuclear receptors. Eur. J. Pharm. Sci., 2006, 27, 487-500.
[84]
Aderem, A. The MARCKS brothers: a family of protein kinase C substrates. Cell, 1992, 71, 713-716.
[85]
Arbuzova, A.; Schmitz, A.A.P.; Vergères, G. Cross-talk unfolded: MARCKS proteins. Biochem. J., 2002, 362, 1-12.
[86]
Hartwig, J.H.; Thelen, M.; Rosen, A.; Janmey, P.A.; Nairn, A.C.; Aderem, A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature, 1992, 356, 618-622.
[87]
Park, Y-S.; Hur, E-M.; Choi, B-H.; Kwak, E.; Jun, D-J.; Park, S-J.; Kim, K-T. Involvement of protein kinase C-epsilon in activity-dependent potentiation of large dense-core vesicle exocytosis in chromaffin cells. J. Neurosci., 2006, 26, 8999-9005.
[88]
Brown, D.A.; London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem., 2000, 275, 17221-17224.
[89]
Guyot, C.; Stieger, B. Interaction of bile salts with rat canalicular membrane vesicles: evidence for bile salt resistant microdomains. J. Hepatol., 2011, 55, 1368-1376.
[90]
Ismair, M.G.; Hausler, S.; Stuermer, C.A.; Guyot, C.; Meier, P.J.; Roth, J.; Stieger, B. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology, 2009, 49, 1673-1682.
[91]
Gerloff, T.; Meier, P.J.; Stieger, B. Taurocholate induces preferential release of phosphatidylcholine from rat liver canalicular vesicles. Liver, 1998, 18, 306-312.
[92]
Yousef, I.M.; Fisher, M.M. In vitro effect of free bile acids on the bile canalicular membrane phospholipids in the rat. Can. J. Biochem., 1976, 54, 1040-1046.
[93]
Guyot, C.; Hofstetter, L.; Stieger, B. Differential effects of membrane cholesterol content on the transport activity of multidrug resistance-associated protein 2 (ABCC2) and of the bile salt export pump (ABCB11). Mol. Pharmacol., 2014, 85, 909-920.
[94]
Kis, E.; Ioja, E.; Nagy, T.; Szente, L.; Herédi-Szabó, K.; Krajcsi, P. Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab. Dispos., 2009, 37, 1878-1886.
[95]
Paulusma, C.C.; de Waart, D.R.; Kunne, C.; Mok, K.S.; Elferink, R.P.J.O. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J. Biol. Chem., 2009, 284, 9947-9954.
[96]
Brdickova, N.; Brdicka, T.; Andera, L.; Spicka, J.; Angelisova, P.; Milgram, S.L.; Horejsi, V. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett., 2001, 507, 133-136.
Epand, R. M. Proteins and cholesterol-rich domains. Biochim. Biophys. Acta - Biomembr, 2008, 1778, 1576-1582.
[98]
Nabi, I.R.; Le, P.U. Caveolae/raft-dependent endocytosis. J. Cell Biol., 2003, 161, 673-677.
[99]
Hayashi, H.; Inamura, K.; Aida, K.; Naoi, S.; Horikawa, R.; Nagasaka, H.; Takatani, T.; Fukushima, T.; Hattori, A.; Yabuki, T.; Horii, I.; Sugiyama, Y. AP2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function. Hepatology, 2012, 55, 1889-1900.
[100]
Lam, P.; Xu, S.; Soroka, C.J.; Boyer, J.L. A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis. Hepatology, 2012, 55, 1901-1911.
[101]
Hayashi, H.; Mizuno, T.; Horikawa, R.; Nagasaka, H.; Yabuki, T.; Takikawa, H.; Sugiyama, Y. 4-Phenylbutyrate modulates ubiquitination of hepatocanalicular MRP2 and reduces serum total bilirubin concentration. J. Hepatol., 2012, 56, 1136-1144.
[102]
Hayashi, H.; Sugiyama, Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology, 2007, 45, 1506-1516.
[103]
Kato, T.; Hayashi, H.; Sugiyama, Y. Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11). Biochim. Biophys. Acta, 2010, 1801, 1005-1012.
[104]
Aida, K.; Hayashi, H.; Inamura, K.; Mizuno, T.; Sugiyama, Y. Differential roles of ubiquitination in the degradation mechanism of cell surface-resident bile salt export pump and multidrug resistance-associated protein 2. Mol. Pharmacol., 2014, 85, 482-491.
[105]
Hayashi, H.; Sugiyama, Y. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol. Pharmacol., 2009, 75, 143-150.
[106]
Gerloff, T.; Stieger, B.; Hagenbuch, B.; Madon, J.; Landmann, L.; Roth, J.; Hofmann, A.F.; Meier, P.J. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem., 1998, 273, 10046-10050.
[107]
Soroka, C.J.; Pate, M.K.; Boyer, J.L. Canalicular export pumps traffic with polymeric immunoglobulin A receptor on the same microtubule-associated vesicle in rat liver. J. Biol. Chem., 1999, 274, 26416-26424.
[108]
Wakabayashi, Y.; Kipp, H. Arias. I. M. Transporters on demand: intracellular reservoirs and cycling of bile canalicular ABC transporters. J. Biol. Chem., 2006, 281, 27669-27673.
[109]
Wakabayashi, Y.; Lippincott-Schwartz, J.; Arias, I.M. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol. Biol. Cell, 2004, 15, 3485-3496.
[110]
Bi, G.Q.; Morris, R.L.; Liao, G.; Alderton, J.M.; Scholey, J.M.; Steinhardt, R.A. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol., 1997, 138, 999-1008.
[111]
Hoekstra, D.; van Tyteca, D. Ij. S. C. The subapical compartment: a traffic center in membrane polarity development. J. Cell Sci., 2004, 117, 2183-2192.
[112]
Boaglio, A.C.; Zucchetti, A.E.; Toledo, F.D.; Barosso, I.R.; Sánchez Pozzi, E.J.; Crocenzi, F.A.; Roma, M.G. ERK1/2 and p38 MAPKs are complementarily involved in estradiol 17β-D-glucuronide-induced cholestasis: crosstalk with cPKC and PI3K. PLoS One, 2012, 7, e49255.
[113]
Zucchetti, A.E.; Barosso, I.R.; Boaglio, A.C.; Luquita, M.G.; Roma, M.G.; Crocenzi, F.A.; Sanchez Pozzi, E.J. Hormonal modulation of hepatic cAMP prevents estradiol 17β-D-glucuronide-induced cholestasis in perfused rat liver. Dig. Dis. Sci., 2013, 58, 1602-1614.
[114]
Zucchetti, A.E.; Barosso, I.R.; Boaglio, A.; Pellegrino, J.M.; Ochoa, E.J.; Roma, M.G.; Crocenzi, F.A.; Sánchez Pozzi, E.J. Prevention of estradiol 17β-D-glucuronide-induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes. Mol. Biol. Cell, 2011, 22, 3902-3915.
[115]
Apodaca, G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic, 2001, 2, 149-159.
[116]
Borst, P.; Elferink, R.O. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem., 2002, 71, 537-592.
[117]
Rahner, C.; Stieger, B.; Landmann, L. Apical endocytosis in rat hepatocytes in situ involves clathrin, traverses a subapical compartment, and leads to lysosomes. Gastroenterology, 2000, 119, 1692-1707.
[118]
Grant, B.D.; Donaldson, J.G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol., 2009, 10, 597-608.
[119]
Tietz, P.; Jefferson, J.; Pagano, R.; Larusso, N.F. Membrane microdomains in hepatocytes: potential target areas for proteins involved in canalicular bile secretion. J. Lipid Res., 2005, 46, 1426-1432.
[120]
Martinez-Anso, E.; Castillo, J.E.; Diez, J.; Medina, J.F.; Prieto, J. Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. Hepatology, 1994, 19, 1400-1406.
[121]
Alvaro, D.; Della Guardia, P.; Bini, A.; Gigliozzi, A.; Furfaro, S.; La Rosa, T.; Piat, C.; Capocaccia, L. Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets. J. Clin. Invest., 1995, 96, 665-675.
