Use of Antibiotic Loaded Biomaterials for the Management of Bone Prosthesis Infections: Rationale and Limits

Author(s): M. Tschon , M. Sartori* , D. Contartese , G. Giavaresi , N. Nicoli Aldini , M. Fini .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 17 , 2019

  Journal Home
Translate in Chinese

Abstract:

Background: Periprosthetic joint infection still represents a challenging issue for the orthopedic community. In the United States approximately a million joint arthroplasties are performed each year, with infection rates ranging from 1 to 2%: revisions has significant implications on health care costs and appropriate resource management. The use of locally applied antibiotics as a prophylaxis measure or as a component of the therapeutic approach in primary or revision surgery is finalized at eliminating any microorganism and strengthening the effectiveness of systemic therapy.

Objective: The present review of clinical and preclinical in vivo studies tried to identify advantages and limitations of the materials used in the clinical orthopedic practice and discuss developed biomaterials, innovative therapeutic approaches or strategies to release antibiotics in the infected environment.

Methods: A systematic search was carried out by two independent observers in two databases (www.pubmed.com and www.scopus.com) in order to identify pre-clinical and clinical reports in the last 10 years.

Results: 71 papers were recognized eligible: 15 articles were clinical studies and 56 in vivo studies.

Conclusion: Polymethylmethacrylate was the pioneer biomaterial used to manage infections after total joint replacement. Despite its widespread use, several issues still remain debated: the methods to combine materials and antibiotics, the choice of antibiotics, releasing kinetics and antibiotics efficacy. In the last years, the interest was directed towards the selection of different antibiotics, loaded in association with more than only one class and biomaterials with special focus on delivery systems as implant surface coatings, hydrogels, ceramics, micro-carriers, microspheres or nanoparticles.

Keywords: Periprosthetic infection, biomaterial, antibiotic, hip, knee, periprosthetic joint, prosthetics.

[1]
Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; Dellinger, E.P.; Itani, K.M.F.; Berbari, E.F.; Segreti, J.; Parvizi, J.; Blanchard, J.; Allen, G.; Kluytmans, J.A.J.W.; Donlan, R.; Schecter, W.P. Centers for disease control and prevention guideline for the prevention of surgical site infection, Epub ahead of print. JAMA Surg., 2017, 152, (8) 784-791.
[http://dx.doi.org/10.1001/jamasurg.2017.0904] [PMID: 28467526]
[2]
Hackett, D.J.; Rothenberg, A.C.; Chen, A.F.; Gutowski, C.; Jaekel, D.; Tomek, I.M.; Parsley, B.S.; Ducheyne, P.; Manner, P.A. The economic significance of orthopaedic infections. J. Am. Acad. Orthop. Surg., 2015, 23(Suppl.), S1-S7.
[http://dx.doi.org/10.5435/JAAOS-D-14-00394] [PMID: 25808964]
[3]
Kamath, A.F.; Ong, K.L.; Lau, E.; Chan, V.; Vail, T.P.; Rubash, H.E.; Berry, D.J.; Bozic, K.J. Quantifying the burden of revision total joint arthroplasty for periprosthetic infection. J. Arthroplasty, 2015, 30(9), 1492-1497.
[http://dx.doi.org/10.1016/j.arth.2015.03.035] [PMID: 25865815]
[4]
Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev., 2014, 27(2), 302-345.
[http://dx.doi.org/10.1128/CMR.00111-13] [PMID: 24696437]
[5]
Parvizi, J.; Adeli, B.; Zmistowski, B.; Restrepo, C.; Greenwald, A.S. Management of periprosthetic joint infection: the current knowledge: AAOS exhibit selection. J. Bone Joint Surg. Am., 2012, 94(14), e104.
[http://dx.doi.org/10.2106/JBJS.K.01417] [PMID: 22810411]
[6]
Leite, P.S.; Figueiredo, S.; Sousa, R. Prosthetic joint infection: Report on the one versus two-stage exchange EBJIS survey. J. Bone Jt. Infect., 2016, 1, 1-6.
[http://dx.doi.org/10.7150/jbji.14671] [PMID: 28529844]
[7]
Bistolfi, A.; Massazza, G.; Verné, E.; Massè, A.; Deledda, D.; Ferraris, S.; Miola, M.; Galetto, F.; Crova, M. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop., 2011, 2011290851.
