Nanohybrids of Dendrimers and Carbon Nanotubes: A Benefaction or Forfeit in Drug Delivery?

Author(s): Keerti Jain*.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Nanomaterials are emerging as a fascinating delivery systems being explored for the delivery of different bioactives including drug, diagnostic agents and genetic materials etc. Among these nanomaterials dendrimers and Carbon Nanotubes (CNTs) are being investigated for various biomedical applications. Although both of these nanomaterials have shown great potential in drug delivery yet their promising clinical applications are still suspected due to problems like toxicity, dispersibility etc. Scientists have been investigating the potential of nanohybrids comprising of dendrimers and nanotubes for biomedical applications. Few reports are also available on the toxicological profile of CNTs and dendrimers nanohybrids.

Conclusion: The results of these investigations suggest two possibilities, first, hybrids of CNTs and dendrimers could suppress each other’s demerits while synergizing the potentials; second, prospective toxicity of nanohybrids on which different reports have discrimination in results. Future biomedical applications of CNTs-dendrimers nanohybrids require a thorough investigation on their toxicity and biological interactions.

Keywords: Dendrimers, carbon nanotubes, drug delivery, nanohybrids, toxicity, nanomaterials.

[1]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[2]
Jain, K.; Verma, A.K.; Mishra, P.R.; Jain, N.K. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: Formulation development and in vitro and in vivo evaluation. Antimicrob. Agents Chemother., 2015, 59(5), 2479-2487.
[3]
Bajwa, N.; Mehra, N.K.; Jain, K.; Jain, N.K. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif. Cells Nanomed. Biotechnol., 2016b, 44(7), 1774-1782.
[4]
Franiak-Pietryga, I.; Maciejewski, H.; Ostrowska, K.; Appelhans, D.; Voit, B.; Misiewicz, M.; Kowalczyk, P.; Bryszewska, M.; Borowiec, M. Dendrimer-based nanoparticles for potential personalized therapy in chronic lymphocytic leukemia: Targeting the BCR-signaling pathway. Int. J. Biol. Macromol., 2016, 88, 156-161.
[5]
Singh, J.; Jain, K.; Mehra, N.K.; Jain, N.K. Effect of anticancer drug on delivery potential of poly(propylene imine) dendrimers. J. Colloid Sci. Biotechnol, 2015, 4(2), 133-140.
[6]
Soni, N.; Jain, K.; Gupta, U.; Jain, N.K. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers. J. Nanopart. Res., 2015, 17(458), 1-17.
[7]
Torres, C.C.; Campos, C.H.; Diáz, C.; Jiménez, V.A.; Vidal, F.; Guzmán, L.; Alderete, J.B. PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 65, 164-171.
[8]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[9]
(a) Kaur, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016a, 1-12.
(b) Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016b, 18(146), 1-14.
(c) Kaur, S.; Mehra, N.K.; Jain, K.; Jain, N.K. Development and evaluation of targeting ligand-anchored CNTs as prospective targeted drug delivery system. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 242-250.
[10]
(a) Sharma, P.; Mehra, N.K.; Jain, K.; Jain, N.K. Biomedical Applications of Carbon Nanotubes: A Critical Review. Curr. Drug Deliv., 2016a, 13(6), 796-817.
(b) Sharma, S.; Mehra, N.K.; Jain, K.; Jain, N.K. Effect of functionalization on drug delivery potential of carbon nanotubes. Artif. Cells Nanomed. Biotechnol., 2016b, 44(8), 1851-1860.
[11]