[122]
Calamita, G.; Mazzone, A.; Bizzoca, A.; Cavalier, A.; Cassano, G.; Thomas, D.; Svelto, M. Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur. J. Cell Biol., 2001, 80, 711-719.
[123]
Marinelli, R.A.; Gradilone, S.A.; Carreras, F.I.; Calamita, G.; Lehmann, G.L. Liver aquaporins: significance in canalicular and ductal bile formation. Ann. Hepatol., 3, 130-136.
[124]
Portincasa, P.; Palasciano, G.; Svelto, M.; Calamita, G. Aquaporins in the hepatobiliary tract. Which, where and what they do in health and disease. Eur. J. Clin. Invest., 2008, 38, 1-10.
[125]
Huebert, R.C.; Splinter, P.L.; Garcia, F.; Marinelli, R.A.; LaRusso, N.F. Expression and Localization of Aquaporin Water Channels in Rat Hepatocytes. Evidence for a Role in Canalicular Bile Secretion. J. Biol. Chem., 2002, 277, 22710-22717.
[126]
Gradilone, S.A.; Garcia, F.; Huebert, R.C.; Tietz, P.S.; Larocca, M.C.; Kierbel, A.; Carreras, F.I.; LaRusso, N.F.; Marinelli, R.A. Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Hepatology, 2003, 37, 1435-1441.
[127]
Gradilone, S.A.; Carreras, F.I.; Lehmann, G.L.; Marinelli, R.A. Phosphoinositide 3-kinase is involved in the glucagon-induced translocation of aquaporin-8 to hepatocyte plasma membrane. Biol. Cell, 2005, 97, 831-836.
[128]
Gradilone, S.A.; Tietz, P.S.; Splinter, P.L.; Marinelli, R.A.; LaRusso, N.F. Expression and subcellular localization of aquaporin water channels in the polarized hepatocyte cell line, WIF-B. BMC Physiol., 2005, 5, 13.
[129]
Crocenzi, F.A.; Mottino, A.D.; Cao, J.; Veggi, L.M.; Sánchez Pozzi, E.J.; Vore, M.; Coleman, R.; Roma, M.G. Estradiol-17β-D-glucuronide induces endocytic internalization of Bsep in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285, G449-G459.
[130]
Mottino, A.D.; Cao, J.; Veggi, L.M.; Crocenzi, F.; Roma, M.G.; Vore, M. Altered localization and activity of canalicular Mrp2 in estradiol-17β-D-glucuronide-induced cholestasis. Hepatology, 2002, 35, 1409-1419.
[131]
Beuers, U.; Bilzer, M.; Chittattu, A.; Kullack-Ublick, G.A.; Keppler, D.; Paumgartner, G.; Dombrowski, F. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology, 2001, 33, 1206-1216.
[132]
Crocenzi, F. A.; Mottino, A. D.; Sánchez Pozzi, E. J.; Pellegrino, J. M.; Rodríguez Garay, E. A.; Milkiewicz, P.; Vore, M.; Coleman, R.; Roma, M. G. Impaired localisation and transport function of canalicular Bsep in taurolithocholate induced cholestasis in the rat. Gut, 2003, 52, 1170-1177.
[133]
Dombrowski, F.; Stieger, B.; Beuers, U. Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab. Invest, 2005, 86, 166-174.
[134]
Rost, D.; Kloeters-Plachky, P.; Stiehl, A. Retrieval of the rat canalicular conjugate export pump Mrp2 is associated with a rearrangement of actin filaments and radixin in bile salt-induced cholestasis. Eur. J. Med. Res., 2008, 13, 314-318.
[135]
Roman, I.D.; Fernandez-Moreno, M.D.; Fueyo, J.A.; Roma, M.G.; Coleman, R. Cyclosporin A induced internalization of the bile salt export pump in isolated rat hepatocyte couplets. Toxicol. Sci., 2003, 71, 276-281.
[136]
Tsuboi, K.; Tazuma, S.; Ochi, H.; Chayama, K. Hydrophilic bile salts have a cytoprotective effect against cyclosporine A-induced cholestasis through enhanced canalicular membrane fluidity and transporter activity. Hepatol. Res., 2003, 25, 38-47.
[137]
Crocenzi, F.A.; Pellegrino, J.M.; Catania, V.A.; Luquita, M.G.; Roma, M.G.; Mottino, A.D.; Sanchez Pozzi, E.J. Galactosamine prevents ethinylestradiol-induced cholestasis. Drug Metab. Dispos., 2006, 34, 993-997.
[138]
Kojima, H.; Sakurai, S.; Yoshiji, H.; Uemura, M.; Yoshikawa, M.; Fukui, H. The role of radixin in altered localization of canalicular conjugate export pump Mrp2 in cholestatic rat liver. Hepatol. Res., 2008, 38, 202-210.
[139]
Trauner, M.; Arrese, M.; Soroka, C.J.; Ananthanarayanan, M.; Koeppel, T.A.; Schlosser, S.F.; Suchy, F.J.; Keppler, D.; Boyer, J.L. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology, 1997, 113, 255-264.
[140]
Anwer, M.S. Role of protein kinase C isoforms in bile formation and cholestasis. Hepatology, 2014, 60, 1090-1097.
[141]
Schonhoff, C.M.; Webster, C.R.; Anwer, M.S. Taurolithocholate-induced MRP2 retrieval involves MARCKS phosphorylation by protein kinase Cε in HUH-NTCP Cells. Hepatology, 2013, 58, 284-292.
[142]
Schwenk, M.; Schwarz, L.R.; Greim, H. Taurolithocholate inhibits taurocholate uptake by isolated hepatocytes at low concentrations. Naunyn Schmiedebergs Arch. Pharmacol., 1977, 298, 175-179.
[143]
Schonhoff, C.M.; Yamazaki, A.; Hohenester, S.; Webster, C.R.; Bouscarel, B.; Anwer, M.S. PKCε-dependent and -independent effects of taurolithocholate on PI3K/PKB pathway and taurocholate uptake in HuH-NTCP cell line. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297, G1259-G1267.
[144]
Mühlfeld, S.; Domanova, O.; Berlage, T.; Stross, C.; Helmer, A.; Keitel, V.; Häussinger, D.; Kubitz, R. Short-term feedback regulation of bile salt uptake by bile salts in rodent liver. Hepatology, 2012, 56, 2387-2397.
[145]
Meyers, M.; Slikker, W.; Pascoe, G.; Vore, M. Characterization of cholestasis induced by estradiol-17β-D-glucuronide in the rat. J. Pharmacol. Exp. Ther., 1980, 214, 87-93.
[146]
Crocenzi, F.A.; Mottino, A.D.; Cao, J.; Veggi, L.M.; Pozzi, E.J.S.; Vore, M.; Coleman, R.; Roma, M.G. Estradiol-17β-D-glucuronide induces endocytic internalization of Bsep in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285, G449-G459.
[147]
Mottino, A.D.; Hoffman, T.; Crocenzi, F.A.; Sánchez Pozzi, E.J.; Roma, M.G.; Vore, M. Disruption of function and localization of tight junctional structures and Mrp2 in sustained estradiol-17β-D-glucuronide-induced cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293, G391-G402.
[148]
Kan, K.S.; Monte, M.; Parslow, R.A.; Coleman, R. Oestradiol 17β-glucuronide increases tight junctional permeability in rat liver. Biochem. J., 1989, 261, 297-300.
[149]
Song, J.Y.; Van Marle, J.; Van Noorden, C.J.; Frederiks, W.F. Redistribution of Ca2+, Mg2+-ATPase activity in relation to alterations of the cytoskeleton and tight junctions in hepatocytes of cholestatic rat liver. Eur. J. Cell Biol., 1996, 71, 277-285.
[150]
Mottino, A.D.; Carreras, F.I.; Gradilone, S.A.; Marinelli, R.A.; Vore, M. Canalicular membrane localization of hepatocyte aquaporin-8 is preserved in estradiol-17β-D-glucuronide-induced cholestasis. J. Hepatol., 2006, 44, 232-233.