[http://dx.doi.org/10.5402/2011/290851] [PMID: 24977058]
[8]
Anagnostakos, K.; Wilmes, P.; Schmitt, E.; Kelm, J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop., 2009, 80(2), 193-197.
[http://dx.doi.org/10.3109/17453670902884700] [PMID: 19404802]
[9]
Fink, B.; Vogt, S.; Reinsch, M.; Büchner, H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin. Orthop. Relat. Res., 2011, 469(11), 3141-3147.
[http://dx.doi.org/10.1007/s11999-011-1937-4] [PMID: 21678099]
[10]
Regis, D.; Sandri, A.; Samaila, E.; Benini, A.; Bondi, M.; Magnan, B. Release of gentamicin and vancomycin from preformed spacers in infected total hip arthroplasties: measurement of concentrations and inhibitory activity in patients’ drainage fluids and serum. Sci. World J., 2013, 2013752184.
[http://dx.doi.org/10.1155/2013/752184] [PMID: 24174916]
[11]
Bertazzoni Minelli, E.; Benini, A.; Samaila, E.; Bondi, M.; Magnan, B. Antimicrobial activity of gentamicin and vancomycin combination in joint fluids after antibiotic-loaded cement spacer implantation in two-stage revision surgery. J. Chemother., 2015, 27(1), 17-24.
[http://dx.doi.org/10.1179/1973947813Y.0000000157] [PMID: 24621165]
[12]
Camurcu, Y.; Sofu, H.; Buyuk, A.F.; Gursu, S.; Kaygusuz, M.A.; Sahin, V. Two-stage cementless revision total hip arthroplasty for infected primary hip arthroplasties. J. Arthroplasty, 2015, 30(9), 1597-1601.
[http://dx.doi.org/10.1016/j.arth.2015.03.040] [PMID: 25908335]
[13]
Choe, H.; Inaba, Y.; Kobayashi, N.; Miyamae, Y.; Ike, H.; Saito, T. Clinical utility of antibiotic-loaded hydroxyapatite block for treatment of intractable periprosthetic joint infection and septic arthritis of the hip. Mod. Rheumatol., 2015, 25(6), 937-942.
[http://dx.doi.org/10.3109/14397595.2015.1031360] [PMID: 25800641]
[14]
D’Angelo, F.; Negri, L.; Binda, T.; Zatti, G.; Cherubino, P. The use of a preformed spacer in two-stage revision of infected hip arthroplasties. Musculoskelet. Surg., 2011, 95(2), 115-120.
[http://dx.doi.org/10.1007/s12306-011-0128-5] [PMID: 21479729]
[15]
Elbers, J.B.; Leijtens, B.; van Werven, H.E.; Sturm, P.D.; Kullberg, B.J.; Schreurs, B.W. Antibiotic mixing through impacted bone grafts does not seem indicated in two-stage cemented hip revisions for septic loosening. Hip Int., 2014, 24(6), 596-603.
[http://dx.doi.org/10.5301/hipint.5000159] [PMID: 25096448]
[16]
Hsieh, P.H.; Huang, K.C.; Tai, C.L. Liquid gentamicin in bone cement spacers: in vivo antibiotic release and systemic safety in two-stage revision of infected hip arthroplasty. J. Trauma, 2009, 66(3), 804-808.
[http://dx.doi.org/10.1097/TA.0b013e31818896cc] [PMID: 19276757]
[17]
Kendoff, D.O.; Gehrke, T.; Stangenberg, P.; Frommelt, L.; Bösebeck, H. Bioavailability of gentamicin and vancomycin released from an antibiotic containing bone cement in patients undergoing a septic one-stage total hip arthroplasty (THA) revision: a monocentric open clinical trial. Hip Int., 2016, 26(1), 90-96.
[http://dx.doi.org/10.5301/hipint.5000307] [PMID: 26449335]
[18]
Romanò, C.L.; Romanò, D.; Logoluso, N.; Meani, E. Long-stem versus short-stem preformed antibiotic-loaded cement spacers for two-stage revision of infected total hip arthroplasty. Hip Int., 2010, 20(1), 26-33.