Yu, B.; Tan, L.; Zheng, R.; Tan, H.; Zheng, L. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 68, 579-584.
[12]
Hu, S.; Wang, T.; Pei, X.; Cai, H.; Chen, J.; Zhang, X.; Wan, Q.; Wang, J. Synergistic enhancement of antitumor efficacy by pegylated multi-walled carbon nanotubes modified with cell-penetrating peptide TAT. Nanoscale Res. Lett., 2016, 11(452), 1-14.
[13]
(a) Jain, K.; Gupta, U.; Jain, N.K. Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur. J. Pharm. Biopharm., 2014a, 87(3), 500-509.
(b) Jain, K.; Mehra, N.K.; Jain, N.K. Potentials and emerging trends in nanopharmacology. Curr. Opin. Pharmacol., 2014b, 15, 97-106.
[14]
Gardikis, K.; Micha-Screttas, M.; Demetzos, C.; Steele, B.R. Dendrimers and the development of new complex nanomaterials for biomedical applications. Curr. Med. Chem., 2012, 19(29), 4913-4928.
[15]
Jain, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J. Nanopart. Res., 2013, 15(10), 1-18.
[16]
Adeli, M.; Beyranvand, S.; Kabiri, R. Preparation of hybrid nanomaterials by supramolecular interactions between dendritic polymers and carbon nanotubes. Polym. Chem., 2013, 4, 669-674.
[17]
Bodewein, L.; Schmelter, F.; Di Fiore, S.; Hollert, H.; Fischer, R.; Fenske, M. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol. Appl. Pharmacol., 2016, 305, 83-92.
[18]
(a) Cancino, J.; Nobre, T.M.; Oliveira, O.N., Jr; Machado, S.A.; Zucolotto, V. A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models. Nanotoxicology, 2013a, 7(1), 61-70.
(b) Cancino, J.; Paino, I.M.M.; Micoccib, K.C.; Selistre-de-Araujo, H.S.; Zucolotto, V. In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells. Toxicol. Lett., 2013b, 219, 18-25.
[19]
Singh, J.; Jain, K.; Mehra, N.K.; Jain, N.K. Dendrimers in anticancer drug delivery: Mechanism of interaction of drug and dendrimers. Artif. Cells Nanomed. Biotechnol., 2016, 44(7), 1626-1634.
[20]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[21]
Kaur, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Dendrimer internalization: A systematic review. J. Colloid Sci. Biotechnol, 2015, 4, 99-109.
[22]
Mansuri, S.; Kesharwani, P.; Jain, K.; Tekade, R.K.; Jain, N.K. Mucoadhesion: A promising approach in drug delivery system. React. Funct. Pol., 2016, 100, 151-172.
[23]
Mehra, N.K.; Jain, K.; Jain, N.K. Triazine dendrimers: Biomedical application. In: Encyclopedia of Biomedical Polymers and Polymeric Biomaterials., , Taylor and Francis, 2014; DOI: 10.1081/EEBPP- 120049279.
[24]
Jain, K. Drug Delivery and Biomedical Applications In: Dendrimers: Smart nanoengineered polymers for bioinspired applications in drug delivery., 2017, pp. 169-220
[25]
Mehra, N.K.; Jain, K.; Jain, N.K. Nanobiomaterials in Medical Imaging. In: Multifunctional carbon nanotubes in cancer therapy and imaging., 2016, vol, 8, pp. 421-453.
[26]
Heiden, T.C.; Dengler, E.; Kao, W.J.; Heideman, W.; Peterson, R.E. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharmacol., 2007, 225(1), 70-79.
[27]
Oliveira, E.; Casado, M.; Faria, M.; Soares, A.M.; Navas, J.M.; Barata, C.; Piña, B. Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. Nanotoxicology, 2014, 8(Suppl. 1), 92-99.
[28]
Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells. J. Drug Del., 2014, 2014(670815), 1-23.
[29]
Laroui, H.; Rakhya, P.; Xiao, B.; Viennois, E.; Merlin, D. Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig. Liver Dis., 2013, 45(12), 995-1002.
[30]
Mehra, N.K.; Jain, K.; Jain, N.K. Design of multifunctional nanocarriers for delivery of anti-cancer therapy. Curr. Pharm. Des., 2015, 21(42), 6157-6164.