[151]
Poli, G. Liver damage due to free radicals. Br. Med. Bull., 1993, 49, 604-620.
[152]
Roma, M.G.; Sanchez Pozzi, E.J. Oxidative stress: a radical way to stop making bile. Ann. Hepatol., 2008, 7, 16-33.
[153]
Perez, L.M.; Milkiewicz, P.; Elias, E.; Coleman, R.; Sanchez Pozzi, E.J.; Roma, M.G. Oxidative stress induces internalization of the bile salt export pump, Bsep, and bile salt secretory failure in isolated rat hepatocyte couplets: a role for protein kinase C and prevention by protein kinase A. Toxicol. Sci., 2006, 91, 150-158.
[154]
Schmitt, M.; Kubitz, R.; Wettstein, M.; vom Dahl, S.; Haussinger, D. Retrieval of the mrp2 gene encoded conjugate export pump from the canalicular membrane contributes to cholestasis induced by tert-butyl hydroperoxide and chloro-dinitrobenzene. Biol. Chem., 2000, 381, 487-495.
[155]
Ji, B.; Ito, K.; Sekine, S.; Tajima, A.; Horie, T. Ethacrynic-acid-induced glutathione depletion and oxidative stress in normal and Mrp2-deficient rat liver. Free Radic. Biol. Med., 2004, 37, 1718-1729.
[156]
Sekine, S.; Ito, K.; Horie, T. Oxidative stress and Mrp2 internalization. Free Radic. Biol. Med., 2006, 40, 2166-2174.
[157]
Kudo, A.; Kashiwagi, S.; Kajimura, M.; Yoshimura, Y.; Uchida, K.; Arii, S.; Suematsu, M. Kupffer cells alter organic anion transport through multidrug resistance protein 2 in the post-cold ischemic rat liver. Hepatology, 2004, 39, 1099-1109.
[158]
Ban, D.; Kudo, A.; Sui, S.; Tanaka, S.; Nakamura, N.; Ito, K.; Suematsu, M.; Arii, S. Decreased Mrp2-dependent bile flow in the post-warm ischemic rat liver. J. Surg. Res., 2009, 153, 310-316.
[159]
Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30, 1-12.
[160]
Sekine, S.; Ito, K.; Horie, T. Canalicular Mrp2 localization is reversibly regulated by the intracellular redox status. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295, G1035-41.
[161]
Sekine, S.; Ito, K.; Saeki, J.; Horie, T. Interaction of Mrp2 with radixin causes reversible canalicular Mrp2 localization induced by intracellular redox status. Biochim. Biophys. Acta, 2011, 1812, 1427-1434.
[162]
Sekine, S.; Mitsuki, K.; Ito, K.; Kugioka, S.; Horie, T. Sustained intrahepatic glutathione depletion causes proteasomal degradation of multidrug resistance-associated protein 2 in rat liver. Biochim. Biophys. Acta, 2012, 1822, 980-987.
[163]
Tuma, P.L.; Finnegan, C.M.; Yi, J.H.; Hubbard, A.L. Evidence for apical endocytosis in polarized hepatic cells: phosphoinositide 3-kinase inhibitors lead to the lysosomal accumulation of resident apical plasma membrane proteins. J. Cell Biol., 1999, 145, 1089-1102.
[164]
Minami, S.; Ito, K.; Honma, M.; Ikebuchi, Y.; Anzai, N.; Kanai, Y.; Nishida, T.; Tsukita, S.; Sekine, S.; Horie, T.; Suzuki, H. Posttranslational regulation of Abcc2 expression by SUMOylation system. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296, G406-G413.
[165]
Suda, J.; Rockey, D.C.; Karvar, S. Phosphorylation dynamics of radixin in hypoxia-induced hepatocyte injury. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 308, G313-G324.
[166]
Muchova, L.; Vanova, K.; Zelenka, J.; Lenicek, M.; Petr, T.; Vejrazka, M.; Sticova, E.; Vreman, H.J.; Wong, R.J.; Vitek, L. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. J. Cell. Mol. Med., 2011, 15, 1156-1165.
[167]
Basiglio, C.L.; Toledo, F.D.; Boaglio, A.C.; Arriaga, S.M.; Ochoa, J.E.; Sánchez Pozzi, E.J.; Mottino, A.D.; Roma, M.G. Physiological concentrations of unconjugated bilirubin prevent oxidative stress-induced hepatocanalicular dysfunction and cholestasis. Arch. Toxicol., 2014, 88, 501-514.
[168]
Schliess, F.; Häussinger, D. Osmosensing by integrins in rat liver. Methods Enzymol., 2007, 428, 129-144.
[169]
Haussinger, D.; Hallbrucker, C.; Saha, N.; Lang, F.; Gerok, W. Cell volume and bile acid excretion. Biochem. J., 1992, 288(Pt 2), 681-689.
[170]
Schmitt, M.; Kubitz, R.; Lizun, S.; Wettstein, M.; Haussinger, D. Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology, 2001, 33, 509-518.
[171]
Cantore, M.; Reinehr, R.; Sommerfeld, A.; Becker, M.; Häussinger, D. The Src family kinase Fyn mediates hyperosmolarity-induced Mrp2 and Bsep retrieval from canalicular membrane. J. Biol. Chem., 2011, 286, 45014-45029.
[172]
Webster, C.R.; Blanch, C.J.; Phillips, J.; Anwer, M.S. Cell swelling-induced translocation of rat liver Na+/taurocholate cotransport polypeptide is mediated via the phosphoinositide 3-kinase signaling pathway. J. Biol. Chem., 2000, 275, 29754-29760.
[173]
Kullak-Ublick, G.; Stieger, B.; Meier, P.J. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology, 2004, 126, 322-342.
[174]
Geier, A.; Fickert, P.; Trauner, M. Mechanisms of Disease: mechanisms and clinical implications of cholestasis in sepsis. Nat. Clin. Pract. Gastroenterol. Hepatol., 2006, 3, 574-585.
[175]
Chand, N.; Sanyal, A.J. Sepsis-induced cholestasis. Hepatology, 2007, 45, 230-241.
[176]
Elferink, M.G.; Olinga, P.; Draaisma, A.L.; Merema, M.T.; Faber, K.N.; Slooff, M.J.; Meijer, D.K.; Groothuis, G.M. LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287, G1008-G1016.
[177]
Dombrowski, F.; Kubitz, R.; Chittattu, A.; Wettstein, M.; Saha, N.; Häussinger, D.; Haussinger, D. Electron-microscopic demonstration of multidrug resistance protein 2 (Mrp2) retrieval from the canalicular membrane in response to hyperosmolarity and lipopolysaccharide. Biochem. J., 2000, 348(Pt 1), 183-188.
[178]
Kubitz, R.; Wettstein, M.; Warskulat, U.; Häussinger, D. Regulation of the multidrug resistance protein 2 in the rat liver by lipopolysaccharide and dexamethasone. Gastroenterology, 1999, 116, 401-410.
[179]
Vos, T.A.; Hooiveld, G.J.E.J.; Koning, H.; Childs, S.; Meijer, D.K.F.; Moshage, H.; Jansen, P.L.; Muller, M. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology, 1998, 28, 1637-1644.
[180]
Zinchuk, V.; Zinchuk, O.; Okada, T. Experimental LPS-induced cholestasis alters subcellular distribution and affects colocalization of Mrp2 and Bsep proteins: A quantitative colocalization study. Microsc. Res. Tech., 2005, 67, 65-70.
[181]
Bolder, U.; Jeschke, M.G.; Landmann, L.; Wolf, F.; de Sousa, C.; Schlitt, H-J.; Przkora, R. Heat stress enhances recovery of hepatocyte bile acid and organic anion transporters in endotoxemic rats by multiple mechanisms. Cell Stress Chaperones, 2006, 11, 89-100.