[http://dx.doi.org/10.1177/112070001002000104] [PMID: 20235080]
[19]
Takigami, I.; Ito, Y.; Ishimaru, D.; Ogawa, H.; Mori, N.; Shimizu, T.; Terabayashi, N.; Shimizu, K. Two-stage revision surgery for hip prosthesis infection using antibiotic-loaded porous hydroxyapatite blocks. Arch. Orthop. Trauma Surg., 2010, 130(10), 1221-1226.
[http://dx.doi.org/10.1007/s00402-009-0991-9] [PMID: 19876636]
[20]
Castelli, C.C.; Gotti, V.; Ferrari, R. Two-stage treatment of infected total knee arthroplasty: two to thirteen year experience using an articulating preformed spacer. Int. Orthop., 2014, 38(2), 405-412.
[http://dx.doi.org/10.1007/s00264-013-2241-6] [PMID: 24464017]
[21]
Mutimer, J.; Gillespie, G.; Lovering, A.M.; Porteous, A.J. Measurements of in vivo intra-articular gentamicin levels from antibiotic loaded articulating spacers in revision total knee replacement. Knee, 2009, 16(1), 39-41.
[http://dx.doi.org/10.1016/j.knee.2008.07.009] [PMID: 18786830]
[22]
Janssen, D.M.; Geurts, J.A.; Jütten, L.M.; Walenkamp, G.H. 2-stage revision of 120 deep infected hip and knee prostheses using gentamicin-PMMA beads. Acta Orthop., 2016, 87(4), 324-332.
[http://dx.doi.org/10.3109/17453674.2016.1142305] [PMID: 26822990]
[23]
Ashbaugh, A.G.; Jiang, X.; Zheng, J.; Tsai, A.S.; Kim, W.S.; Thompson, J.M.; Miller, R.J.; Shahbazian, J.H.; Wang, Y.; Dillen, C.A.; Ordonez, A.A.; Chang, Y.S.; Jain, S.K.; Jones, L.C.; Sterling, R.S.; Mao, H.Q.; Miller, L.S. Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc. Natl. Acad. Sci. USA, 2016, 113(45), E6919-E6928.
[http://dx.doi.org/10.1073/pnas.1613722113] [PMID: 27791154]
[24]
Stavrakis, A.I.; Zhu, S.; Hegde, V.; Loftin, A.H.; Ashbaugh, A.G.; Niska, J.A.; Miller, L.S.; Segura, T.; Bernthal, N.M. In Vivo efficacy of a “Smart” antimicrobial implant coating. J. Bone Joint Surg. Am., 2016, 98(14), 1183-1189.
[http://dx.doi.org/10.2106/JBJS.15.01273] [PMID: 27440566]
[25]
Wu, T.H.; Hsu, S.H.; Chang, M.H.; Huang, Y.Y. Reducing scar formation by regulation of IL-1 and MMP-9 expression by using sustained release of prednisolone-loaded PDLL microspheres in a murine wound model. J. Biomed. Mater. Res. A, 2013, 101(4), 1165-1172.
[http://dx.doi.org/10.1002/jbm.a.34413] [PMID: 23076999]
[26]
Vester, H.; Wildemann, B.; Schmidmaier, G.; Stöckle, U.; Lucke, M. Gentamycin delivered from a PDLLA coating of metallic implants: In vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis. Injury, 2010, 41(10), 1053-1059.
[http://dx.doi.org/10.1016/j.injury.2010.05.010] [PMID: 20541756]
[27]
Li, B.; Brown, K.V.; Wenke, J.C.; Guelcher, S.A. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J. Control. Release, 2010, 145(3), 221-230.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.002] [PMID: 20382191]
[28]
Guelcher, S.A.; Brown, K.V.; Li, B.; Guda, T.; Lee, B.H.; Wenke, J.C. Dual-purpose bone grafts improve healing and reduce infection. J. Orthop. Trauma, 2011, 25(8), 477-482.
[http://dx.doi.org/10.1097/BOT.0b013e31821f624c] [PMID: 21738070]
[29]
Adams, C.S.; Antoci, V., Jr; Harrison, G.; Patal, P.; Freeman, T.A.; Shapiro, I.M.; Parvizi, J.; Hickok, N.J.; Radin, S.; Ducheyne, P. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis. J. Orthop. Res., 2009, 27(6), 701-709.