[31]
Iannazzo, D.; Pistone, A.; Ziccarelli, I.; Espro, C.; Galvagno, S.; Giofré, S.V.; Romeo, R.; Cicero, N.; Bua, G.D.; Lanza, G.; Legnani, L.; Chiacchio, M.A. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes. Environ. Sci. Pollut. Res. Int., 2017, 24(17), 14735-14747.
[32]
Qin, W.; Yang, K.; Tang, H.; Tan, L.; Xie, Q.; Ma, M.; Zhang, Y.; Yao, S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B Biointerfaces, 2011, 84(1), 206-213.
[33]
Pérez-Martínez, F.C.; Carrión, B.; Lucío, M.I.; Rubio, N.; Herrero, M.A.; Vázquez, E.; Ceña, V. Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials, 2012, 33(32), 8152-8159.
[34]
Wang, C.; Li, Z.; Liu, B.; Liao, Q.; Bao, C.; Fu, H.; Pan, B.; Jin, W.; Cui, D. Dendrimer modified SWCNTs for High Efficient Delivery and Intracellular Imaging of survivin siRNA. Nano Biomed. Eng., 2013, 5(3), 125-130.
[35]
Wen, S.; Liu, H.; Cai, H.; Shen, M.; Shi, X. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv. Health. Mater., 2013, 2(9), 1267-1276.
[36]
Yang, H.; Pan, S.; Ma, D.; He, D.; Wang, Y.; Xie, S.; Peng, Y. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer. J. Lumines., 2016, 179, 588-594.
[37]
Alam, A.K.M.M.; Beg, M.D.H.; Yunus, R.M.; Mina, M.F.; Maria, K.H.; Mieno, T. Evolution of functionalized multi-walled carbon nanotubes by dendritic polymer coating and their anti-scavenging behavior during curing process. Mater. Lett., 2016, 167(15), 58-60.
[38]
He, D.; Peng, Y.; Yang, H.; Ma, D.; Wang, Y.; Chen, K.; Chen, P.; Shi, J. Single-wall carbon nanotubes covalently linked with zinc (II) phthalocyanine bearing poly (aryl benzyl ether) dendritic substituents: Synthesis, characterization and photoinduced electron transfer. Dyes Pigments, 2013, 99(2), 395-401.
[39]
Fan, Y.; Wu, G.; Su, F.; Li, K.; Xu, L.; Han, X.; Yan, Y. Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel, 2016, 178, 172-178.
[40]
Fenga, P.G.; Cardoso, F.P.; Neto, S.A.; De Andrade, A.R. Multiwalled carbon nanotubes to improve ethanol/air biofuel cells. Electrochim. Acta, 2013, 106, 109-113.
[41]
Zhao, X.; Ma, J.; Wang, Z.; Wen, G.; Jiang, J.; Shi, F.; Sheng, L. Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: From dispersion to blended fouling-control membrane. Desalination, 2012, 301, 29-38.
[42]
Masotti, A.; Miller, M.R.; Celluzzi, A.; Rose, L.; Micciulla, F.; Hadoke, P.W.; Bellucci, S.; Caporali, A. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine, 2016, 12(6), 1511-1522.
[43]
Gao, M.J.; Guo, B.; Ma, L.W.; Zhang, B.; He, X.C.; Bian, L.; Ma, X.F.; Li, G. NIR (Near-Infrared) driven carbon nanotube modified with dendrimers. Mat. Sci. Forum, 2016, 848, 551-556.
[44]
Mukherjee, B.; Maji, R.; Roychowdhury, S.; Ghosh, S. Toxicological concerns of engineered nanosize drug delivery systems. Am. J. Ther., 2016, 23(1), e139-e150.
[45]
Srivastava, V.; Gusain, D.; Sharma, Y.C. Critical review on the toxicity of some widely used engineered nanoparticles. Ind. Eng. Chem. Res., 2015, 54(24), 6209-6233.
[46]
Noriega-Luna, B.; Godínez, L.A.; Rodríguez, F.J.; Rodríguez, A.; Zaldívar-Lelo de Larrea, G.; Sosa-Ferreyra, C.F.; Mercado-Curiel, R.F.; Manríquez, J.; Bustos, E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomaterials., 2014, 2014(507273), 1-19.
[47]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm., 2010, 394(1-2), 122-142.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2019
Page: [21 - 29]
Pages: 9
DOI: 10.2174/2210681208666171204163622
Price: $58

Article Metrics

PDF: 25
HTML: 2