[182]
Bolder, U.; Schmidt, A.; Landmann, L.; Kidder, V.; Tange, S.; Jauch, K-W. Heat stress prevents impairment of bile acid transport in endotoxemic rats by a posttranscriptional mechanism. Gastroenterology, 2002, 122, 963-973.
[183]
Green, R.M.; Beier, D.; Gollan, J.L. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology, 1996, 111, 193-198.
[184]
Kim, P.K.; Chen, J.; Andrejko, K.M.; Deutschman, C.S. Intraabdominal sepsis down-regulates transcription of sodium taurocholate cotransporter and multidrug resistance-associated protein in rats. Shock, 2000, 14, 176-181.
[185]
Siewert, E.; Dietrich, C.G.; Lammert, F.; Heinrich, P.C.; Matern, S.; Gartung, C.; Geier, A. Interleukin-6 regulates hepatic transporters during acute-phase response. Biochem. Biophys. Res. Commun., 2004, 322, 232-238.
[186]
Green, R.M.; Whiting, J.F.; Rosenbluth, A.B.; Beier, D.; Gollan, J.L. Interleukin-6 inhibits hepatocyte taurocholate uptake and sodium-potassium-adenosinetriphosphatase activity. Am. J. Physiol. Gastrointest. Liver Physiol., 1994, 267, G1094-G1100.
[187]
Whiting, J.F.; Green, R.M.; Rosenbluth, A.B.; Gollan, J.L. Tumor necrosis factor-α decreases hepatocyte bile salt uptake and mediates endotoxin-induced cholestasis. Hepatology, 1995, 22, 1273-1278.
[188]
Schonhoff, C.M.; Ramasamy, U.; Anwer, M.S. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300, G364-G370.
[189]
Yano, K.; Sekine, S.; Nemoto, K.; Fuwa, T.; Horie, T. The effect of dimerumic acid on LPS-induced downregulation of Mrp2 in the rat. Biochem. Pharmacol., 2010, 80, 533-539.
[190]
Sekine, S.; Yano, K.; Saeki, J.; Hashimoto, N.; Fuwa, T.; Horie, T. Oxidative stress is a triggering factor for LPS-induced Mrp2 internalization in the cryopreserved rat and human liver slices. Biochem. Biophys. Res. Commun., 2010, 399, 279-285.
[191]
Saeki, J.; Sekine, S.; Horie, T. LPS-induced dissociation of multidrug resistance-associated protein 2 (Mrp2) and radixin is associated with Mrp2 selective internalization in rats. Biochem. Pharmacol., 2011, 81, 178-184.
[192]
Paulusma, C.C.; Kothe, M.J.; Bakker, C.T.; Bosma, P.J. van, B. I.; van Marle, J.; Bolder, U.; Tytgat, G. N.; Oude Elferink, R. P. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology, 2000, 31, 684-693.
[193]
Carreras, F.I.; Gradilone, S.A.; Mazzone, A.; Garcia, F.; Huang, B.Q.; Ochoa, J.E.; Tietz, P.S.; LaRusso, N.F.; Calamita, G.; Marinelli, R.A. Rat hepatocyte aquaporin-8 water channels are down-regulated in extrahepatic cholestasis. Hepatology, 2003, 37, 1026-1033.
[194]
Roma, M.G.; Crocenzi, F.A.; Sánchez Pozzi, E.A. Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin. Sci. (Lond.), 2008, 114, 567-588.
[195]
Trauner, M.; Wagner, M.; Fickert, P.; Zollner, G. Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis. J. Clin. Gastroenterol., 2005, 39, S111-S124.
[196]
Kamisako, T.; Ogawa, H. Alteration of the expression of adenosine triphosphate-binding cassette transporters associated with bile acid and cholesterol transport in the rat liver and intestine during cholestasis. J. Gastroenterol. Hepatol., 2005, 20, 1429-1434.
[197]
Kanno, K.; Tazuma, S.; Niida, S.; Chayama, K. Unique reciprocal changes of hepatocellular membrane transporter expression and fluidity in rats with selective biliary obstruction. Hepatol. Res., 2003, 26, 157-163.
[198]
Lee, J.M.; Trauner, M.; Soroka, C.J.; Stieger, B.; Meier, P.J.; Boyer, J.L. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology, 2000, 118, 163-172.
[199]
Kim, N.D.; Moon, J-O.; Slitt, A.L.; Copple, B.L. Early growth response factor-1 is critical for cholestatic liver injury. Toxicol. Sci., 2005, 90, 586-595.
[200]
Borgognone, M.; Perez, L.M.; Basiglio, C.L.; Ochoa, J.E.; Roma, M.G. Signaling modulation of bile salt-induced necrosis in isolated rat hepatocytes. Toxicol. Sci., 2005, 83, 114-125.
[201]
Sokol, R.J.; Devereaux, M.; Khandwala, R.; O’Brien, K. Evidence for involvement of oxygen free radicals in bile acid toxicity to isolated rat hepatocytes. Hepatology, 1993, 17, 869-881.
[202]
Sheen-Chen, S-M.; Chen, H-S.; Ho, H-T.; Chen, W-J.; Sheen, C-C.; Eng, H-L. Effect of bile acid replacement on endotoxin-induced tumor necrosis factor-α production in obstructive jaundice. World J. Surg., 2002, 26, 448-450.
[203]
Assimakopoulos, S.F.; Scopa, C.D.; Vagianos, C.E. Pathophysiology of increased intestinal permeability in obstructive jaundice. World J. Gastroenterol., 2007, 13, 6458-6464.
[204]
Liu, T.Z.; Lee, K.T.; Chern, C.L.; Cheng, J.T.; Stern, A.; Tsai, L.Y. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB. Ann. Clin. Lab. Sci., 2001, 31, 383-390.
[205]
Donner, M.G.; Schumacher, S.; Warskulat, U.; Heinemann, J.; Haussinger, D. Obstructive cholestasis induces TNF-α- and IL-1-mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293, G1134-G1146.
[206]
Miura, T.; Kimura, N.; Yamada, T.; Shimizu, T.; Nanashima, N.; Yamana, D.; Hakamada, K.; Tsuchida, S. Sustained repression and translocation of Ntcp and expression of Mrp4 for cholestasis after rat 90% partial hepatectomy. J. Hepatol., 2011, 55, 407-414.
[207]
Jüngst, C.; Berg, T.; Cheng, J.; Green, R.M.; Jia, J.; Mason, A.L.; Lammert, F. Intrahepatic cholestasis in common chronic liver diseases. Eur. J. Clin. Invest., 2013, 43, 1069-1083.
[208]
Dzierlenga, A.L.; Clarke, J.D.; Cherrington, N.J. Nonalcoholic steatohepatitis modulates membrane protein retrieval and insertion processes. Drug Metab. Dispos., 2016, 44, 1799-1807.
[209]
Dzierlenga, A.L.; Clarke, J.D.; Hargraves, T.L.; Ainslie, G.R.; Vanderah, T.W.; Paine, M.F.; Cherrington, N.J. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J. Pharmacol. Exp. Ther., 2015, 352, 462-470.
[210]
Takahashi, S.; Kubo, K.; Waguri, S.; Yabashi, A.; Shin, H-W.; Katoh, Y.; Nakayama, K. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J. Cell Sci., 2012, 125, 4049-4057.
[211]
Fujii, H.; Kawada, N. Inflammation and fibrogenesis in steatohepatitis. J. Gastroenterol., 2012, 47, 215-225.
[212]
Tung, B.Y.; Carithers, R.L. Cholestasis and alcoholic liver disease. Clin. Liver Dis., 1999, 3, 585-601.
[213]
Shoda, J.; Kano, M.; Oda, K.; Kamiya, J.; Nimura, Y.; Suzuki, H.; Sugiyama, Y.; Miyazaki, H.; Todoroki, T.; Stengelin, S.; Kramer, W.; Matsuzaki, Y.; Tanaka, N. The expression levels of plasma membrane transporters in the cholestatic liver of patients undergoing biliary drainage and their association with the impairment of biliary secretory function. Am. J. Gastroenterol., 2001, 96, 3368-3378.