[http://dx.doi.org/10.1002/jor.20815] [PMID: 19051247]
[30]
Orhan, Z.; Cevher, E.; Yildiz, A.; Ahiskali, R.; Sensoy, D.; Mülazimoğlu, L. Biodegradable microspherical implants containing teicoplanin for the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis. Arch. Orthop. Trauma Surg., 2010, 130(1), 135-142.
[http://dx.doi.org/10.1007/s00402-009-0886-9] [PMID: 19434413]
[31]
Thanyaphooa, S.; Kaewsrichanb, J. Potential of bone scaffolds containing vancomycin and bone morphogenetic protein-2 in a rat model of osteomyelitis. Asian Biomed., 2014, 8, 651-657.
[http://dx.doi.org/10.5372/1905-7415.0805.340]
[32]
Oh, S.H.; Nam, B.R.; Lee, I.S.; Lee, J.H. Prolonged anti-bacterial activity of ion-complexed doxycycline for the treatment of osteomyelitis. Eur. J. Pharm. Biopharm., 2016, 98, 67-75.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.006] [PMID: 26598206]
[33]
Hassani Besheli, N.; Mottaghitalab, F.; Eslami, M.; Gholami, M.; Kundu, S.C.; Kaplan, D.L.; Farokhi, M. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl. Mater. Interfaces, 2017, 9(6), 5128-5138.
[http://dx.doi.org/10.1021/acsami.6b14912] [PMID: 28106379]
[34]
Min, J.; Choi, K.Y.; Dreaden, E.C.; Padera, R.F.; Braatz, R.D.; Spector, M.; Hammond, P.T. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano, 2016, 10(4), 4441-4450.
[http://dx.doi.org/10.1021/acsnano.6b00087] [PMID: 26923427]
[35]
Brin, Y.S.; Golenser, J.; Mizrahi, B.; Maoz, G.; Domb, A.J.; Peddada, S.; Tuvia, S.; Nyska, A.; Nyska, M. Treatment of osteomyelitis in rats by injection of degradable polymer releasing gentamicin. J. Control. Release, 2008, 131(2), 121-127.
[http://dx.doi.org/10.1016/j.jconrel.2008.07.022] [PMID: 18692531]
[36]
Brooks, B.D.; Sinclair, K.D.; Grainger, D.W.; Brooks, A.E. A resorbable antibiotic-eluting polymer composite bone void filler for perioperative infection prevention in a rabbit radial defect model. PLoS One, 2015, 10(3), e0118696.
[http://dx.doi.org/10.1371/journal.pone.0118696] [PMID: 25815727]
[37]
Emanuel, N.; Rosenfeld, Y.; Cohen, O.; Applbaum, Y.H.; Segal, D.; Barenholz, Y. A lipid-and-polymer-based novel local drug delivery system--BonyPid™: from physicochemical aspects to therapy of bacterially infected bones. J. Control. Release, 2012, 160(2), 353-361.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.027] [PMID: 22507550]
[38]
Huang, J.G.; Pang, L.; Chen, Z.R.; Tan, X.P. Dual-delivery of vancomycin and icariin from an injectable calcium phosphate cement-release system for controlling infection and improving bone healing. Mol. Med. Rep., 2013, 8(4), 1221-1227.
[http://dx.doi.org/10.3892/mmr.2013.1624] [PMID: 23933682]
[39]
Metsemakers, W.J.; Emanuel, N.; Cohen, O.; Reichart, M.; Potapova, I.; Schmid, T.; Segal, D.; Riool, M.; Kwakman, P.H.; de Boer, L.; de Breij, A.; Nibbering, P.H.; Richards, R.G.; Zaat, S.A.; Moriarty, T.F. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus. J. Control. Release, 2015, 209, 47-56.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.022] [PMID: 25910578]
[40]
Moskowitz, J.S.; Blaisse, M.R.; Samuel, R.E.; Hsu, H.P.; Harris, M.B.; Martin, S.D.; Lee, J.C.; Spector, M.; Hammond, P.T. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials, 2010, 31(23), 6019-6030.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.011] [PMID: 20488534]
[41]
Neut, D.; Dijkstra, R.J.; Thompson, J.I.; Kavanagh, C.; van der Mei, H.C.; Busscher, H.J. A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses. Eur. Cell. Mater., 2015, 29, 42-55.