[214]
Kojima, H.; Sakurai, S.; Uemura, M.; Kitamura, K.; Kanno, H.; Nakai, Y.; Fukui, H. Disturbed colocalization of multidrug resistance protein 2 and radixin in human cholestatic liver diseases. J. Gastroenterol. Hepatol., 2008, 23, e120-e128.
[215]
Kojima, H.; Nies, A.T.; König, J.; Hagmann, W.; Spring, H.; Uemura, M.; Fukui, H.; Keppler, D. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. J. Hepatol., 2003, 39, 693-702.
[216]
Watanabe, N.; Takashimizu, S.; Kojima, S.; Kagawa, T.; Nishizaki, Y.; Mine, T.; Matsuzaki, S. Clinical and pathological features of a prolonged type of acute intrahepatic cholestasis. Hepatol. Res., 2007, 37, 598-607.
[217]
Chai, J.; Cai, S.Y.; Liu, X.; Lian, W.; Chen, S.; Zhang, L.; Feng, X.; Cheng, Y.; He, X.; He, Y.; Chen, L.; Wang, R.; Wang, H.; Boyer, J.L.; Chen, W. Canalicular membrane MRP2/ABCC2 internalization is determined by ezrin Thr567 phosphorylation in human obstructive cholestasis. J. Hepatol., 2015, 63, 1440-1448.
[218]
Rost, D.; Kartenbeck, J.; Keppler, D. Changes in the localization of the rat canalicular conjugate export pump Mrp2 in phalloidin-induced cholestasis. Hepatology, 1999, 29, 814-821.
[219]
Kikuchi, S.; Hata, M.; Fukumoto, K.; Yamane, Y.; Matsui, T.; Tamura, A.; Yonemura, S.; Yamagishi, H.; Keppler, D.; Tsukita, S.S.; Tsukita, S.S. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat. Genet., 2002, 31, 320-325.
[220]
Suda, J.; Zhu, L.; Karvar, S. Phosphorylation of radixin regulates cell polarity and Mrp-2 distribution in hepatocytes. Am. J. Physiol. Cell Physiol., 2011, 300, C416-C424.
[221]
Cao, H.; Orth, J.D.; Chen, J.; Weller, S.G.; Heuser, J.E.; McNiven, M.A. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell. Biol., 2003, 23, 2162-2170.
[222]
Lua, B.L.; Low, B.C. Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Lett., 2005, 579, 577-585.
[223]
Marrone, J.; Soria, L.R.; Danielli, M.; Lehmann, G.L.; Cecilia Larocca, M.; Marinelli, R.A. Hepatic gene transfer of human aquaporin-1 improves bile salt secretory failure in rats with estrogen-induced cholestasis. Hepatology, 2016, 535-548.
[224]
Juvet, L.K.; Berg, T.; Gjøen, T. The expression of endosomal rab proteins correlates with endocytic rate in rat liver cells. Hepatology, 1997, 25, 1204-1212.
[225]
Kelly, E.E.; Horgan, C.P.; McCaffrey, M.W. Rab11 proteins in health and disease. Biochem. Soc. Trans., 2012, 40, 1360-1367.
[226]
Park, S.W.; Schonhoff, C.M.; Webster, C.R.L.; Anwer, M.S. Rab11, but not Rab4, facilitates cyclic AMP- and tauroursodeoxycholate-induced MRP2 translocation to the plasma membrane. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307, G863-G870.
[227]
Pavarotti, M.; Capmany, A.; Vitale, N.; Colombo, M.I.; Damiani, M.T. Rab11 is phosphorylated by classical and novel protein kinase C isoenzymes upon sustained phorbol ester activation. Biol. Cell, 2012, 104, 102-115.
[228]
Kubitz, R.; Saha, N.; Kuhlkamp, T.; Dutta, S.; vom Dahl, S.; Wettstein, M.; Haussinger, D. Ca2+-dependent protein kinase C isoforms induce cholestasis in rat liver. J. Biol. Chem., 2004, 279, 10323-10330.
[229]
Kubitz, R.; Huth, C.; Schmitt, M.; Horbach, A.; Kullak-Ublick, G.; Haussinger, D. Protein kinase C-dependent distribution of the multidrug resistance protein 2 from the canalicular to the basolateral membrane in human HepG2 cells. Hepatology, 2001, 34, 340-350.
[230]
Stross, C.; Helmer, A.; Weissenberger, K.; Gorg, B.; Keitel, V.; Haussinger, D.; Kubitz, R. Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299, G320-G328.
[231]
Noe, J.; Hagenbuch, B.; Meier, P.J.; St Pierre, M.V. Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology, 2001, 33, 1223-1231.
[232]
Ito, K.; Wakabayashi, T.; Horie, T. Mrp2/Abcc2 transport activity is stimulated by protein kinase Cα in a baculo virus co-expression system. Life Sci., 2005, 77, 539-550.
[233]
Wimmer, R.; Hohenester, S.; Pusl, T.; Denk, G.U.; Rust, C.; Beuers, U. Tauroursodeoxycholic acid exerts anticholestatic effects by a cooperative cPKC α-/PKA-dependent mechanism in rat liver. Gut, 2008, 57, 1448-1454.
[234]
Hegedüs, T.; Sessler, T.; Scott, R.; Thelin, W.; Bakos, É.; Váradi, A.; Szabó, K.; Homolya, L.; Milgram, S.L.; Sarkadi, B. C-terminal phosphorylation of MRP2 modulates its interaction with PDZ proteins. Biochem. Biophys. Res. Commun., 2003, 302, 454-461.
[235]
Chambers, T.C.; Pohl, J.; Raynor, R.L.; Kuo, J.F. Identification of specific sites in human P-glycoprotein phosphorylated by protein kinase C. J. Biol. Chem., 1993, 268, 4592-4595.
[236]
Crocenzi, F.A.; Sanchez Pozzi, E.J.; Ruiz, M.L.; Zucchetti, A.E.; Roma, M.G.; Mottino, A.D.; Vore, M. Ca2+-dependent protein kinase C isoforms are critical to estradiol 17β-D-glucuronide-induced cholestasis in the rat. Hepatology, 2008, 48, 1885-1895.
[237]
Beuers, U.; Probst, I.; Soroka, C.; Boyer, J.L.; Kullak-Ublick, G.A.; Paumgartner, G. Modulation of protein kinase C by taurolithocholic acid in isolated rat hepatocytes. Hepatology, 1999, 29, 477-482.
[238]
Barosso, I.R.; Zucchetti, A.E.; Boaglio, A.C.; Larocca, M.C.; Taborda, D.R.; Luquita, M.G.; Roma, M.G.; Crocenzi, F.A.; Sánchez Pozzi, E.J. Sequential activation of classic PKC and estrogen receptor α is involved in estradiol 17β-D-glucuronide-induced cholestasis. PLoS One, 2012, 7, e50711.
[239]
Joel, P.B.; Traish, A.M.; Lannigan, D.A. Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor. Mol. Endocrinol., 1995, 9, 1041-1052.
[240]
Alzamora, R.; Harvey, B. Direct binding and activation of protein kinase C isoforms by steroid hormones. Steroids, 2008, 73, 885-888.
[241]
Barosso, I.R.; Zucchetti, A.E.; Miszczuk, G.S.; Boaglio, A.C.; Taborda, D.R.; Roma, M.G.; Crocenzi, F.A.; Sánchez Pozzi, E.J. EGFR participates downstream of ERα in estradiol-17β-D-glucuronide-induced impairment of Abcc2 function in isolated rat hepatocyte couplets. Arch. Toxicol., 2016, 90, 891-903.
[242]
Goode, N.; Hughes, K.; Woodgett, J.R.; Parker, P.J. Differential regulation of glycogen synthase kinase-3 β by protein kinase C isotypes. J. Biol. Chem., 1992, 267, 16878-16882.
[243]
Medunjanin, S.; Hermani, A.; De Servi, B.; Grisouard, J.; Rincke, G.; Mayer, D. Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor α and is involved in the regulation of receptor activity. J. Biol. Chem., 2005, 280, 33006-33014.