[http://dx.doi.org/10.22203/eCM.v029a04] [PMID: 25552428]
[42]
Yang, C.C.; Lin, C.C.; Liao, J.W.; Yen, S.K. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater. Sci. Eng. C, 2013, 33(4), 2203-2212.
[http://dx.doi.org/10.1016/j.msec.2013.01.038] [PMID: 23498249]
[43]
Zhang, J.; Wang, C.; Wang, J.; Qu, Y.; Liu, G. In vivo drug release and antibacterial properties of vancomycin loaded hydroxyapatite/chitosan composite. Drug Deliv., 2012, 19(5), 264-269.
[http://dx.doi.org/10.3109/10717544.2012.704093] [PMID: 22823893]
[44]
Wu, W.; Ye, C.; Zheng, Q.; Wu, G.; Cheng, Z. A therapeutic delivery system for chronic osteomyelitis via a multi-drug implant based on three-dimensional printing technology. J. Biomater. Appl., 2016, 31(2), 250-260.
[http://dx.doi.org/10.1177/0885328216640660] [PMID: 27013218]
[45]
Cao, Z.; Jiang, D.; Yan, L.; Wu, J. In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold. J. Biomater. Appl., 2016, 30(10), 1566-1577.
[http://dx.doi.org/10.1177/0885328215623735] [PMID: 26686585]
[46]
Chung, M.F.; Chia, W.T.; Liu, H.Y.; Hsiao, C.W.; Hsiao, H.C.; Yang, C.M.; Sung, H.W. Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis. Adv. Healthc. Mater., 2014, 3(11), 1854-1861.
[http://dx.doi.org/10.1002/adhm.201400158] [PMID: 24789379]
[47]
Ding, H.; Zhao, C.J.; Cui, X.; Gu, Y.F.; Jia, W.T.; Rahaman, M.N.; Wang, Y.; Huang, W.H.; Zhang, C.Q. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLoS One, 2014, 9(1), e85472.
[http://dx.doi.org/10.1371/journal.pone.0085472] [PMID: 24427311]
[48]
Giavaresi, G.; Bertazzoni Minelli, E.; Sartori, M.; Benini, A.; Parrilli, A.; Maltarello, M.C.; Salamanna, F.; Torricelli, P.; Giardino, R.; Fini, M. New PMMA-based composites for preparing spacer devices in prosthetic infections. J. Mater. Sci. Mater. Med., 2012, 23(5), 1247-1257.
[http://dx.doi.org/10.1007/s10856-012-4585-7] [PMID: 22359213]
[49]
Hui, T.; Yongqing, X.; Tiane, Z.; Gang, L.; Yonggang, Y.; Muyao, J.; Jun, L.; Jing, D. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch. Orthop. Trauma Surg., 2009, 129(10), 1301-1308.
[http://dx.doi.org/10.1007/s00402-008-0782-8] [PMID: 19034468]
[50]
Jia, W.T.; Luo, S.H.; Zhang, C.Q.; Wang, J.Q. In vitro and in vivo efficacies of teicoplanin-loaded calcium sulfate for treatment of chronic methicillin-resistant Staphylococcus aureus osteomyelitis. Antimicrob. Agents Chemother., 2010, 54(1), 170-176.
[http://dx.doi.org/10.1128/AAC.01122-09] [PMID: 19917757]
[51]
Jia, W.T.; Zhang, X.; Luo, S.H.; Liu, X.; Huang, W.H.; Rahaman, M.N.; Day, D.E.; Zhang, C.Q.; Xie, Z.P.; Wang, J.Q. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater., 2010, 6(3), 812-819.
[http://dx.doi.org/10.1016/j.actbio.2009.09.011] [PMID: 19770078]
[52]
Jia, W.T.; Fu, Q.; Huang, W.H.; Zhang, C.Q.; Rahaman, M.N. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model. Antimicrob. Agents Chemother., 2015, 59(12), 7571-7580.
[http://dx.doi.org/10.1128/AAC.00196-15] [PMID: 26416858]
[53]
Jiang, J.L.; Li, Y.F.; Fang, T.L.; Zhou, J.; Li, X.L.; Wang, Y.C.; Dong, J. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm. Res., 2012, 61(3), 207-215.
[http://dx.doi.org/10.1007/s00011-011-0402-x] [PMID: 22159524]
[54]
Kundu, B.; Soundrapandian, C.; Nandi, S.K.; Mukherjee, P.; Dandapat, N.; Roy, S.; Datta, B.K.; Mandal, T.K.; Basu, D.; Bhattacharya, R.N. Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm. Res., 2010, 27(8), 1659-1676.
[http://dx.doi.org/10.1007/s11095-010-0166-y] [PMID: 20464462]
[55]
Liu, X.; Xie, Z.; Zhang, C.; Pan, H.; Rahaman, M.N.; Zhang, X.; Fu, Q.; Huang, W. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J. Mater. Sci. Mater. Med., 2010, 21(2), 575-582.
[http://dx.doi.org/10.1007/s10856-009-3897-8] [PMID: 19830527]
[56]
Overstreet, D.; McLaren, A.; Calara, F.; Vernon, B.; McLemore, R. Local gentamicin delivery from resorbable viscous hydrogels is therapeutically effective. Clin. Orthop. Relat. Res., 2015, 473(1), 337-347.
[http://dx.doi.org/10.1007/s11999-014-3935-9] [PMID: 25227556]
[57]
Peng, K.T.; Chen, C.F.; Chu, I.M.; Li, Y.M.; Hsu, W.H.; Hsu, R.W.; Chang, P.J. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials, 2010, 31(19), 5227-5236.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.027] [PMID: 20381140]
[58]
Shi, P.; Zuo, Y.; Li, X.; Zou, Q.; Liu, H.; Zhang, L.; Li, Y.; Morsi, Y.S. Gentamicin-impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy. J. Biomed. Mater. Res. A, 2010, 93(3), 1020-1031.
[PMID: 19743510]
[59]
Alvarez, H.; Castro, C.; Moujir, L.; Perera, A.; Delgado, A.; Soriano, I.; Evora, C.; Sánchez, E. Efficacy of ciprofloxacin implants in treating experimental osteomyelitis. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 85(1), 93-104.
[http://dx.doi.org/10.1002/jbm.b.30921] [PMID: 17696153]
[60]
Beenken, K.E.; Smith, J.K.; Skinner, R.A.; Mclaren, S.G.; Bellamy, W.; Gruenwald, M.J.; Spencer, H.J.; Jennings, J.A.; Haggard, W.O.; Smeltzer, M.S. Chitosan coating to enhance the therapeutic efficacy of calcium sulfate-based antibiotic therapy in the treatment of chronic osteomyelitis. J. Biomater. Appl., 2014, 29(4), 514-523.
[http://dx.doi.org/10.1177/0885328214535452] [PMID: 24854984]
[61]
Efstathopoulos, N.; Giamarellos-Bourboulis, E.; Kanellakopoulou, K.; Lazarettos, I.; Giannoudis, P.; Frangia, K.; Magnissalis, E.; Papadaki, M.; Nikolaou, V.S. Treatment of experimental osteomyelitis by methicillin resistant Staphylococcus aureus with bone cement system releasing grepafloxacin. Injury, 2008, 39(12), 1384-1390.
[http://dx.doi.org/10.1016/j.injury.2008.04.006] [PMID: 18656187]
[62]
Giavaresi, G.; Bertazzoni Minelli, E.; Sartori, M.; Benini, A.; Della Bora, T.; Sambri, V.; Gaibani, P.; Borsari, V.; Salamanna, F.; Martini, L.; Nicoli Aldini, N.; Fini, M. Microbiological and pharmacological tests on new antibiotic-loaded PMMA-based composites for the treatment of osteomyelitis. J. Orthop. Res., 2012, 30(3), 348-355.
[http://dx.doi.org/10.1002/jor.21531] [PMID: 21882237]
[63]
Kanellakopoulou, K.; Thivaios, G.C.; Kolia, M.; Dontas, I.; Nakopoulou, L.; Dounis, E.; Giamarellos-Bourboulis, E.J.; Andreopoulos, A.; Karagiannakos, P.; Giamarellou, H. Local treatment of experimental Pseudomonas aeruginosa osteomyelitis with a biodegradable dilactide polymer releasing ciprofloxacin. Antimicrob. Agents Chemother., 2008, 52(7), 2335-2339.