[244]
Egloff, A.M.; Rothstein, M.E.; Seethala, R.; Siegfried, J.M.; Grandis, J.R.; Stabile, L.P. Cross-talk between estrogen receptor and epidermal growth factor receptor in head and neck squamous cell carcinoma. Clin. Cancer Res., 2009, 15, 6529-6540.
[245]
Zucchetti, A.E.; Barosso, I.R.; Boaglio, A.C.; Basiglio, C.L.; Miszczuk, G.; Larocca, M.C.; Ruiz, M.L.; Davio, C.A.; Roma, M.G.; Crocenzi, F.A.; Pozzi, E.J. G-protein-coupled receptor 30/adenylyl cyclase/protein kinase A pathway is involved in estradiol 17β-D-glucuronide-induced cholestasis. Hepatology, 2014, 59, 1016-1029.
[246]
Boaglio, A.C.; Zucchetti, A.E.; Sanchez Pozzi, E.J.; Pellegrino, J.M.; Ochoa, J.E.; Mottino, A.D.; Vore, M.; Crocenzi, F.A.; Roma, M.G. Phosphoinositide 3-kinase/protein kinase B signaling pathway is involved in estradiol 17β-D-glucuronide-induced cholestasis: complementarity with classical protein kinase C. Hepatology, 2010, 52, 1465-1476.
[247]
Zimmerman, B.; Simaan, M.; Lee, M-H.; Luttrell, L.M.; Laporte, S.A. c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway. Cell. Signal., 2009, 21, 103-110.
[248]
Braccini, L.; Ciraolo, E.; Campa, C.C.; Perino, A.; Longo, D.L.; Tibolla, G.; Pregnolato, M.; Cao, Y.; Tassone, B.; Damilano, F.; Laffargue, M.; Calautti, E.; Falasca, M.; Norata, G.D.; Backer, J.M.; Hirsch, E. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat. Commun., 2015, 6, 7400.
[249]
Campa, C.C.; Franco, I.; Hirsch, E. PI3K-C2α: One enzyme for two products coupling vesicle trafficking and signal transduction. FEBS Lett., 2015, 589, 1552-1558.
[250]
Jaber, N.; Mohd-Naim, N.; Wang, Z.; DeLeon, J.L.; Kim, S.; Zhong, H.; Sheshadri, N.; Dou, Z.; Edinger, A.L.; Du, G.; Braga, V.M.; Zong, W.X. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J. Cell Sci., 2016, 129, 4424-4435.
[251]
Su, W-C.; Chao, T-C.; Huang, Y-L.; Weng, S-C.; Jeng, K-S.; Lai, M.M.C. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J. Virol., 2011, 85, 10561-10571.
[252]
Mottino, A.D.; Crocenzi, F.A.; Pozzi, E.J.; Veggi, L.M.; Roma, M.G.; Vore, M. Role of microtubules in estradiol-17β-D-glucuronide-induced alteration of canalicular Mrp2 localization and activity. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288, G327-G336.
[253]
Vagnoni, A.; Rodriguez, L.; Manser, C.; De Vos, K.J.; Miller, C.C. Phosphorylation of kinesin light chain 1 at serine 460 modulates binding and trafficking of calsyntenin-1. J. Cell Sci., 2011, 124, 1032-1042.
[254]
Toledo, F.D.; Basiglio, C.L.; Barosso, I.R.; Boaglio, A.C.; Zucchetti, A.E.; Sánchez Pozzi, E.J.; Roma, M.G. Mitogen-activated protein kinases are involved in hepatocanalicular dysfunction and cholestasis induced by oxidative stress. Arch. Toxicol., 2017, 91, 2391-2403.
[255]
Kamata, H.; Hirata, H. Redox regulation of cellular signalling. Cell. Signal., 1999, 11, 1-14.
[256]
Schonhoff, C.M.; Park, S.W.; Webster, C.R.L.L.; Anwer, M.S. p38 MAPK α and β isoforms differentially regulate plasma membrane localization of MRP2. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310, G999-G1005.
[257]
Beuers, U.; Denk, G.U.; Soroka, C.J.; Wimmer, R.; Rust, C.; Paumgartner, G.; Boyer, J.L. Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets. J. Biol. Chem., 2003, 278, 17810-17818.
[258]
Fu, D.; Wakabayashi, Y.; Lippincott-Schwartz, J.; Arias, I.M. Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proc. Natl. Acad. Sci. USA, 2011, 108, 1403-1408.
[259]
Chiang, J.Y.L. Sphingosine-1-phosphate receptor 2: a novel bile acid receptor and regulator of hepatic lipid metabolism? Hepatology, 2015, 61, 1118-1120.
[260]
Raufman, J-P.; Cheng, K.; Zimniak, P. Activation of muscarinic receptor signaling by bile acids: physiological and medical implications. Dig. Dis. Sci., 2003, 48, 1431-1444.
[261]
Fang, C.; Yoon, S.; Tindberg, N.; Järveläinen, H.A.; Lindros, K.O.; Ingelman-Sundberg, M. Hepatic expression of multiple acute phase proteins and down-regulation of nuclear receptors after acute endotoxin exposure. Biochem. Pharmacol., 2004, 67, 1389-1397.
[262]
Hatano, E.; Brenner, D.A. Akt protects mouse hepatocytes from TNF-α- and Fas-mediated apoptosis through NK-κ B activation. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281, G1357-G1368.
[263]
Ferro, T.; Neumann, P.; Gertzberg, N.; Clements, R.; Johnson, A. Protein kinase C-α mediates endothelial barrier dysfunction induced by TNF-α. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 278, L1107-L1117.
[264]
Kilpatrick, L.E.; Standage, S.W.; Li, H.; Raj, N.R.; Korchak, H.M.; Wolfson, M.R.; Deutschman, C.S. Protection against sepsis-induced lung injury by selective inhibition of protein kinase C δ (δ-PKC). J. Leukoc. Biol., 2011, 89, 3-10.
[265]
Rosell, A.; Arai, K.; Lok, J.; He, T.; Guo, S.; Navarro, M.; Montaner, J.; Katusic, Z.S.; Lo, E.H. Interleukin-1β augments angiogenic responses of murine endothelial progenitor cells in vitro. J. Cereb. Blood Flow Metab., 2009, 29, 933-943.
[266]
Shirakawa, F.; Yamashita, U.; Chedid, M.; Mizel, S.B. Cyclic AMP--an intracellular second messenger for interleukin 1. Proc. Natl. Acad. Sci. USA, 1988, 85, 8201-8205.
[267]
Yang, L.; Guo, X-G.; Du, C-Q.; Yang, J-X.; Jiang, D-M.; Li, B.; Zhou, W-J.; Zhang, F-R. Interleukin-1 β increases activity of human endothelial progenitor cells: involvement of PI3K-Akt signaling pathway. Inflammation, 2012, 35, 1242-1250.
[268]
Zimmerman, T.L.; Thevananther, S.; Ghose, R.; Burns, A.R.; Karpen, S.J. Nuclear export of retinoid X receptor α in response to interleukin-1β-mediated cell signaling: roles for JNK and SER260. J. Biol. Chem., 2006, 281, 15434-15440.
[269]
Recknagel, P.; Gonnert, F.a.; Westermann, M.; Lambeck, S.; Lupp, A.; Rudiger, A.; Dyson, A.; Carré, J.E.; Kortgen, A.; Krafft, C.; Popp, J.; Sponholz, C.; Fuhrmann, V.; Hilger, I.; Claus, R.A.; Riedemann, N.C.; Wetzker, R.; Singer, M.; Trauner, M.; Bauer, M. Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: Experimental studies in rodent models of peritonitis. PLoS Med., 2012, 9, e1001338.
[270]
Volpes, R.; van den Oord, J.J.; De Vos, R.; Desmet, V.J. Hepatic expression of type A and type B receptors for tumor necrosis factor. J. Hepatol., 1992, 14, 361-369.