[http://dx.doi.org/10.1128/AAC.01360-07] [PMID: 18411320]
[64]
Kundu, B.; Nandi, S.K.; Dasgupta, S.; Datta, S.; Mukherjee, P.; Roy, S.; Singh, A.K.; Mandal, T.K.; Das, P.; Bhattacharya, R.; Basu, D. Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial. J. Mater. Sci. Mater. Med., 2011, 22(3), 705-720.
[http://dx.doi.org/10.1007/s10856-010-4221-3] [PMID: 21221731]
[65]
Kundu, B.; Nandi, S.K.; Royb, S.; Dandapat, N.; Soundrapandian, C.; Datta, S.; Mukherjee, P.; Mandal, T.K.; Dasgupta, S.; Basu, D. Systematic approach to treat chronic osteomyelitis through ceftriaxone–sulbactam impregnated porous β-tri calcium phosphate localized delivery system. Ceram. Int., 2012, 38, 1533-1548.
[http://dx.doi.org/10.1016/j.ceramint.2011.09.038]
[66]
Mistry, S.; Roy, S.; Maitra, N.J.; Kundu, B.; Chanda, A.; Datta, S.; Joy, M. A novel, multi-barrier, drug eluting calcium sulfate/biphasic calcium phosphate biodegradable composite bone cement for treatment of experimental MRSA osteomyelitis in rabbit model. J. Control. Release, 2016, 239, 169-181.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.014] [PMID: 27582374]
[67]
Nandi, S.K.; Kundu, B.; Datta, S.; De, D.K.; Basu, D. The repair of segmental bone defects with porous bioglass: an experimental study in goat. Res. Vet. Sci., 2009, 86(1), 162-173.
[http://dx.doi.org/10.1016/j.rvsc.2008.04.008] [PMID: 18602125]
[68]
bNandi, S.K.; Kundu, B.; Ghosh, S.K.; Mandal, T.K.; Datta, S.; Dea, D.K.; Basu D. Cefuroxime-impregnated calcium phosphates as an implantable delivery system in experimental osteomyelitis. Ceram. Int., 2009, 35, 1367-1376.
[http://dx.doi.org/10.1016/j.ceramint.2008.07.022]
[69]
Ueng, S.W.; Lin, S.S.; Wang, I.C.; Yang, C.Y.; Cheng, R.C.; Liu, S.J.; Chan, E.C.; Lai, C.F.; Yuan, L.J.; Chan, S.C. Efficacy of vancomycin-releasing biodegradable poly(lactide-co-glycolide) antibiotics beads for treatment of experimental bone infection due to Staphylococcus aureus. J. Orthop. Surg. Res., 2016, 11(1), 52-61.
[http://dx.doi.org/10.1186/s13018-016-0386-x] [PMID: 27121956]
[70]
Weng, W.; Nie, W.; Zhou, Q.; Zhou, X.; Cao, L.; Ji, F.; Cui, J.; He, C.; Su, J. Controlled release of vancomycin from 3D porous graphene-based composites for dual-purpose treatment of infected bone defects. RSC Advances, 2017, 7, 2753-2765.
[http://dx.doi.org/10.1039/C6RA26062D]
[71]
Xie, Z.; Liu, X.; Jia, W.; Zhang, C.; Huang, W.; Wang, J. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J. Control. Release, 2009, 139(2), 118-126.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.012] [PMID: 19545593]
[72]
Xie, Z.; Cui, X.; Zhao, C.; Huang, W.; Wang, J.; Zhang, C. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model. Antimicrob. Agents Chemother., 2013, 57(7), 3293-3298.
[http://dx.doi.org/10.1128/AAC.00284-13] [PMID: 23629702]
[73]
Xing, J.; Hou, T.; Luobu, B.; Luo, F.; Chen, Q.; Li, Z.; Jin, H.; Xu, J. Anti-infection tissue engineering construct treating osteomyelitis in rabbit tibia. Tissue Eng. Part A, 2013, 19(1-2), 255-263.
[http://dx.doi.org/10.1089/ten.tea.2012.0262] [PMID: 22861191]
[74]
Yan, L.; Jiang, D.M.; Cao, Z.D.; Wu, J.; Wang, X.; Wang, Z.L.; Li, Y.J.; Yi, Y.F. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres. Drug Des. Devel. Ther., 2015, 9, 3665-3676.
[http://dx.doi.org/10.2147/DDDT.S84486] [PMID: 26213463]
[75]
Yaprakci, V.; Erdemli, O.; Kayabolen, A.; Tezcaner, A.; Bozkurt, F.; Keskin, D. In vitro/in vivo comparison of cefuroxime release from poly(ε-caprolactone)-calcium sulfate implants for osteomyelitis treatment. Biotechnol. Appl. Biochem., 2013, 60(6), 603-616.
[http://dx.doi.org/10.1002/bab.1118] [PMID: 23586705]
[76]
Zhang, X.; Jia, W.; Gu, Y.; Xiao, W.; Liu, X.; Wang, D.; Zhang, C.; Huang, W.; Rahaman, M.N.; Day, D.E.; Zhou, N. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials, 2010, 31(22), 5865-5874.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.005] [PMID: 20434766]
[77]
Zhang, Y.; Liang, R.J.; Xu, J.J.; Shen, L.F.; Gao, J.Q.; Wang, X.P.; Wang, N.N.; Shou, D.; Hu, Y. Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly (trimethylene carbonate) localized drug delivery system. Int. J. Nanomedicine, 2017, 12, 1201-1214.
[http://dx.doi.org/10.2147/IJN.S127715] [PMID: 28243084]
[78]
Gimeno, M.; Pinczowski, P.; Vázquez, F.J.; Pérez, M.; Santamaría, J.; Arruebo, M.; Luján, L. Porous orthopedic steel implant as an antibiotic eluting device: prevention of post-surgical infection on an ovine model. Int. J. Pharm., 2013, 452(1-2), 166-172.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.076] [PMID: 23651643]
[79]
Dale, H.; Fenstad, A.M.; Hallan, G.; Havelin, L.I.; Furnes, O.; Overgaard, S.; Pedersen, A.B.; Kärrholm, J.; Garellick, G.; Pulkkinen, P.; Eskelinen, A.; Mäkelä, K.; Engesæter, L.B. Increasing risk of prosthetic joint infection after total hip arthroplasty. Acta Orthop., 2012, 83(5), 449-458.
[http://dx.doi.org/10.3109/17453674.2012.733918] [PMID: 23083433]
[80]
Lange, J.; Troelsen, A.; Thomsen, R.W.; Søballe, K. Chronic infections in hip arthroplasties: comparing risk of reinfection following one-stage and two-stage revision: a systematic review and meta-analysis. Clin. Epidemiol., 2012, 4, 57-73.
[http://dx.doi.org/10.2147/CLEP.S29025] [PMID: 22500127]
[81]
Jämsen, E.; Stogiannidis, I.; Malmivaara, A.; Pajamäki, J.; Puolakka, T.; Konttinen, Y.T. Outcome of prosthesis exchange for infected knee arthroplasty: the effect of treatment approach. Acta Orthop., 2009, 80(1), 67-77.
[http://dx.doi.org/10.1080/17453670902805064] [PMID: 19234888]
[82]
McKenna, P.B.; O’Shea, K.; Masterson, E.L. Two-stage revision of infected hip arthroplasty using a shortened post-operative course of antibiotics. Arch. Orthop. Trauma Surg., 2009, 129(4), 489-494.
[http://dx.doi.org/10.1007/s00402-008-0683-x] [PMID: 18677498]
[83]
Norden, C.W. Experimental osteomyelitis. I. A description of the model. J. Infect. Dis., 1970, 122(5), 410-418.
[http://dx.doi.org/10.1093/infdis/122.5.410] [PMID: 5476391]
[84]
Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur. Cell. Mater., 2014, 27, 196-212.
[http://dx.doi.org/10.22203/eCM.v027a15] [PMID: 24668594]
[85]
Zilberman, M.; Elsner, J.J. Antibiotic-eluting medical devices for various applications. J. Control. Release, 2008, 130(3), 202-215.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.020] [PMID: 18687500]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 17
Year: 2019
Page: [3150 - 3174]
Pages: 25
DOI: 10.2174/0929867325666171129220031
Price: $58

Article Metrics

PDF: 19
HTML: 2