[271]
Hohenester, S.; Gates, A.; Wimmer, R.; Beuers, U.; Anwer, M.S.; Rust, C.; Webster, C.R. Phosphatidylinositol-3-kinase p110γ contributes to bile salt-induced apoptosis in primary rat hepatocytes and human hepatoma cells. J. Hepatol., 2010, 53, 918-926.
[272]
Ito, A.; Takii, T.; Matsumura, T.; Onozaki, K. Augmentation of type I IL-1 receptor expression and IL-1 signaling by IL-6 and glucocorticoid in murine hepatocytes. J. Immunol., 1999, 162, 4260-4265.
[273]
Kubitz, R.; D’Urso, D.; Keppler, D.; Häussinger, D. Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane. Gastroenterology, 1997, 113, 1438-1442.
[274]
Sommerfeld, A.; Mayer, P.G.K.; Cantore, M.; Häussinger, D. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate. J. Biol. Chem., 2015, 290, 24237-24254.
[275]
Reinehr, R.; Sommerfeld, A.; Häussinger, D. Insulin induces swelling-dependent activation of the epidermal growth factor receptor in rat liver. J. Biol. Chem., 2010, 285, 25904-25912.
[276]
Noé, B.; Schliess, F.; Wettstein, M.; Heinrich, S.; Häussinger, D. Regulation of taurocholate excretion by a hypo-osmolarity-activated signal transduction pathway in rat liver. Gastroenterology, 1996, 110, 858-865.
[277]
Webster, C.R.; Srinivasulu, U.; Ananthanarayanan, M.; Suchy, F.J.; Anwer, M.S. Protein kinase B/Akt mediates cAMP- and cell swelling-stimulated Na+/taurocholate cotransport and Ntcp translocation. J. Biol. Chem., 2002, 277, 28578-28583.
[278]
Kurz, A.K.; Graf, D.; Schmitt, M.; vom Dahl, S.; Häussinger, D. Tauroursodesoxycholate-induced choleresis involves p38MAPK activation and translocation of the bile salt export pump in rats. Gastroenterology, 2001, 121, 407-419.
[279]
Schliess, F.; Kurz, A.K.; vom Dahl, S.; Haussinger, D. Mitogen-activated protein kinases mediate the stimulation of bile acid secretion by tauroursodeoxycholate in rat liver. Gastroenterology, 1997, 113, 1306-1314.
[280]
Kubitz, R.; Sütfels, G.; Kühlkamp, T.; Kölling, R.; Häussinger, D. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology, 2004, 126, 541-553.
[281]
Huang, C.; Ni, Y.; Wang, T.; Gao, Y.; Haudenschild, C.C.; Zhan, X. Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J. Biol. Chem., 1997, 272, 13911-13915.
[282]
Reinehr, R.; Graf, D.; Häussinger, D. Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation. Gastroenterology, 2003, 125, 839-853.
[283]
Reinehr, R.; Becker, S.; Braun, J.; Eberle, A.; Grether-Beck, S.; Haüssinger, D. Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis. J. Biol. Chem., 2006, 281, 23150-23166.
[284]
Grune, S.; Engelking, L.R.; Anwer, M.S. Role of intracellular calcium and protein kinases in the activation of hepatic Na+/taurocholate cotransport by cyclic AMP. J. Biol. Chem., 1993, 268, 17734-17741.
[285]
McConkey, M. Cross-talk between Protein kinases Cζ and B in cyclic AMP-mediated sodium taurocholate co-transporting polypeptide translocation in hepatocytes. J. Biol. Chem., 2004, 279, 20882-20888.
[286]
Anwer, M.S.; Gillin, H.; Mukhopadhyay, S.; Balasubramaniyan, N.; Suchy, F.J.; Ananthanarayanan, M. Dephosphorylation of Ser-226 facilitates plasma membrane retention of Ntcp. J. Biol. Chem., 2005, 280, 33687-33692.
[287]
Geller, D.A.; Freeswick, P.D.; Nguyen, D.; Nussler, A.K.; Di Silvio, M.; Shapiro, R.A.; Wang, S.C.; Simmons, R.L.; Billiar, T.R. Differential induction of nitric oxide synthase in hepatocytes during endotoxemia and the acute-phase response. Arch. Surg., 1994, 129, 165-171.
[288]
Moseley, R.H.; Wang, W.; Takeda, H.; Lown, K.; Shick, L.; Ananthanarayanan, M.; Suchy, F.J. Effect of endotoxin on bile acid transport in rat liver: a potential model for sepsis-associated cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol., 1996, 271, G137-G146.
[289]
Zhou, F.; Lee, A.C.; Krafczyk, K.; Zhu, L.; Murray, M. Protein kinase C regulates the internalization and function of the human organic anion transporting polypeptide 1A2. Br. J. Pharmacol., 2011, 162, 1380-1388.
[290]
Hong, M.; Hong, W.; Ni, C.; Huang, J.; Zhou, C. Protein kinase C affects the internalization and recycling of organic anion transporting polypeptide 1B1. Biochim. Biophys. Acta, 2015, 1848, 2022-2030.
[291]
Köck, K.; Koenen, A.; Giese, B.; Fraunholz, M.; May, K.; Siegmund, W.; Hammer, E.; Völker, U.; Jedlitschky, G.; Kroemer, H.K.; Grube, M. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization. J. Biol. Chem., 2010, 285, 11336-11347.
[292]
Roma, M.G.M.G.; Crocenzi, F.A.F.A.; Mottino, A.D. Dynamic localization of hepatocellular transporters in health and disease. World J. Gastroenterol., 2008, 14, 6786-6801.
[293]
Krell, H.; Jaeschke, H.; Pfaff, E. Regulation of canalicular bile formation by α-adrenergic action and by external ATP in the isolated perfused rat liver. Biochem. Biophys. Res. Commun., 1985, 131, 139-145.
[294]
Thomsen, O.O.; Larsen, J.A. Interaction of insulin, glucagon, and DBcAMP on bile acid-independent bile production in the rat. Scand. J. Gastroenterol., 1982, 17, 687-693.
[295]
Wurzinger, R.; Englisch, R.; Roka, S.; Langer, R.; Roden, M.; Graf, J. Intracellular calcium in the isolated rat liver: correlation to glucose release, K+ balance and bile flow. Cell Calcium, 2001, 30, 403-412.
[296]
Lenzen, R.; Elster, J.; Behrend, C.; Hampel, K.E.; Bechstein, W.O.; Neuhaus, P. Bile acid-independent bile flow is differently regulated by glucagon and secretin in humans after orthotopic liver transplantation. Hepatology, 1997, 26, 1272-1281.
[297]
Mukhopadhayay, S.; Ananthanarayanan, M.; Stieger, B.; Meier, P.J.; Suchy, F.J.; Anwer, M.S. cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. Am. J. Physiol. Gastrointest. Liver Physiol., 1997, 273, G842-G848.
[298]
Roelofsen, H.; Soroka, C.J.; Keppler, D.; Boyer, J.L. Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets. J. Cell Sci., 1998, 111, 1137-1145.
[299]
Roma, M.G.; Milkiewicz, P.; Elias, E.; Coleman, R. Control by signaling modulators of the sorting of canalicular transporters in rat hepatocyte couplets: role of the cytoskeleton. Hepatology, 2000, 32, 1342-1356.
[300]
Webster, C.R.; Blanch, C.; Anwer, M.S. Role of PP2B in cAMP-induced dephosphorylation and translocation of NTCP. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283, G44-G50.
[301]
Park, S.W.; Schonhoff, C.M.; Webster, C.R.L.; Anwer, M.S. Protein kinase Cδ differentially regulates cAMP-dependent translocation of NTCP and MRP2 to the plasma membrane. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303, G657-G665.
[302]
Schonhoff, C.M.; Gillin, H.; Webster, C.R.L.; Anwer, M.S. Protein kinase Cδ mediates cyclic adenosine monophosphate-stimulated translocation of sodium taurocholate cotransporting polypeptide and multidrug resistant associated protein 2 in rat hepatocytes. Hepatology, 2007, 47, 1309-1316.
[303]
Schonhoff, C.M.; Webster, C.R.; Anwer, M.S. Cyclic AMP stimulates Mrp2 translocation by activating p38α MAPK in hepatic cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298, G667-G674.
[304]
Misra, S.; Varticovski, L.; Arias, I.M. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, G316-G324.
[305]
Homolya, L.; Fu, D.; Sengupta, P.; Jarnik, M.; Gillet, J.P.; Vitale-Cross, L.; Gutkind, J.S.; Lippincott-Schwartz, J.; Arias, I.M. LKB1/AMPK and PKA Control ABCB11 trafficking and polarization in hepatocytes. PLoS One, 2014, 9, e91921.
[306]
Mottino, A.D.; Crocenzi, F.A.; Pozzi, E.J.S.; Veggi, L.M.; Roma, M.G.; Vore, M. Role of microtubules in estradiol-17β-D-glucuronide-induced alteration of canalicular Mrp2 localization and activity. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288, G327-G336.
[307]
Crocenzi, F.A.; Basiglio, C.L.; Perez, L.M.; Portesio, M.S.; Sanchez Pozzi, E.J.; Roma, M.G. Silibinin prevents cholestasis-associated retrieval of the bile salt export pump, Bsep, in isolated rat hepatocyte couplets: possible involvement of cAMP. Biochem. Pharmacol., 2005, 69, 1113-1120.
[308]
Lefkimmiatis, K.; Zaccolo, M. cAMP signaling in subcellular compartments. Pharmacol. Ther., 2014, 143, 295-304.
[309]
Tovey, S.C.; Dedos, S.G.; Taylor, E.J.A.; Church, J.E.; Taylor, C.W. Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. J. Cell Biol., 2008, 183, 297-311.
[310]
Cruz, L.N.; Guerra, M.T.; Kruglov, E.; Mennone, A.; Garcia, C.R.; Chen, J.; Nathanson, M.H. Regulation of multidrug resistance-associated protein 2 by calcium signaling in mouse liver. Hepatology, 2010, 52, 327-337.
[311]
Roma, M.G.; Toledo, F.D.; Boaglio, A.C.; Basiglio, C.L.; Crocenzi, F.A.; Sánchez Pozzi, E.J. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin. Sci. (Lond.), 2011, 121, 523-544.
[312]
Boaglio, A.C.; Miszczuk, G.S.; Barosso, I.R.; Toledo, F.D.; Crocenzi, F.A.; Roma, M.G. Tauroursodesoxicolate (TUDC) prevents activation of the pro-cholestatic signalling pathways, cPKC and PI3K/Akt, in estradiol 17β-D-glucuronide (E217G)-induced cholestasis. J. Hepatol., 2014, 60, S182.
[313]
Dumont, M.; Erlinger, S.; Uchman, S. Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: possible role of bicarbonate transport. Gastroenterology, 1980, 79, 82-89.
[314]
Kitani, K.; Kanai, S. Effect of ursodeoxycholate on the bile flow in the rat. Life Sci., 1982, 31, 1973-1985.
[315]
Nakai, T.; Katagiri, K.; Hoshino, M.; Hayakawa, T.; Ohiwa, T. Microtubule-independent choleresis and anti-cholestatic action of tauroursodeoxycholate in colchicine-treated rat liver. Biochem. J., 1992, 288(Pt. 2), 613-617.
[316]
Asamoto, Y.; Tazuma, S.; Ochi, H.; Chayama, K.; Suzuki, H. Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function. Biochem. J., 2001, 359, 605-610.
[317]
Haussinger, D.; Kurz, A.; Wettstein, M.; Graf, D.; Vomdahl, S.; Schliess, F. Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis*1. Gastroenterology, 2003, 124, 1476-1487.
[318]
Gohlke, H.; Schmitz, B.; Sommerfeld, A.; Reinehr, R.; Häussinger, D. α5 β1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology, 2013, 57, 1117-1129.
[319]
Kurz, A.K.; Block, C.; Graf, D.; Dahl, S.V.; Schliess, F.; Häussinger, D. Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver. Biochem. J., 2000, 350(Pt. 1), 207-213.
[320]
Denk, G.U.; Hohenester, S.; Wimmer, R.; Böhland, C.; Rust, C.; Beuers, U. Role of mitogen-activated protein kinases in tauroursodeoxycholic acid-induced bile formation in cholestatic rat liver. Hepatol. Res., 2008, 38, 717-726.
[321]
Milkiewicz, P.; Roma, M.G.; Elias, E.; Coleman, R. Hepatoprotection with tauroursodeoxycholate and α-muricholate against taurolithocholate induced cholestasis: involvement of signal transduction pathways. Gut, 2002, 51, 113-119.
[322]
Hunziker, W. The calmodulin antagonist W-7 affects transcytosis, lysosomal transport, and recycling but not endocytosis. J. Biol. Chem., 1994, 269, 29003-29009.
[323]
Scholmerich, J.; Baumgartner, U.; Miyai, K.; Gerok, W. Tauroursodeoxycholate prevents taurolithocholate-induced cholestasis and toxicity in rat liver. J. Hepatol., 1990, 10, 280-283.
[324]
Güldütuna, S.; Deisinger, B.; Weiss, A.; Freisleben, H.J.; Zimmer, G.; Sipos, P.; Leuschner, U. Ursodeoxycholate stabilizes phospholipid-rich membranes and mimics the effect of cholesterol: investigations on large unilamellar vesicles. Biochim. Biophys. Acta, 1997, 1326, 265-274.
[325]
Güldütuna, S.; Zimmer, G.; Imhof, M.; Bhatti, S.; You, T.; Leuschner, U. Molecular aspects of membrane stabilization by ursodeoxycholate. Gastroenterology, 1993, 104, 1736-1744.
[326]
Lim, S-C.; Duong, H-Q.; Choi, J.E.; Lee, T-B.; Kang, J-H.; Oh, S.H.; Han, S.I. Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells. Carcinogenesis, 2011, 32, 723-731.
[327]
Bouchard, G.; Yousef, I.M.; Tuchweber, B. Influence of oral treatment with ursodeoxycholic and tauroursodeoxycholic acids on estrogen-induced cholestasis in rats: effects on bile formation and liver plasma membranes. Liver, 1993, 13, 193-202.
[328]
Crocenzi, F.A.; D’Andrea, V.; Catania, V.A.; Luquita, M.G.; Pellegrino, J.M.; Ochoa, J.E.; Mottino, A.D.; Sánchez Pozzi, E.J. Prevention of Mrp2 activity impairment in ethinylestradiol-induced cholestasis by ursodeoxycholate in the rat. Drug Metab. Dispos., 2005, 33, 888-891.
[329]
Jacquemin, E.; Dumont, M.; Mallet, A.; Erlinger, S. Ursodeoxycholic acid improves ethinyl estradiol-induced cholestasis in the rat. Eur. J. Clin. Invest., 1993, 23, 794-802.
[330]
Micheline, D.; Emmanuel, J.; Serge, E. Effect of Ursodeoxycholic Acid on the Expression of the Hepatocellular Bile Acid Transporters (Ntcp and bsep) in Rats With Estrogen-Induced Cholestasis. J. Pediatr. Gastroenterol. Nutr., 2002, 35, 185-191.
[331]
Kagawa, T.; Orii, R.; Hirose, S.; Arase, Y.; Shiraishi, K.; Mizutani, A.; Tsukamoto, H.; Mine, T. Ursodeoxycholic acid stabilizes the bile salt export pump in the apical membrane in MDCK II cells. J. Gastroenterol., 2014, 49, 890-899.
[332]
Miszczuk, G.S.; Barosso, I.R.; Zucchetti, A.E.; Boaglio, A.C.; Pellegrino, J.M.; Sánchez Pozzi, E.J.; Roma, M.G.; Crocenzi, F.A. Sandwich-cultured rat hepatocytes as an in vitro model to study canalicular transport alterations in cholestasis. Arch. Toxicol., 2015, 89, 979-990.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy