Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Peptide-Based Approaches for Cancer Treatment

Author(s): Anne C. Conibear, Alanca Schmid, Meder Kamalov, Christian F.W. Becker and Claudia Bello*

Volume 27, Issue 8, 2020

Page: [1174 - 1205] Pages: 32

DOI: 10.2174/0929867325666171123204851

Price: $65

Abstract

Background: Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability.

Methods: In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy.

Results: One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines.

Conclusion: This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.

Keywords: Peptide-based cancer therapeutics, anticancer peptides, peptide-drug conjugates, nanoparticle-peptide materials, cancer vaccines, tumor targeting.

[1]
Hait, W.N.; Hambley, T.W. Targeted cancer therapeutics. Cancer Res., 2009, 69(4), 1263-1267.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3836] [PMID: 19208830]
[2]
Moffat, J.G.; Rudolph, J.; Bailey, D. Phenotypic screening in cancer drug discovery - past, present and future. Nat. Rev. Drug Discov., 2014, 13(8), 588-602.
[http://dx.doi.org/10.1038/nrd4366] [PMID: 25033736]
[3]
Tsomaia, N. Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem., 2015, 94, 459-470.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.014] [PMID: 25591543 ]
[4]
Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem., 2012, 4(12), 1527-1531.
[http://dx.doi.org/10.4155/fmc.12.94] [PMID: 22917241 ]
[5]
Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. Antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4, Article 294.
[6]
Blanco-Míguez, A.; Gutiérrez-Jácome, A.; Pérez-Pérez, M.; Pérez-Rodríguez, G.; Catalán-García, S.; Fdez-Riverola, F.; Lourenço, A.; Sánchez, B. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides. Protein Sci., 2016, 25(6), 1084-1095.
[http://dx.doi.org/10.1002/pro.2927] [PMID: 27010507]
[7]
Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett., 2014, 351(1), 13-22.
[http://dx.doi.org/10.1016/j.canlet.2014.05.002] [PMID: 24836189 ]
[8]
Chaisakul, J.; Hodgson, W.C.; Kuruppu, S.; Prasongsook, N. Effects of animal venoms and toxins on hallmarks of cancer. J. Cancer, 2016, 7(11), 1571-1578.
[http://dx.doi.org/10.7150/jca.15309] [PMID: 27471574 ]
[9]
Suarez-Jimenez, G.M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.M. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar. Drugs, 2012, 10(5), 963-986.
[http://dx.doi.org/10.3390/md10050963] [PMID: 22822350 ]
[10]
Guzman-Rodriguez, J.J.; Ochoa-Zarzosa, A.; Lopez-Gomez, R.; Lopez-Meza, J.E. Plant Antimicrobial Peptides as Potential Anticancer Agents. BioMed Res. Int., 2015.
[http://dx.doi.org/10.1155/2015/735087]
[11]
Prabhu, S.; Dennison, S.R.; Lea, B.; Snape, T.J.; Nicholl, I.D.; Radecka, I.; Harris, F. Anionic antimicrobial and anticancer peptides from plants. Crit. Rev. Plant Sci., 2013, 32(5), 303-320.
[http://dx.doi.org/10.1080/07352689.2013.773238]
[12]
Patel, S.; Ahmed, S.; Eswari, J.S. Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles. World J. Microbiol. Biotechnol., 2015, 31(8), 1177-1193.
[http://dx.doi.org/10.1007/s11274-015-1880-8] [PMID: 26041368 ]
[13]
Kang, K.H.; Kim, S.K. Beneficial effect of peptides from microalgae on anticancer. Curr. Protein Pept. Sci., 2013, 14(3), 212-217.
[http://dx.doi.org/10.2174/1389203711314030009] [PMID: 23822898 ]
[14]
Liu, R.; Li, X.; Xiao, W.; Lam, K.S. Tumor-targeting peptides from combinatorial libraries. Adv. Drug Deliv. Rev., 2017, 110-111, 13-37.
[http://dx.doi.org/10.1016/j.addr.2016.05.009] [PMID: 27210583 ]
[15]
Jagtap, P.K.A.; Garg, D.; Kapp, T.G.; Will, C.L.; Demmer, O.; Lührmann, R.; Kessler, H.; Sattler, M. Rational design of cyclic peptide inhibitors of U2AF homology motif (UHM) domains to modulate Pre-mRNA splicing. J. Med. Chem., 2016, 59(22), 10190-10197.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01118] [PMID: 27753493]
[16]
Maaß, F.; Wüstehube-Lausch, J.; Dickgießer, S.; Valldorf, B.; Reinwarth, M.; Schmoldt, H-U.; Daneschdar, M.; Avrutina, O.; Sahin, U.; Kolmar, H. Cystine-knot peptides targeting cancer-relevant human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Pept. Sci., 2015, 21(8), 651-660.
[http://dx.doi.org/10.1002/psc.2782] [PMID: 25964162 ]
[17]
Kessler, J.H.; Melief, C.J.M. Identification of T-cell epitopes for cancer immunotherapy. Leukemia, 2007, 21(9), 1859-1874.
[http://dx.doi.org/10.1038/sj.leu.2404787] [PMID: 17611570 ]
[18]
Xiao, Y.F.; Jie, M.M.; Li, B.S.; Hu, C.J.; Xie, R.; Tang, B.; Yang, S.M. Peptide-based treatment: a promising cancer therapy. In: Journal of Immunology Research, ; , 2015. Article ID 761820.
[19]
Mine, Y.; Munir, H.; Nakanishi, Y.; Sugiyama, D. Biomimetic peptides for the treatment of cancer. Anticancer Res., 2016, 36(7), 3565-3570.
[PMID: 27354624]
[20]
Hagimori, M.; Fuchigami, Y.; Kawakami, S. Peptide-based cancer-targeted DDS and molecular imaging. Chem. Pharm. Bull. (Tokyo), 2017, 65(7), 618-624.
[http://dx.doi.org/10.1248/cpb.c17-00098] [PMID: 28674333 ]
[21]
Ellert-Miklaszewska, A.; Poleszak, K.; Kaminska, B. Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med. Chem., 2017, 9(2), 199-221.
[http://dx.doi.org/10.4155/fmc-2016-0189] [PMID: 28111982]
[22]
Loktev, A.; Haberkorn, U.; Mier, W. Multicyclic peptides as scaffolds for the development of tumor targeting agents. Curr. Med. Chem., 2017, 24(20), 2141-2155.
[http://dx.doi.org/10.2174/0929867324666170316120304] [PMID: 28302013]
[23]
Lu, L.; Qi, H.; Zhu, J.; Sun, W.X.; Zhang, B.; Tang, C.Y.; Cheng, Q. Vascular-homing peptides for cancer therapy. Biomed. Pharmacother., 2017, 92, 187-195.
[http://dx.doi.org/10.1016/j.biopha.2017.05.054] [PMID: 28544932 ]
[24]
Qin, H.; Ding, Y.; Mujeeb, A.; Zhao, Y.; Nie, G. Tumor microenvironment targeting and responsive peptide-based nanoformulations for improved tumor therapy. Mol. Pharmacol., 2017, 92(3), 219-231.
[http://dx.doi.org/10.1124/mol.116.108084] [PMID: 28420679 ]
[25]
Ruoslahti, E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 3-12.
[http://dx.doi.org/10.1016/j.addr.2016.03.008] [PMID: 27040947 ]
[26]
Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481-501.
[http://dx.doi.org/10.7150/thno.4024] [PMID: 22737187]
[27]
Bolhassani, A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim. Biophys. Acta, 2011, 1816(2), 232-246.
[PMID: 21840374]
[28]
Zhang, X-X.; Eden, H.S.; Chen, X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J. Control. Release, 2012, 159(1), 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.023] [PMID: 22056916 ]
[29]
Niu, G.; Chen, X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr. Drug Targets, 2010, 11(8), 1000-1017.
[http://dx.doi.org/10.2174/138945010791591395] [PMID: 20426765 ]
[30]
Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature, 2005, 438(7070), 967-974.
[http://dx.doi.org/10.1038/nature04483] [PMID: 16355214 ]
[31]
Kim, J.W.; Kim, T.D.; Hong, B.S.; Kim, O.Y.; Yoon, W.H.; Chae, C.B.; Gho, Y.S. A serum-stable branched dimeric anti-VEGF peptide blocks tumor growth via anti-angiogenic activity. Exp. Mol. Med., 2010, 42(7), 514-523.
[http://dx.doi.org/10.3858/emm.2010.42.7.052] [PMID: 20543548]
[32]
Tam, J.P. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc. Natl. Acad. Sci. USA, 1988, 85(15), 5409-5413.
[http://dx.doi.org/10.1073/pnas.85.15.5409] [PMID: 3399498 ]
[33]
Baek, Y.Y.; Lee, D.K.; So, J.H.; Kim, C.H.; Jeoung, D.; Lee, H.; Choe, J.; Won, M.H.; Ha, K.S.; Kwon, Y.G.; Kim, Y.M. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis. Biochem. Biophys. Res. Commun., 2015, 463(4), 532-537.
[http://dx.doi.org/10.1016/j.bbrc.2015.05.073] [PMID: 26051280]
[34]
Baek, Y.Y.; Lee, D.K.; Kim, J.; Kim, J.H.; Park, W.; Kim, T.; Han, S.; Jeoung, D.; You, J.C.; Lee, H.; Won, M.H.; Ha, K.S.; Kwon, Y.G.; Kim, Y.M. Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget, 2017, 8(7), 11763-11777.
[http://dx.doi.org/10.18632/oncotarget.14343] [PMID: 28052029 ]
[35]
Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391 ]
[36]
Conibear, A.C.; Bochen, A.; Rosengren, K.J.; Stupar, P.; Wang, C.; Kessler, H.; Craik, D.J. The cyclic cystine ladder of theta-defensins as a stable, bifunctional scaffold: A proof-of-concept study using the integrin-binding RGD motif. ChemBioChem, 2014, 15(3), 451-459.
[http://dx.doi.org/10.1002/cbic.201300568] [PMID: 24382674 ]
[37]
Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; Maltsev, O.V.; Cavalcanti-Adam, E.A.; Zarka, R.; Reuning, U.; Notni, J.; Wester, H.-J.; Mas-Moruno, C.; Spatz, J.; Geiger, B.; Kessler, H. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrinsScietific Reports, 2017. 7 article number 39805
[38]
Campbell, N.E.; Kellenberger, L.; Greenaway, J.; Moorehead, R.A.; Linnerth-Petrik, N.M.; Petrik, J. Extracellular matrix proteins and tumor angiogenesis. J. Oncol., 2010, 2010586905
[http://dx.doi.org/10.1155/2010/586905] [PMID: 20671917]
[39]
Bhowmick, M.; Stawikowska, R.; Tokmina-Roszyk, D.; Fields, G.B. Matrix metalloproteinase inhibition by heterotrimeric triple-helical Peptide transition state analogues. ChemBioChem, 2015, 16(7), 1084-1092.
[http://dx.doi.org/10.1002/cbic.201402716] [PMID: 25766890 ]
[40]
Choi, Y.J.; Lee, J.Y.; Park, J.H.; Park, J.B.; Suh, J.S.; Choi, Y.S.; Lee, S.J.; Chung, C.P.; Park, Y.J. The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials, 2010, 31(28), 7226-7238.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.022] [PMID: 20621352]
[41]
Choi, S.H.; Lee, J.Y.; Suh, J.S.; Park, Y.S.; Chung, C.P.; Park, Y.J. Dual-function synthetic peptide derived from BMP4 for highly efficient tumor targeting and antiangiogenesis. Int. J. Nanomedicine, 2016, 11, 4643-4656.
[http://dx.doi.org/10.2147/IJN.S115044] [PMID: 27695323]
[42]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749 ]
[43]
Nevola, L.; Giralt, E. Modulating protein-protein interactions: the potential of peptides. Chem. Commun. (Camb.), 2015, 51(16), 3302-3315.
[http://dx.doi.org/10.1039/C4CC08565E] [PMID: 25578807 ]
[44]
Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J. Am. Chem. Soc., 1987, 109(22), 6883-6885.
[http://dx.doi.org/10.1021/ja00256a070]
[45]
Maderna, A.; Leverett, C.A. Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates. Mol. Pharm., 2015, 12(6), 1798-1812.
[http://dx.doi.org/10.1021/mp500762u] [PMID: 25697404]
[46]
Waight, A.B.; Bargsten, K.; Doronina, S.; Steinmetz, M.O.; Sussman, D.; Prota, A.E. Structural basis of microtubule destabilization by potent auristatin anti-mitotics. PLoS One, 2016, 11(8)e0160890
[http://dx.doi.org/10.1371/journal.pone.0160890] [PMID: 27518442]
[47]
Murray, B.C.; Peterson, M.T.; Fecik, R.A. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep., 2015, 32(5), 654-662.
[http://dx.doi.org/10.1039/C4NP00036F] [PMID: 25677951 ]
[48]
Sasse, F.; Steinmetz, H.; Heil, J.; Höfle, G.; Reichenbach, H. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. (Tokyo), 2000, 53(9), 879-885.
[http://dx.doi.org/10.7164/antibiotics.53.879] [PMID: 11099220 ]
[49]
Figueiredo, C.R.; Matsuo, A.L.; Azevedo, R.A.; Massaoka, M.H.; Girola, N.; Polonelli, L.; Travassos, L.R. A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo. Sci. Rep., 2015, 5, 14310.
[http://dx.doi.org/10.1038/srep14310] [PMID: 26391685]
[50]
Bhunia, D.; Mohapatra, S.; Kurkute, P.; Ghosh, S.; Jana, B.; Mondal, P.; Saha, A.; Das, G.; Ghosh, S. Novel tubulin-targeted cell penetrating antimitotic octapeptide. Chem. Commun. (Camb.), 2016, 52(85), 12657-12660.
[http://dx.doi.org/10.1039/C6CC05110C] [PMID: 27713939 ]
[51]
Jana, B.; Mondal, P.; Saha, A.; Adak, A.; Das, G.; Mohapatra, S.; Kurkute, P.; Ghosh, S. Designed tetra-peptide interacts with tubulin and microtubule.Langmuir, , 2017. Article ASAP
[52]
Crawford, L.J.; Walker, B.; Irvine, A.E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal., 2011, 5(2), 101-110.
[http://dx.doi.org/10.1007/s12079-011-0121-7] [PMID: 21484190 ]
[53]
Kane, R.C.; Bross, P.F.; Farrell, A.T.; Pazdur, R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist, 2003, 8(6), 508-513.
[http://dx.doi.org/10.1634/theoncologist.8-6-508] [PMID: 14657528 ]
[54]
Kane, R.C.; Dagher, R.; Farrell, A.; Ko, C.W.; Sridhara, R.; Justice, R.; Pazdur, R. Bortezomib for the treatment of mantle cell lymphoma. Clin. Cancer Res., 2007, 13(18 Pt 1), 5291-5294.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0871] [PMID: 17875757 ]
[55]
Center for Drug Evaluation and Research https://www.accessdata.fda.gov/drugsatfda_docs/nda/201 2/202714orig1s000approv.pdfAccessed date: 03.02.. 2020.
[56]
Groll, M.; Kim, K.B.; Kairies, N.; Huber, R.; Crews, C.M. Crystal Structure of Epoxomicin: 20S Proteasome reveals a molecular basis for selectivity of α′,β′-epoxyketone proteasome inhibitors. J. Am. Chem. Soc., 2000, 122(6), 1237-1238.
[http://dx.doi.org/10.1021/ja993588m]
[57]
Buac, D.; Shen, M.; Schmitt, S.; Kona, F.R.; Deshmukh, R.; Zhang, Z.; Neslund-Dudas, C.; Mitra, B.; Dou, Q.P. From bortezomib to other inhibitors of the proteasome and beyond. Curr. Pharm. Des., 2013, 19(22), 4025-4038.
[http://dx.doi.org/10.2174/1381612811319220012] [PMID: 23181572 ]
[58]
Jorda, R.; Dušek, J.; Řezníčková, E.; Pauk, K.; Magar, P.P.; Imramovský, A.; Kryštof, V. Synthesis and antiproteasomal activity of novel O-benzyl salicylamide-based inhibitors built from leucine and phenylalanine. Eur. J. Med. Chem., 2017, 135, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.027] [PMID: 28441582 ]
[59]
Dou, Q.P.; Zonder, J.A. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr. Cancer Drug Targets, 2014, 14(6), 517-536.
[http://dx.doi.org/10.2174/1568009614666140804154511] [PMID: 25092212 ]
[60]
Schrader, J.; Henneberg, F.; Mata, R.A.; Tittmann, K.; Schneider, T.R.; Stark, H.; Bourenkov, G.; Chari, A. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science, 2016, 353(6299), 594-598.
[http://dx.doi.org/10.1126/science.aaf8993] [PMID: 27493187 ]
[61]
Hanks, S.K.; Quinn, A.M.; Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 1988, 241(4861), 42-52.
[http://dx.doi.org/10.1126/science.3291115] [PMID: 3291115]
[62]
Eck, M.J.; Manley, P.W. The interplay of structural information and functional studies in kinase drug design: insights from BCR-Abl. Curr. Opin. Cell Biol., 2009, 21(2), 288-295.
[http://dx.doi.org/10.1016/j.ceb.2009.01.014] [PMID: 19217274 ]
[63]
Lee, S.J.; Wang, J.Y. Exploiting the promiscuity of imatinib. J. Biol., 2009, 8(3), 30.
[http://dx.doi.org/10.1186/jbiol134] [PMID: 19435483]
[64]
Licht-Murava, A.; Eldar-Finkelman, H. Exploiting substrate recognition for selective inhibition of protein kinases. Curr. Pharm. Des., 2012, 18(20), 2914-2920.
[http://dx.doi.org/10.2174/138161212800672741] [PMID: 22571660 ]
[65]
Huang, Y-H.; Henriques, S.T.; Wang, C.K.; Thorstholm, L.; Daly, N.L.; Kaas, Q.; Craik, D.J. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Sci. Rep., 2015, 5, 12974.
[http://dx.doi.org/10.1038/srep12974] [PMID: 26264857 ]
[66]
Wang, Y.; Ho, T.G.; Bertinetti, D.; Neddermann, M.; Franz, E.; Mo, G.C.H.; Schendowich, L.P.; Sukhu, A.; Spelts, R.C.; Zhang, J.; Herberg, F.W.; Kennedy, E.J. Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem. Biol., 2014, 9(3), 635-642.
[http://dx.doi.org/10.1021/cb400900r] [PMID: 24422448 ]
[67]
Perea, S.E.; Reyes, O.; Puchades, Y.; Mendoza, O.; Vispo, N.S.; Torrens, I.; Santos, A.; Silva, R.; Acevedo, B.; López, E.; Falcón, V.; Alonso, D.F. Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2). Cancer Res., 2004, 64(19), 7127-7129.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2086] [PMID: 15466209 ]
[68]
Benavent Acero, F.; Capobianco, C.S.; Garona, J.; Cirigliano, S.M.; Perera, Y.; Urtreger, A.J.; Perea, S.E.; Alonso, D.F.; Farina, H.G. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer, 2017, 107, 14-21.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.026] [PMID: 27319334]
[69]
Cirigliano, S.M.; Díaz Bessone, M.I.; Berardi, D.E.; Flumian, C.; Bal de Kier Joffé, E.D.; Perea, S.E.; Farina, H.G.; Todaro, L.B.; Urtreger, A.J. The synthetic peptide CIGB-300 modulates CK2-dependent signaling pathways affecting the survival and chemoresistance of non-small cell lung cancer cell lines. Cancer Cell Int., 2017, 17, 42.
[http://dx.doi.org/10.1186/s12935-017-0413-y] [PMID: 28373828 ]
[70]
Li, S.; Huang, S.; Peng, S.B. Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression. Int. J. Oncol., 2005, 27(5), 1329-1339.
[http://dx.doi.org/10.3892/ijo.27.5.1329] [PMID: 16211229 ]
[71]
Bar-Shavit, R.; Maoz, M.; Kancharla, A.; Nag, J.K.; Agranovich, D.; Grisaru-Granovsky, S.; Uziely, B.; Protein-Coupled Receptors, G. in Cancer. Int. J. Mol. Sci., 2016, 17(8), 1320.
[http://dx.doi.org/10.3390/ijms17081320] [PMID: 27529230 ]
[72]
Cuttitta, F.; Carney, D.N.; Mulshine, J.; Moody, T.W.; Fedorko, J.; Fischler, A.; Minna, J.D. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature, 1985, 316(6031), 823-826.
[http://dx.doi.org/10.1038/316823a0] [PMID: 2993906]
[73]
Kim, S.; Hu, W.; Kelly, D.R.; Hellmich, M.R.; Evers, B.M.; Chung, D.H. Gastrin-releasing peptide is a growth factor for human neuroblastomas. Ann. Surg., 2002, 235(5), 621-629.
[http://dx.doi.org/10.1097/00000658-200205000-00003] [PMID: 11981207]
[74]
Hohla, F.; Schally, A.V. Targeting gastrin releasing peptide receptors: New options for the therapy and diagnosis of cancer. Cell Cycle, 2010, 9(9), 1738-1741.
[http://dx.doi.org/10.4161/cc.9.9.11347] [PMID: 20473035]
[75]
Schally, A.V.C-S.A. Holland-Frei Cancer Medicine, 6th ed; Decker, B., Ed.; , 2003.
[76]
Marsouvanidis, P.J.; Nock, B.A.; Hajjaj, B.; Fehrentz, J.A.; Brunel, L.; M’Kadmi, C.; van der Graaf, L.; Krenning, E.P.; Maina, T.; Martinez, J.; de Jong, M. Gastrin releasing peptide receptor-directed radioligands based on a bombesin antagonist: synthesis, (111)in-labeling, and preclinical profile. J. Med. Chem., 2013, 56(6), 2374-2384.
[http://dx.doi.org/10.1021/jm301692p] [PMID: 23427837 ]
[77]
Varasteh, Z.; Velikyan, I.; Lindeberg, G.; Sörensen, J.; Larhed, M.; Sandström, M.; Selvaraju, R.K.; Malmberg, J.; Tolmachev, V.; Orlova, A. Synthesis and characterization of a high-affinity NOTA-conjugated bombesin antagonist for GRPR-targeted tumor imaging. Bioconjug. Chem., 2013, 24(7), 1144-1153.
[http://dx.doi.org/10.1021/bc300659k] [PMID: 23763444 ]
[78]
Keskin, O.; Yalcin, S. A review of the use of somatostatin analogs in oncology. OncoTargets Ther., 2013, 6, 471-483.
[PMID: 23667314]
[79]
Öberg, K.; Lamberts, S.W. Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: past, present and future. Endocr. Relat. Cancer, 2016, 23(12), R551-R566.
[http://dx.doi.org/10.1530/ERC-16-0151] [PMID: 27697899 ]
[80]
Wolin, E.M.; Jarzab, B.; Eriksson, B.; Walter, T.; Toumpanakis, C.; Morse, M.A.; Tomassetti, P.; Weber, M.M.; Fogelman, D.R.; Ramage, J.; Poon, D.; Gadbaw, B.; Li, J.; Pasieka, J.L.; Mahamat, A.; Swahn, F.; Newell-Price, J.; Mansoor, W.; Öberg, K. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Devel. Ther., 2015, 9, 5075-5086.
[http://dx.doi.org/10.2147/DDDT.S84177] [PMID: 26366058 ]
[81]
Riley, T.; Sontag, E.; Chen, P.; Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 402-412.
[http://dx.doi.org/10.1038/nrm2395] [PMID: 18431400 ]
[82]
Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2010, 2(1)a001008
[http://dx.doi.org/10.1101/cshperspect.a001008] [PMID: 20182602 ]
[83]
Tommasino, M.; Accardi, R.; Caldeira, S.; Dong, W.; Malanchi, I.; Smet, A.; Zehbe, I. The role of TP53 in Cervical carcinogenesis. Hum. Mutat., 2003, 21(3), 307-312.
[http://dx.doi.org/10.1002/humu.10178] [PMID: 12619117 ]
[84]
Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387(6630), 296-299.
[http://dx.doi.org/10.1038/387296a0] [PMID: 9153395 ]
[85]
Shi, D.; Gu, W. Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer, 2012, 3(3-4), 240-248.
[http://dx.doi.org/10.1177/1947601912455199] [PMID: 23150757 ]
[86]
Duncan, S.J.; Grüschow, S.; Williams, D.H.; McNicholas, C.; Purewal, R.; Hajek, M.; Gerlitz, M.; Martin, S.; Wrigley, S.K.; Moore, M. Isolation and Structure Elucidation of Chlorofusin, a Novel p53-MDM2 Antagonist from a Fusarium sp. J. Am. Chem. Soc.,, 2002. 124(48), 14503-14503. [J. Am. Chem. Soc. 2001, 123, 554−560].
[http://dx.doi.org/10.1021/ja025114k ] [PMID: 11456567 ]
[87]
Klein, C.; Vassilev, L.T. Targeting the p53-MDM2 interaction to treat cancer. Br. J. Cancer, 2004, 91(8), 1415-1419.
[http://dx.doi.org/10.1038/sj.bjc.6602164] [PMID: 15452548]
[88]
Cominetti, M.M.D.; Goffin, S.A.; Raffel, E.; Turner, K.D.; Ramoutar, J.C.; O’Connell, M.A.; Howell, L.A.; Searcey, M. Identification of a new p53/MDM2 inhibitor motif inspired by studies of chlorofusin. Bioorg. Med. Chem. Lett., 2015, 25(21), 4878-4880.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.014] [PMID: 26115576 ]
[89]
Pazgier, M.; Liu, M.; Zou, G.; Yuan, W.; Li, C.; Li, C.; Li, J.; Monbo, J.; Zella, D.; Tarasov, S.G.; Lu, W. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4665-4670.
[http://dx.doi.org/10.1073/pnas.0900947106] [PMID: 19255450 ]
[90]
Liu, M.; Li, C.; Pazgier, M.; Li, C.; Mao, Y.; Lv, Y.; Gu, B.; Wei, G.; Yuan, W.; Zhan, C.; Lu, W.Y.; Lu, W. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14321-14326.
[http://dx.doi.org/10.1073/pnas.1008930107] [PMID: 20660730 ]
[91]
Philippe, G.; Huang, Y.H.; Cheneval, O.; Lawrence, N.; Zhang, Z.; Fairlie, D.P.; Craik, D.J.; de Araujo, A.D.; Henriques, S.T. Development of cell-penetrating peptide-based drug leads to inhibit MDMX: p53 and MDM2:p53 interactions. Biopolymers, 2016, 106(6), 853-863.
[http://dx.doi.org/10.1002/bip.22893] [PMID: 27287767 ]
[92]
Walensky, L.D.; Kung, A.L.; Escher, I.; Malia, T.J.; Barbuto, S.; Wright, R.D.; Wagner, G.; Verdine, G.L.; Korsmeyer, S.J. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science, 2004, 305(5689), 1466-1470.
[http://dx.doi.org/10.1126/science.1099191] [PMID: 15353804 ]
[93]
Kazi, A.; Sun, J.; Doi, K.; Sung, S.S.; Takahashi, Y.; Yin, H.; Rodriguez, J.M.; Becerril, J.; Berndt, N.; Hamilton, A.D.; Wang, H.G.; Sebti, S.M. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. J. Biol. Chem., 2011, 286(11), 9382-9392.
[http://dx.doi.org/10.1074/jbc.M110.203638] [PMID: 21148306 ]
[94]
Ellerby, H.M.; Arap, W.; Ellerby, L.M.; Kain, R.; Andrusiak, R.; Rio, G.D.; Krajewski, S.; Lombardo, C.R.; Rao, R.; Ruoslahti, E.; Bredesen, D.E.; Pasqualini, R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med., 1999, 5(9), 1032-1038.
[http://dx.doi.org/10.1038/12469] [PMID: 10470080 ]
[95]
Lin, R.; Zhang, P.; Cheetham, A.G.; Walston, J.; Abadir, P.; Cui, H. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug. Chem., 2015, 26(1), 71-77.
[http://dx.doi.org/10.1021/bc500408p] [PMID: 25547808 ]
[96]
LaBelle, J.L.; Katz, S.G.; Bird, G.H.; Gavathiotis, E.; Stewart, M.L.; Lawrence, C.; Fisher, J.K.; Godes, M.; Pitter, K.; Kung, A.L.; Walensky, L.D. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J. Clin. Invest., 2012, 122(6), 2018-2031.
[http://dx.doi.org/10.1172/JCI46231] [PMID: 22622039]
[97]
Woldetsadik, A.D.; Vogel, M.C.; Rabeh, W.M.; Magzoub, M. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J., 2017, 31(5), 2168-2184.
[http://dx.doi.org/10.1096/fj.201601173R] [PMID: 28183803 ]
[98]
Pastorino, J.G.; Shulga, N.; Hoek, J.B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem., 2002, 277(9), 7610-7618.
[http://dx.doi.org/10.1074/jbc.M109950200] [PMID: 11751859 ]
[99]
Kim, J.S.; He, L.; Lemasters, J.J. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun., 2003, 304(3), 463-470.
[http://dx.doi.org/10.1016/S0006-291X(03)00618-1] [PMID: 12729580 ]
[100]
Halestrap, A.P. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol., 2009, 46(6), 821-831.
[http://dx.doi.org/10.1016/j.yjmcc.2009.02.021] [PMID: 19265700 ]
[101]
Jacotot, E.; Ravagnan, L.; Loeffler, M.; Ferri, K.F.; Vieira, H.L.; Zamzami, N.; Costantini, P.; Druillennec, S.; Hoebeke, J.; Briand, J.P.; Irinopoulou, T.; Daugas, E.; Susin, S.A.; Cointe, D.; Xie, Z.H.; Reed, J.C.; Roques, B.P.; Kroemer, G. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med., 2000, 191(1), 33-46.
[http://dx.doi.org/10.1084/jem.191.1.33] [PMID: 10620603 ]
[102]
Borgne-Sanchez, A.; Dupont, S.; Langonné, A.; Baux, L.; Lecoeur, H.; Chauvier, D.; Lassalle, M.; Déas, O.; Brière, J.J.; Brabant, M.; Roux, P.; Péchoux, C.; Briand, J.P.; Hoebeke, J.; Deniaud, A.; Brenner, C.; Rustin, P.; Edelman, L.; Rebouillat, D.; Jacotot, E. Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of alphaVbeta3-expressing endothelial cells. Cell Death Differ., 2007, 14(3), 422-435.
[http://dx.doi.org/10.1038/sj.cdd.4402018] [PMID: 16888644 ]
[103]
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett., 2017, 387(Suppl. C), 95-105.
[http://dx.doi.org/10.1016/j.canlet.2016.03.042] [PMID: 27037062 ]
[104]
Han, X.; Li, J.; Brasky, T.M.; Xun, P.; Stevens, J.; White, E.; Gammon, M.D.; He, K. Antioxidant intake and pancreatic cancer risk: the Vitamins and Lifestyle (VITAL) Study. Cancer, 2013, 119(7), 1314-1320.
[http://dx.doi.org/10.1002/cncr.27936] [PMID: 23280534 ]
[105]
Schumacker, P.T. Reactive oxygen species in cancer: a dance with the devil. Cancer Cell, 2015, 27(2), 156-157.
[http://dx.doi.org/10.1016/j.ccell.2015.01.007] [PMID: 25670075 ]
[106]
Zhong, H.; Yin, H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol., 2015, 4, 193-199.
[http://dx.doi.org/10.1016/j.redox.2014.12.011] [PMID: 25598486 ]
[107]
Xie, Z.; Baba, S.P.; Sweeney, B.R.; Barski, O.A. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications. Chem. Biol. Interact., 2013, 202(1-3), 288-297.
[http://dx.doi.org/10.1016/j.cbi.2012.12.017] [PMID: 23313711 ]
[108]
Chen, J.; Jiang, W.; Shao, L.; Zhong, D.; Wu, Y.; Cai, J. Association between intake of antioxidants and pancreatic cancer risk: a meta-analysis. Int. J. Food Sci. Nutr., 2016, 67(7), 744-753.
[http://dx.doi.org/10.1080/09637486.2016.1197892] [PMID: 27356952 ]
[109]
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C.W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.
[http://dx.doi.org/10.1016/j.ccell.2014.11.019] [PMID: 25620030 ]
[110]
Yin, L.; Kufe, D. MUC1-C oncoprotein blocks terminal differentiation of chronic myelogenous leukemia cells by a ROS-mediated mechanism. Genes Cancer, 2011, 2(1), 56-64.
[http://dx.doi.org/10.1177/1947601911405044] [PMID: 21643558 ]
[111]
Hasegawa, M.; Sinha, R.K.; Kumar, M.; Alam, M.; Yin, L.; Raina, D.; Kharbanda, A.; Panchamoorthy, G.; Gupta, D.; Singh, H.; Kharbanda, S.; Kufe, D. Intracellular Targeting of the Oncogenic MUC1-C Protein with a Novel GO-203 Nanoparticle Formulation. Clin. Cancer Res., 2015, 21(10), 2338-2347.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3000] [PMID: 25712682 ]
[112]
A phase II trial of MUCI inhibitor, GO-203-2C in patient with relapsed or refractory. Acute myeloid leukemia. https://clinicaltrials.gov/ct2/show/NCT02204085(Accessed on: 04.10.. 2017.
[113]
Dennison, S.R.; Wallace, J.; Harris, F.; Phoenix, D.A. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept. Lett., 2005, 12(1), 31-39.
[http://dx.doi.org/10.2174/0929866053406084] [PMID: 15638801]
[114]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[115]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863 ]
[116]
Paredes-Gamero, E.J.; Martins, M.N.; Cappabianco, F.A.; Ide, J.S.; Miranda, A. Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochim. Biophys. Acta, 2012, 1820(7), 1062-1072.
[http://dx.doi.org/10.1016/j.bbagen.2012.02.015] [PMID: 22425533 ]
[117]
Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[118]
Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol., 1995, 13, 61-92.
[http://dx.doi.org/10.1146/annurev.iy.13.040195.000425] [PMID: 7612236]
[119]
Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[120]
Riedl, S.; Zweytick, D.; Lohner, K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids, 2011, 164(8), 766-781.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004] [PMID: 21945565 ]
[121]
Papo, N.; Shai, Y. Host defense peptides as new weapons in cancer treatment. Cell. Mol. Life Sci., 2005, 62(7-8), 784-790.
[http://dx.doi.org/10.1007/s00018-005-4560-2] [PMID: 15868403 ]
[122]
Chu, H.L.; Yip, B.S.; Chen, K.H.; Yu, H.Y.; Chih, Y.H.; Cheng, H.T.; Chou, Y.T.; Cheng, J.W. Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS One, 2015, 10(5)e0126390
[http://dx.doi.org/10.1371/journal.pone.0126390] [PMID: 25970292 ]
[123]
Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817.
[http://dx.doi.org/10.1016/j.drudis.2013.05.011] [PMID: 23726889 ]
[124]
Chari, R.V.; Miller, M.L.; Widdison, W.C. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(15), 3796-3827.
[http://dx.doi.org/10.1002/anie.201307628] [PMID: 24677743]
[125]
Gilad, Y.; Firer, M.; Gellerman, G. Recent Innovations in Peptide Based Targeted Drug Delivery to Cancer Cells. Biomedicines, 2016, 4(2), 11.
[http://dx.doi.org/10.3390/biomedicines4020011] [PMID: 28536378]
[126]
McCombs, J.R.; Owen, S.C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J., 2015, 17(2), 339-351.
[http://dx.doi.org/10.1208/s12248-014-9710-8] [PMID: 25604608]
[127]
Merten, H.; Brandl, F.; Plückthun, A.; Zangemeister-Wittke, U. Antibody-Drug Conjugates for Tumor Targeting-Novel Conjugation Chemistries and the Promise of non-IgG Binding Proteins. Bioconjug. Chem., 2015, 26(11), 2176-2185.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00260] [PMID: 26086208 ]
[128]
Sliwkowski, M.X.; Mellman, I. Antibody therapeutics in cancer. Science, 2013, 341(6151), 1192-1198.
[http://dx.doi.org/10.1126/science.1241145] [PMID: 24031011 ]
[129]
Böhme, D.; Beck-Sickinger, A.G. Drug delivery and release systems for targeted tumor therapy. J. Pept. Sci., 2015, 21(3), 186-200.
[http://dx.doi.org/10.1002/psc.2753] [PMID: 25703117 ]
[130]
Casi, G.; Neri, D. Antibody-drug conjugates: basic concepts, examples and future perspectives. J. Control. Release, 2012, 161(2), 422-428.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.026] [PMID: 22306430]
[131]
Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J.R. Site-specific antibody drug conjugates for cancer therapy. MAbs, 2014, 6(1), 34-45.
[http://dx.doi.org/10.4161/mabs.27022] [PMID: 24423619 ]
[132]
Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192.
[http://dx.doi.org/10.1021/bc5004982] [PMID: 25494884]
[133]
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl., 2009, 48(38), 6974-6998.
[http://dx.doi.org/10.1002/anie.200900942] [PMID: 19714693 ]
[134]
Schumacher, D.; Hackenberger, C.P. More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Curr. Opin. Chem. Biol., 2014, 22, 62-69.
[http://dx.doi.org/10.1016/j.cbpa.2014.09.018] [PMID: 25285752 ]
[135]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771 ]
[136]
Quinn, B.A.; Wang, S.; Barile, E.; Das, S.K.; Emdad, L.; Sarkar, D.; De, S.K.; Morvaridi, S.K.; Stebbins, J.L.; Pandol, S.J.; Fisher, P.B.; Pellecchia, M. Therapy of pancreatic cancer via an EphA2 receptor-targeted delivery of gemcitabine. Oncotarget, 2016, 7(13), 17103-17110.
[http://dx.doi.org/10.18632/oncotarget.7931] [PMID: 26959746 ]
[137]
Chen, Z.; Zhang, P.; Cheetham, A.G.; Moon, J.H.; Moxley, J.W., Jr; Lin, Y.A.; Cui, H. Controlled release of free doxorubicin from peptide-drug conjugates by drug loading. J. Control. Release, 2014, 191, 123-130.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.051] [PMID: 24892976 ]
[138]
Gébleux, R.; Stringhini, M.; Casanova, R.; Soltermann, A.; Neri, D. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int. J. Cancer, 2017, 140(7), 1670-1679.
[http://dx.doi.org/10.1002/ijc.30569] [PMID: 27943268]
[139]
Barile, E.; Wang, S.; Das, S.K.; Noberini, R.; Dahl, R.; Stebbins, J.L.; Pasquale, E.B.; Fisher, P.B.; Pellecchia, M. Design, synthesis and bioevaluation of an EphA2 receptor-based targeted delivery system. ChemMedChem, 2014, 9(7), 1403-1412.
[http://dx.doi.org/10.1002/cmdc.201400067] [PMID: 24677792 ]
[140]
Wu, B.; Wang, S.; De, S.K.; Barile, E.; Quinn, B.A.; Zharkikh, I.; Purves, A.; Stebbins, J.L.; Oshima, R.G.; Fisher, P.B.; Pellecchia, M. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem. Biol., 2015, 22(7), 876-887.
[http://dx.doi.org/10.1016/j.chembiol.2015.06.011] [PMID: 26165155]
[141]
Gilad, Y.; Noy, E.; Senderowitz, H.; Albeck, A.; Firer, M.A.; Gellerman, G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers, 2015.
[PMID: 26715008]
[142]
Chen, K.; Chen, X. Integrin targeted delivery of chemotherapeutics. Theranostics, 2011, 1, 189-200.
[http://dx.doi.org/10.7150/thno/v01p0189] [PMID: 21547159]
[143]
Redko, B.; Ragozin, E.; Andreii, B.; Helena, T.; Amnon, A.; Talia, S.Z.; Mor, O.H.; Genady, K.; Gary, G. Synthesis, drug release, and biological evaluation of new anticancer drug-bioconjugates containing somatostatin backbone cyclic analog as a targeting moiety. Biopolymers, 2015, 104(6), 743-752.
[http://dx.doi.org/10.1002/bip.22694] [PMID: 26058565 ]
[144]
Cox, N.; Kintzing, J.R.; Smith, M.; Grant, G.A.; Cochran, J.R. Integrin-targeting knottin peptide-drug conjugates are potent inhibitors of tumor cell proliferation. Angew. Chem. Int. Ed. Engl., 2016, 55(34), 9894-9897.
[http://dx.doi.org/10.1002/anie.201603488] [PMID: 27304709 ]
[145]
Chandna, P.; Khandare, J.J.; Ber, E.; Rodriguez-Rodriguez, L.; Minko, T. Multifunctional tumor-targeted polymer-peptide-drug delivery system for treatment of primary and metastatic cancers. Pharm. Res., 2010, 27(11), 2296-2306.
[http://dx.doi.org/10.1007/s11095-010-0235-2] [PMID: 20700631 ]
[146]
Šácha, P.; Knedlík, T.; Schimer, J.; Tykvart, J.; Parolek, J.; Navrátil, V.; Dvořáková, P.; Sedlák, F.; Ulbrich, K.; Strohalm, J.; Majer, P.; Šubr, V.; Konvalinka, J. iBodies: modular synthetic antibody mimetics based on hydrophilic polymers decorated with functional moieties. Angew. Chem. Int. Ed. Engl., 2016, 55(7), 2356-2360.
[http://dx.doi.org/10.1002/anie.201508642] [PMID: 26749427]
[147]
Komin, A.; Russell, L.M.; Hristova, K.A.; Searson, P.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv. Drug Deliv. Rev., 2017, 110-111, 52-64.
[http://dx.doi.org/10.1016/j.addr.2016.06.002] [PMID: 27313077]
[148]
Lelle, M.; Frick, S.U.; Steinbrink, K.; Peneva, K. Novel cleavable cell-penetrating peptide-drug conjugates: synthesis and characterization. J. Pept. Sci., 2014, 20(5), 323-333.
[http://dx.doi.org/10.1002/psc.2617] [PMID: 24677287]
[149]
Böhme, D.; Krieghoff, J.; Beck-Sickinger, A.G. Double Methotrexate-Modified Neuropeptide Y Analogues Express Increased Toxicity and Overcome Drug Resistance in Breast Cancer Cells. J. Med. Chem., 2016, 59(7), 3409-3417.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00043] [PMID: 26985967 ]
[150]
Sioud, M.; Westby, P.; Olsen, J.K.; Mobergslien, A. Generation of new peptide-Fc fusion proteins that mediate antibody-dependent cellular cytotoxicity against different types of cancer cells. Mol. Ther. Methods Clin. Dev., 2015, 2, 15043.
[http://dx.doi.org/10.1038/mtm.2015.43] [PMID: 26605373 ]
[151]
Bakhtiar, R. Antibody drug conjugates. Biotechnol. Lett., 2016, 38(10), 1655-1664.
[http://dx.doi.org/10.1007/s10529-016-2160-x] [PMID: 27334710]
[152]
Nunes, J.P.; Morais, M.; Vassileva, V.; Robinson, E.; Rajkumar, V.S.; Smith, M.E.; Pedley, R.B.; Caddick, S.; Baker, J.R.; Chudasama, V. Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem. Commun. (Camb.), 2015, 51(53), 10624-10627.
[http://dx.doi.org/10.1039/C5CC03557K] [PMID: 26051118 ]
[153]
Staben, L.R.; Koenig, S.G.; Lehar, S.M.; Vandlen, R.; Zhang, D.; Chuh, J.; Yu, S-F.; Ng, C.; Guo, J.; Liu, Y.; Fourie-O’Donohue, A.; Go, M.; Linghu, X.; Segraves, N.L.; Wang, T.; Chen, J.; Wei, B.; Phillips, G.D.L.; Xu, K.; Kozak, K.R.; Mariathasan, S.; Flygare, J.A.; Pillow, T.H. Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates. Nat. Chem., 2016, 8(12), 1112-1119.
[http://dx.doi.org/10.1038/nchem.2635] [PMID: 27874860 ]
[154]
Shiose, Y.; Kuga, H.; Ohki, H.; Ikeda, M.; Yamashita, F.; Hashida, M. Systematic research of peptide spacers controlling drug release from macromolecular prodrug system, carboxymethyldextran polyalcohol-peptide-drug conjugates. Bioconjug. Chem., 2009, 20(1), 60-70.
[http://dx.doi.org/10.1021/bc800238f] [PMID: 19090781 ]
[155]
Böhme, D.; Beck-Sickinger, A.G. Controlling toxicity of Peptide-drug conjugates by different chemical linker structures. ChemMedChem, 2015, 10(5), 804-814.
[http://dx.doi.org/10.1002/cmdc.201402514] [PMID: 25914147]
[156]
Langer, M.; Kratz, F.; Rothen-Rutishauser, B.; Wunderli-Allenspach, H.; Beck-Sickinger, A.G. Novel peptide conjugates for tumor-specific chemotherapy. J. Med. Chem., 2001, 44(9), 1341-1348.
[http://dx.doi.org/10.1021/jm001065f] [PMID: 11311056 ]
[157]
Huang, C.; Yi, X.; Kong, D.; Chen, L.; Min, G. Controlled release strategy of paclitaxel by conjugating to matrix metalloproteinases-2 sensitive peptide. Oncotarget, 2016, 7(32), 52230-52238.
[http://dx.doi.org/10.18632/oncotarget.10735] [PMID: 27447567 ]
[158]
Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; DeGuzman, M.J.; Ensari, S.; Pinkstaff, J.K.; Sullivan, L.M.; Biroc, S.L.; Cho, H.; Schultz, P.G.; DiJoseph, J.; Dougher, M.; Ma, D.; Dushin, R.; Leal, M.; Tchistiakova, L.; Feyfant, E.; Gerber, H.P.; Sapra, P. A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1766-1771.
[http://dx.doi.org/10.1073/pnas.1321237111] [PMID: 24443552]
[159]
Hallam, T.J.; Wold, E.; Wahl, A.; Smider, V.V. Antibody conjugates with unnatural amino acids. Mol. Pharm., 2015, 12(6), 1848-1862.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00082] [PMID: 25898256 ]
[160]
Brunetti, J.; Falciani, C.; Lelli, B.; Minervini, A.; Ravenni, N.; Depau, L.; Siena, G.; Tenori, E.; Menichetti, S.; Pini, A.; Carini, M.; Bracci, L. Neurotensin branched peptide as a tumor-targeting agent for human bladder cancer. BioMed Res. Int., 2015, 2015173507
[http://dx.doi.org/10.1155/2015/173507] [PMID: 25984525 ]
[161]
Brunetti, J.; Pillozzi, S.; Falciani, C.; Depau, L.; Tenori, E.; Scali, S.; Lozzi, L.; Pini, A.; Arcangeli, A.; Menichetti, S.; Bracci, L. Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug. Sci. Rep., 2015, 5, 17736.
[http://dx.doi.org/10.1038/srep17736] [PMID: 26626158 ]
[162]
Levengood, M.R.; Zhang, X.; Hunter, J.H.; Emmerton, K.K.; Miyamoto, J.B.; Lewis, T.S.; Senter, P.D. Orthogonal Cysteine Protection Enables Homogeneous Multi-Drug Antibody-Drug Conjugates. Angew. Chem. Int. Ed. Engl., 2017, 56(3), 733-737.
[http://dx.doi.org/10.1002/anie.201608292] [PMID: 27966822]
[163]
Gilad, Y.; Firer, M.A.; Rozovsky, A.; Ragozin, E.; Redko, B.; Albeck, A.; Gellerman, G. “Switch off/switch on” regulation of drug cytotoxicity by conjugation to a cell targeting peptide. Eur. J. Med. Chem., 2014, 85, 139-146.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.073] [PMID: 25084142 ]
[164]
Kumar, A.; Mastren, T.; Wang, B.; Hsieh, J.T.; Hao, G.; Sun, X. Design of a Small-Molecule Drug Conjugate for Prostate Cancer Targeted Theranostics. Bioconjug. Chem., 2016, 27(7), 1681-1689.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00222] [PMID: 27248781 ]
[165]
Hilchie, A.L.; Hoskin, D.W.; Power Coombs, M.R. Anticancer Activities of Natural and Synthetic Peptides.Antimicrobial Peptides. Advances in Experimental Medicine and Biology; Matsuzaki, K., Ed.; Springer: Singapore, 2019, Vol. 1117, .
[http://dx.doi.org/10.1007/978-981-13-3588-4_9]
[166]
Wang, Y.J.; Li, Y.Y.; Liu, X.Y.; Lu, X.L.; Cao, X.; Jiao, B.H. Marine Antibody-Drug Conjugates: Design Strategies and Research Progress. Mar. Drugs, 2017, 15(1)E18
[http://dx.doi.org/10.3390/md15010018] [PMID: 28098746 ]
[167]
Adams, S.R.; Yang, H.C.; Savariar, E.N.; Aguilera, J.; Crisp, J.L.; Jones, K.A.; Whitney, M.A.; Lippman, S.M.; Cohen, E.E.; Tsien, R.Y.; Advani, S.J. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat. Commun., 2016, 7, 13019.
[http://dx.doi.org/10.1038/ncomms13019] [PMID: 27698471]
[168]
Berguig, G.Y.; Convertine, A.J.; Frayo, S.; Kern, H.B.; Procko, E.; Roy, D.; Srinivasan, S.; Margineantu, D.H.; Booth, G.; Palanca-Wessels, M.C.; Baker, D.; Hockenbery, D.; Press, O.W.; Stayton, P.S. Intracellular delivery system for antibody-Peptide drug conjugates. Mol. Ther., 2015, 23(5), 907-917.
[http://dx.doi.org/10.1038/mt.2015.22] [PMID: 25669432]
[169]
Okarvi, S.M. Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat. Rev., 2008, 34(1), 13-26.
[http://dx.doi.org/10.1016/j.ctrv.2007.07.017] [PMID: 17870245]
[170]
Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science, 2013, 342(6165), 1432-1433.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284 ]
[171]
List, T.; Casi, G.; Neri, D. A chemically defined trifunctional antibody-cytokine-drug conjugate with potent antitumor activity. Mol. Cancer Ther., 2014, 13(11), 2641-2652.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0599] [PMID: 25205656 ]
[172]
Ellmark, P.; Mangsbo, S.M.; Furebring, C.; Norlén, P.; Tötterman, T.H. Tumor-directed immunotherapy can generate tumor-specific T cell responses through localized co-stimulation. Cancer Immunol. Immunother., 2017, 66(1), 1-7.
[http://dx.doi.org/10.1007/s00262-016-1909-3] [PMID: 27714433]
[173]
Kiefer, J.D.; Neri, D. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site. Immunol. Rev., 2016, 270(1), 178-192.
[http://dx.doi.org/10.1111/imr.12391] [PMID: 26864112 ]
[174]
McEnaney, P.J.; Fitzgerald, K.J.; Zhang, A.X.; Douglass, E.F., Jr; Shan, W.; Balog, A.; Kolesnikova, M.D.; Spiegel, D.A. Chemically synthesized molecules with the targeting and effector functions of antibodies. J. Am. Chem. Soc., 2014, 136(52), 18034-18043.
[http://dx.doi.org/10.1021/ja509513c] [PMID: 25514603 ]
[175]
Wang, Y.; Cheetham, A.G.; Angacian, G.; Su, H.; Xie, L.; Cui, H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev., 2016.
[PMID: 27370248]
[176]
Yang, X.; Chen, D.; Zhao, H. Silica particles with immobilized protein molecules and polymer brushes. Acta Biomater., 2016, 29, 446-454.
[http://dx.doi.org/10.1016/j.actbio.2015.10.038] [PMID: 26597547 ]
[177]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981 ]
[178]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[179]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880 ]
[180]
Slocik, J.M.; Naik, R.R. Probing peptide-nanomaterial interactions. Chem. Soc. Rev., 2010, 39(9), 3454-3463.
[http://dx.doi.org/10.1039/b918035b] [PMID: 20672177 ]
[181]
Montet, X.; Weissleder, R.; Josephson, L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug. Chem., 2006, 17(4), 905-911.
[http://dx.doi.org/10.1021/bc060035+] [PMID: 16848396]
[182]
Olson, E.S.; Jiang, T.; Aguilera, T.A.; Nguyen, Q.T.; Ellies, L.G.; Scadeng, M.; Tsien, R.Y. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4311-4316.
[http://dx.doi.org/10.1073/pnas.0910283107] [PMID: 20160077 ]
[183]
Scarberry, K.E.; Dickerson, E.B.; McDonald, J.F.; Zhang, Z.J. Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J. Am. Chem. Soc., 2008, 130(31), 10258-10262.
[http://dx.doi.org/10.1021/ja801969b] [PMID: 18611005 ]
[184]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond.), 2007, 2(5), 681-693.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[185]
Kang, B.; Mackey, M.A.; El-Sayed, M.A. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc., 2010, 132(5), 1517-1519.
[http://dx.doi.org/10.1021/ja9102698] [PMID: 20085324 ]
[186]
Kumar, A.; Ma, H.; Zhang, X.; Huang, K.; Jin, S.; Liu, J.; Wei, T.; Cao, W.; Zou, G.; Liang, X-J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials, 2012, 33(4), 1180-1189.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.058] [PMID: 22056754 ]
[187]
Tkachenko, A.G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M.F.; Franzen, S.; Feldheim, D.L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc., 2003, 125(16), 4700-4701.
[http://dx.doi.org/10.1021/ja0296935] [PMID: 12696875 ]
[188]
Meyers, J.D.; Cheng, Y.; Broome, A-M.; Agnes, R.S.; Schluchter, M.D.; Margevicius, S.; Wang, X.; Kenney, M.E.; Burda, C.; Basilion, J.P. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact., 2015, 32(4), 448-457.
[http://dx.doi.org/10.1002/ppsc.201400119] [PMID: 25999665 ]
[189]
Morshed, R.A.; Muroski, M.E.; Dai, Q.; Wegscheid, M.L.; Auffinger, B.; Yu, D.; Han, Y.; Zhang, L.; Wu, M.; Cheng, Y.; Lesniak, M.S. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol. Pharm., 2016, 13(6), 1843-1854.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00004] [PMID: 27169484 ]
[190]
Satriano, C.; Munzone, A.; Cucci, L.M.; Giacomelli, C.; Trincavelli, M.L.; Martini, C.; Rizzarelli, E.; La Mendola, D. Angiogenin-mimetic peptide functionalised gold nanoparticles for cancer therapy applications. Microchem. J., 2016.
[191]
Yang, C.; Neshatian, M.; van Prooijen, M.; Chithrani, D.B. Cancer nanotechnology: enhanced therapeutic response using peptide-modified gold nanoparticles. J. Nanosci. Nanotechnol., 2014, 14(7), 4813-4819.
[http://dx.doi.org/10.1166/jnn.2014.9280] [PMID: 24757948 ]
[192]
Hossain, M.K.; Cho, H-Y.; Kim, K-J.; Choi, J-W. In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Biosens. Bioelectron., 2015, 71, 300-305.
[http://dx.doi.org/10.1016/j.bios.2015.04.053] [PMID: 25919810 ]
[193]
Ghodake, G.; Kim, D-Y.; Jo, J.H.; Jang, J.; Lee, D.S. One-step green synthesis of gold nanoparticles using casein hydrolytic peptides and their anti-cancer assessment using the DU145 cell line. J. Ind. Eng. Chem., 2016, 33, 185-189.
[http://dx.doi.org/10.1016/j.jiec.2015.10.001]
[194]
Kim, J.S.; Rieter, W.J.; Taylor, K.M.; An, H.; Lin, W.; Lin, W. Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J. Am. Chem. Soc., 2007, 129(29), 8962-8963.
[http://dx.doi.org/10.1021/ja073062z] [PMID: 17602632]
[195]
She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34(5), 1613-1623.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.007] [PMID: 23195490 ]
[196]
Shu, C.; Sabi-mouka, E.M.B.; Yang, W.; Li, Z.; Ding, L. Effects of paclitaxel (PTX) prodrug-based self-assembly peptide hydrogels combined with suberoylanilide hydroxamic acid (SAHA) for PTX-resistant cancer and synergistic antitumor therapy. RSC Advances, 2016, 6, 100765-100771.
[http://dx.doi.org/10.1039/C6RA19917H]
[197]
Itakura, S.; Hama, S.; Ohgita, T.; Kogure, K. Development of nanoparticles incorporating a novel liposomal membrane destabilization peptide for efficient release of cargos into cancer cells. PLoS One, 2014, 9(10)e111181
[http://dx.doi.org/10.1371/journal.pone.0111181] [PMID: 25343714 ]
[198]
Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(8), 1299-1308.
[http://dx.doi.org/10.1002/adhm.201300601] [PMID: 24706635]
[199]
Hu, G.; Chun, X.; Wang, Y.; He, Q.; Gao, H. Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget, 2015, 6(38), 41258-41274.
[http://dx.doi.org/10.18632/oncotarget.5692] [PMID: 26517810]
[200]
Qiao, Z-Y.; Hou, C-Y.; Zhang, D.; Liu, Y.; Lin, Y-X.; An, H-W.; Li, X-J.; Wang, H. Self-assembly of cytotoxic peptide conjugated poly(β-amino ester)s for synergistic cancer chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 2943-2953.
[http://dx.doi.org/10.1039/C4TB02144D]
[201]
Fan, R.; Mei, L.; Gao, X.; Wang, Y.; Xiang, M.; Zheng, Y.; Tong, A.; Zhang, X.; Han, B.; Zhou, L.; Mi, P.; You, C.; Qian, Z.; Wei, Y.; Guo, G. Self-Assembled Bifunctional Peptide as Effective Drug Delivery Vector with Powerful Antitumor Activity. Adv. Sci. (Weinh.), 2017, 4(4)1600285
[http://dx.doi.org/10.1002/advs.201600285] [PMID: 28435772 ]
[202]
Yu, M.K.; Jeong, Y.Y.; Park, J.; Park, S.; Kim, J.W.; Min, J.J.; Kim, K.; Jon, S. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. Engl., 2008, 47(29), 5362-5365.
[http://dx.doi.org/10.1002/anie.200800857] [PMID: 18551493]
[203]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447 ]
[204]
Loomis, K.; McNeeley, K.; Bellamkonda, R.V. Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter, 2011, 7(3), 839-856.
[http://dx.doi.org/10.1039/C0SM00534G]
[205]
Mu, Q.; Kievit, F.M.; Kant, R.J.; Lin, G.; Jeon, M.; Zhang, M. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale, 2015, 7(43), 18010-18014.
[http://dx.doi.org/10.1039/C5NR04867B] [PMID: 26469772 ]
[206]
Niemirowicz, K.; Prokop, I.; Wilczewska, A.Z.; Wnorowska, U.; Piktel, E.; Wątek, M.; Savage, P.B.; Bucki, R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int. J. Nanomedicine, 2015, 10, 3843-3853.
[http://dx.doi.org/10.2147/IJN.S76104] [PMID: 26082634 ]
[207]
Hauser, A.K.; Anderson, K.W.; Hilt, J.Z. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells. Nanomedicine (Lond.), 2016, 11(14), 1769-1785.
[http://dx.doi.org/10.2217/nnm-2016-0050] [PMID: 27388639 ]
[208]
Nafiujjaman, M.; Khan, H.A.; Lee, Y-k. Peptide-Influenced Graphene Quantum Dots On Iron Oxide Nanoparticles For Dual Imaging Of Lung Cancer Cells. J. Nanosci. Nanotechnol., 2017, 17, 1704-1711.
[http://dx.doi.org/10.1166/jnn.2017.12825]
[209]
Sweeney, S.K.; Luo, Y.; O’Donnell, M.A.; Assouline, J.G. Peptide-mediated targeting mesoporous silica nanoparticles: a novel tool for fighting bladder Cancer. J. Biomed. Nanotechnol., 2017, 13(2), 232-242.
[http://dx.doi.org/10.1166/jbn.2017.2339] [PMID: 29377654 ]
[210]
Yamada, A.; Taniguchi, Y.; Kawano, K.; Honda, T.; Hattori, Y.; Maitani, Y. Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin. Cancer Res., 2008, 14(24), 8161-8168.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0159] [PMID: 19088031 ]
[211]
Roth, P.; Hammer, C.; Piguet, A-C.; Ledermann, M.; Dufour, J-F.; Waelti, E. Effects on hepatocellular carcinoma of doxorubicin-loaded immunoliposomes designed to target the VEGFR-2. J. Drug Target., 2007, 15(9), 623-631.
[http://dx.doi.org/10.1080/10611860701502723] [PMID: 17968716 ]
[212]
Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov., 2007, 6(5), 404-414.
[http://dx.doi.org/10.1038/nrd2224] [PMID: 17473845 ]
[213]
Zaman, R.; Islam, R.A.; Ibnat, N.; Othman, I.; Zaini, A.; Lee, C.Y.; Chowdhury, E.H. Current strategies in extending half-lives of therapeutic proteins Journal of Controlled Release,, 2019. 301, 176-189. ISSN 01683659
[214]
Irvine, D.J.; Hanson, M.C.; Rakhra, K.; Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev., 2015, 115(19), 11109-11146.
[http://dx.doi.org/10.1021/acs.chemrev.5b00109] [PMID: 26154342 ]
[215]
Ingold Heppner, B.; Untch, M.; Denkert, C.; Pfitzner, B.M.; Lederer, B.; Schmitt, W.; Eidtmann, H.; Fasching, P.A.; Tesch, H.; Solbach, C.; Rezai, M.; Zahm, D.M.; Holms, F.; Glados, M.; Krabisch, P.; Heck, E.; Ober, A.; Lorenz, P.; Diebold, K.; Habeck, J-O.; Loibl, S. Tumor-Infiltrating Lymphocytes: A Predictive and Prognostic Biomarker in Neoadjuvant-Treated HER2-Positive Breast Cancer. Clin. Cancer Res., 2016, 22(23), 5747-5754.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2338] [PMID: 27189162 ]
[216]
Brambilla, E.; Le Teuff, G.; Marguet, S.; Lantuejoul, S.; Dunant, A.; Graziano, S.; Pirker, R.; Douillard, J-Y.; Le Chevalier, T.; Filipits, M.; Rosell, R.; Kratzke, R.; Popper, H.; Soria, J-C.; Shepherd, F.A.; Seymour, L.; Tsao, M.S. Prognostic effect of tumor lymphocytic infiltration in resectable non-small-cell lung cancer. J. Clin. Oncol., 2016, 34(11), 1223-1230.
[http://dx.doi.org/10.1200/JCO.2015.63.0970] [PMID: 26834066 ]
[217]
Nguyen, N.; Bellile, E.; Thomas, D.; McHugh, J.; Rozek, L.; Virani, S.; Peterson, L.; Carey, T.E.; Walline, H.; Moyer, J.; Spector, M.; Perim, D.; Prince, M.; McLean, S.; Bradford, C.R.; Taylor, J.M.G.; Wolf, G.T. Head and neck SPORE program investigators. tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck, 2016, 38(7), 1074-1084.
[http://dx.doi.org/10.1002/hed.24406] [PMID: 26879675 ]
[218]
Jacqueline, C.; Tasiemski, A.; Sorci, G.; Ujvari, B.; Maachi, F.; Missé, D.; Renaud, F.; Ewald, P.; Thomas, F.; Roche, B. Infections and cancer: the “fifty shades of immunity” hypothesis. BMC Cancer, 2017, 17(1), 257.
[http://dx.doi.org/10.1186/s12885-017-3234-4] [PMID: 28403812]
[219]
Chen, D.S.; Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059 ]
[220]
Corthay, A. Does the immune system naturally protect against cancer? Front. Immunol., 2014, 5, 197.
[http://dx.doi.org/10.3389/fimmu.2014.00197] [PMID: 24860567 ]
[221]
Blank, C.U.; Haanen, J.B.; Ribas, A.; Schumacher, T.N. CANCER IMMUNOLOGY. The “cancer immunogram”. Science, 2016, 352(6286), 658-660.
[http://dx.doi.org/10.1126/science.aaf2834] [PMID: 27151852]
[222]
Blum, J.S.; Wearsch, P.A.; Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol., 2013, 31, 443-473.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095910] [PMID: 23298205]
[223]
Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. (Camb.), 2016, 7(2), 842-854.
[http://dx.doi.org/10.1039/C5SC03892H] [PMID: 28791117 ]
[224]
Cherryholmes, G.A.; Stanton, S.E.; Disis, M.L. Current methods of epitope identification for cancer vaccine design. Vaccine, 2015, 33(51), 7408-7414.
[http://dx.doi.org/10.1016/j.vaccine.2015.06.116] [PMID: 26238725 ]
[225]
Kumai, T.; Kobayashi, H.; Harabuchi, Y.; Celis, E. Peptide vaccines in cancer-old concept revisited. Curr. Opin. Immunol., 2017, 45, 1-7.
[http://dx.doi.org/10.1016/j.coi.2016.11.001] [PMID: 27940327 ]
[226]
Kumai, T.; Matsuda, Y.; Oikawa, K.; Aoki, N.; Kimura, S.; Harabuchi, Y.; Celis, E.; Kobayashi, H. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br. J. Cancer, 2013, 109(8), 2155-2166.
[http://dx.doi.org/10.1038/bjc.2013.577] [PMID: 24045666 ]
[227]
Wada, S.; Yada, E.; Ohtake, J.; Fujimoto, Y.; Uchiyama, H.; Yoshida, S.; Sasada, T. Current status and future prospects of peptide-based cancer vaccines. Immunotherapy, 2016, 8(11), 1321-1333.
[http://dx.doi.org/10.2217/imt-2016-0063] [PMID: 27993087 ]
[228]
Coulie, P.G.; Van den Eynde, B.J.; van der Bruggen, P.; Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer, 2014, 14(2), 135-146.
[http://dx.doi.org/10.1038/nrc3670] [PMID: 24457417 ]
[229]
Mizukoshi, E.; Nakagawa, H.; Kitahara, M.; Yamashita, T.; Arai, K.; Sunagozaka, H.; Iida, N.; Fushimi, K.; Kaneko, S. Phase I trial of multidrug resistance-associated protein 3-derived peptide in patients with hepatocellular carcinoma. Cancer Lett., 2015, 369(1), 242-249.
[http://dx.doi.org/10.1016/j.canlet.2015.08.020] [PMID: 26325606]
[230]
Jørgensen, N.G.; Ahmad, S.M.; Abildgaard, N.; Straten, P.T.; Svane, I.M.; Andersen, M.H.; Knudsen, L.M. Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic proteins: a phase I trial. Stem Cell Investig., 2016, 3, 95.
[http://dx.doi.org/10.21037/sci.2016.11.09] [PMID: 28078275 ]
[231]
Shariat, S.; Badiee, A.; Jalali, S.A.; Mansourian, M.; Yazdani, M.; Mortazavi, S.A.; Jaafari, M.R. P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett., 2014, 355(1), 54-60.
[http://dx.doi.org/10.1016/j.canlet.2014.09.016] [PMID: 25224570 ]
[232]
Singer, J.; Manzano-Szalai, K.; Fazekas, J.; Thell, K.; Bentley-Lukschal, A.; Stremnitzer, C.; Roth-Walter, F.; Weghofer, M.; Ritter, M.; Pino Tossi, K.; Hörer, M.; Michaelis, U.; Jensen-Jarolim, E. Proof of concept study with an HER-2 mimotope anticancer vaccine deduced from a novel AAV-mimotope library platform. OncoImmunology, 2016, 5(7)e1171446
[http://dx.doi.org/10.1080/2162402X.2016.1171446] [PMID: 27622022 ]
[233]
Gaidzik, N.; Westerlind, U.; Kunz, H. The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem. Soc. Rev., 2013, 42(10), 4421-4442.
[http://dx.doi.org/10.1039/c3cs35470a] [PMID: 23440054]
[234]
Bello, C.; Farbiarz, K.; Moeller, J.F.; Becker, C.F.W.; Schwientek, T. A quantitative and site-specific chemoenzymatic glycosylation approach for PEGylated MUC1 peptides. Chem. Sci. (Camb.), 2014, 5(4), 1634-1641.
[http://dx.doi.org/10.1039/c3sc52641k]
[235]
Bello, C.; Wang, S.; Meng, L.; Moremen, K.W.; Becker, C.F.W. A PEGylated Photocleavable Auxiliary Mediates the Sequential Enzymatic Glycosylation and Native Chemical Ligation of Peptides, International Edition; Angewandte Chemie, 2015.
[http://dx.doi.org/10.1002/anie.201501517]
[236]
Al Sheikha, D.; Wilkinson, B.L.; Santhakumar, G.; Thaysen-Andersen, M.; Payne, R.J. Synthesis of homogeneous MUC1 oligomers via a bi-directional ligation strategy. Org. Biomol. Chem., 2013, 11(36), 6090-6096.
[http://dx.doi.org/10.1039/c3ob41363b] [PMID: 23922001 ]
[237]
Xu, C.; Lam, H.Y.; Zhang, Y.; Li, X. Convergent synthesis of MUC1 glycopeptides via serine ligation. Chem. Commun. (Camb.), 2013, 49(55), 6200-6202.
[http://dx.doi.org/10.1039/c3cc42573h] [PMID: 23732560]
[238]
Malekan, H.; Fung, G.; Thon, V.; Khedri, Z.; Yu, H.; Qu, J.; Li, Y.; Ding, L.; Lam, K.S.; Chen, X. One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorg. Med. Chem., 2013, 21(16), 4778-4785.
[http://dx.doi.org/10.1016/j.bmc.2013.02.040] [PMID: 23535562]
[239]
Galibert, M.; Piller, V.; Piller, F.; Aucagne, V.; Delmas, A.F. Combining triazole ligation and enzymatic glycosylation on solid phase simplifies the synthesis of very long glycoprotein analogues. Chem. Sci. (Camb.), 2015, 6(6), 3617-3623.
[http://dx.doi.org/10.1039/C5SC00773A] [PMID: 30155000 ]
[240]
Loibl, S.F.; Harpaz, Z.; Zitterbart, R.; Seitz, O. Total chemical synthesis of proteins without HPLC purification. Chem. Sci. (Camb.), 2016, 7(11), 6753-6759.
[http://dx.doi.org/10.1039/C6SC01883A] [PMID: 28451120 ]
[241]
Ohyabu, N.; Kakiya, K.; Yokoi, Y.; Hinou, H.; Nishimura, S. Convergent Solid-Phase Synthesis of Macromolecular MUC1 Models Truly Mimicking Serum Glycoprotein Biomarkers of Interstitial Lung Diseases. J. Am. Chem. Soc., 2016, 138(27), 8392-8395.
[http://dx.doi.org/10.1021/jacs.6b04973] [PMID: 27340743 ]
[242]
Martínez-Sáez, N.; Supekar, N.T.; Wolfert, M.A.; Bermejo, I.A.; Hurtado-Guerrero, R.; Asensio, J.L.; Jiménez-Barbero, J.; Busto, J.H.; Avenoza, A.; Boons, G.J.; Peregrina, J.M.; Corzana, F. Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chem. Sci. (Camb.), 2016, 7(3), 2294-2301.
[http://dx.doi.org/10.1039/C5SC04039F] [PMID: 29910919 ]
[243]
Movahedin, M.; Brooks, T.M.; Supekar, N.T.; Gokanapudi, N.; Boons, G-J.; Brooks, C.L. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology, 2017, 27(7), 677-687.
[PMID: 28025250]
[244]
Glaffig, M.; Palitzsch, B.; Stergiou, N.; Schüll, C.; Strassburger, D.; Schmitt, E.; Frey, H.; Kunz, H. Enhanced immunogenicity of multivalent MUC1 glycopeptide antitumour vaccines based on hyperbranched polymers. Org. Biomol. Chem., 2015, 13(40), 10150-10154.
[http://dx.doi.org/10.1039/C5OB01255D] [PMID: 26299280]
[245]
Cai, H.; Sun, Z-Y.; Chen, M-S.; Zhao, Y-F.; Kunz, H.; Li, Y-M. Synthetic multivalent glycopeptide-lipopeptide antitumor vaccines: impact of the cluster effect on the killing of tumor cells. Angew. Chem. Int. Ed. Engl., 2014, 53(6), 1699-1703.
[http://dx.doi.org/10.1002/anie.201308875] [PMID: 24449389 ]
[246]
Pathangey, L.B.; Lakshminarayanan, V.; Suman, V.J.; Pockaj, B.A.; Mukherjee, P.; Gendler, S.J. Aberrant Glycosylation of Anchor-Optimized MUC1 Peptides Can Enhance Antigen Binding Affinity and Reverse Tolerance to Cytotoxic T Lymphocytes. Biomolecules, 2016, 6(3), 31.
[http://dx.doi.org/10.3390/biom6030031] [PMID: 27367740 ]
[247]
Thompson, P.; Lakshminarayanan, V.; Supekar, N.T.; Bradley, J.M.; Cohen, P.A.; Wolfert, M.A.; Gendler, S.J.; Boons, G.J. Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Chem. Commun. (Camb.), 2015, 51(50), 10214-10217.
[http://dx.doi.org/10.1039/C5CC02199E] [PMID: 26022217 ]
[248]
Palitzsch, B.; Gaidzik, N.; Stergiou, N.; Stahn, S.; Hartmann, S.; Gerlitzki, B.; Teusch, N.; Flemming, P.; Schmitt, E.; Kunz, H. A synthetic glycopeptide vaccine for the induction of a monoclonal antibody that differentiates between normal and tumor mammary cells and enables the diagnosis of human pancreatic cancer. Angew. Chem. Int. Ed. Engl., 2016, 55(8), 2894-2898.
[http://dx.doi.org/10.1002/anie.201509935] [PMID: 26800384]
[249]
Cobbold, M.; De La Peña, H.; Norris, A.; Polefrone, J.M.; Qian, J.; English, A.M.; Cummings, K.L.; Penny, S.; Turner, J.E.; Cottine, J.; Abelin, J.G.; Malaker, S.A.; Zarling, A.L.; Huang, H.-W.; Goodyear, O.; Freeman, S.D.; Shabanowitz, J.; Pratt, G.; Craddock, C.; Williams, M.E.; Hunt, D.F.; Engelhard, V.H. MHC Class I–associated phosphopeptides are the targets of memory-like immunity in leukemia. Science Translational Medicine,, 2013, 5(203), 203ra125-203ra125.
[http://dx.doi.org/10.1126/scitranslmed.3006061]
[250]
Kumai, T.; Ishibashi, K.; Oikawa, K.; Matsuda, Y.; Aoki, N.; Kimura, S.; Hayashi, S.; Kitada, M.; Harabuchi, Y.; Celis, E.; Kobayashi, H. Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunol. Immunother., 2014, 63(5), 469-478.
[http://dx.doi.org/10.1007/s00262-014-1533-z] [PMID: 24633296 ]
[251]
Hoja-Łukowicz, D.; Przybyło, M.; Duda, M.; Pocheć, E.; Bubka, M. On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1 Pt A), 3237-3257.
[http://dx.doi.org/10.1016/j.bbagen.2016.08.007] [PMID: 27565356 ]
[252]
Kudelka, M.R.; Ju, T.; Heimburg-Molinaro, J.; Cummings, R.D. Simple sugars to complex disease--mucin-type O-glycans in cancer. Adv. Cancer Res., 2015, 126, 53-135.
[http://dx.doi.org/10.1016/bs.acr.2014.11.002] [PMID: 25727146 ]
[253]
Wilson, R.M.; Danishefsky, S.J. A vision for vaccines built from fully synthetic tumor-associated antigens: from the laboratory to the clinic. J. Am. Chem. Soc., 2013, 135(39), 14462-14472.
[http://dx.doi.org/10.1021/ja405932r] [PMID: 23944352 ]
[254]
Richichi, B.; Thomas, B.; Fiore, M.; Bosco, R.; Qureshi, H.; Nativi, C.; Renaudet, O.; BenMohamed, L. A cancer therapeutic vaccine based on clustered Tn-antigen mimetics induces strong antibody-mediated protective immunity. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11917-11920.
[http://dx.doi.org/10.1002/anie.201406897] [PMID: 25168881 ]
[255]
Palitzsch, B.; Hartmann, S.; Stergiou, N.; Glaffig, M.; Schmitt, E.; Kunz, H. A fully synthetic four-component antitumor vaccine consisting of a mucin glycopeptide antigen combined with three different T-helper-cell epitopes. Angew. Chem. Int. Ed. Engl., 2014, 53(51), 14245-14249.
[http://dx.doi.org/10.1002/anie.201406843] [PMID: 25318465 ]
[256]
Song, L.; Yang, M.C.; Knoff, J.; Wu, T.C.; Hung, C.F.; Van Hall, T. Cancer immunotherapy employing an innovative strategy to enhance CD4T cell help in the tumor microenvironment. PLoS One, 2014, 9(12)
[http://dx.doi.org/10.1371/journal.pone.0115711]
[257]
Ganneau, C.; Simenel, C.; Emptas, E.; Courtiol, T.; Coïc, Y.M.; Artaud, C.; Dériaud, E.; Bonhomme, F.; Delepierre, M.; Leclerc, C.; Lo-Man, R.; Bay, S. Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate. Org. Biomol. Chem., 2016, 15(1), 114-123.
[http://dx.doi.org/10.1039/C6OB01931E] [PMID: 27812586]
[258]
Telusma, G.; Datta, S.; Mihajlov, I.; Ma, W.; Li, J.; Yang, H.; Newman, W.; Messmer, B.T.; Minev, B.; Schmidt-Wolf, I.G.; Tracey, K.J.; Chiorazzi, N.; Messmer, D. Dendritic cell activating peptides induce distinct cytokine profiles. Int. Immunol., 2006, 18(11), 1563-1573.
[http://dx.doi.org/10.1093/intimm/dxl089] [PMID: 16966494 ]
[259]
Talebi, S.; Bolhassani, A.; Sadat, S.M.; Vahabpour, R.; Agi, E.; Shahbazi, S. Hp91 immunoadjuvant: An HMGB1-derived peptide for development of therapeutic HPV vaccines. Biomed. Pharmacother., 2017, 85(Suppl. C), 148-154.
[http://dx.doi.org/10.1016/j.biopha.2016.11.115] [PMID: 27930979 ]
[260]
Kuttan, G.; Vasudevan, D.M.; Kuttan, R. Isolation and identification of a tumour reducing component from mistletoe extract (Iscador). Cancer Lett., 1988, 41(3), 307-314.
[http://dx.doi.org/10.1016/0304-3835(88)90292-3] [PMID: 3409209 ]
[261]
Kuttan, G.; Kuttan, R. Immunological mechanism of action of the tumor reducing peptide from mistletoe extract (NSC 635089) cellular proliferation. Cancer Lett., 1992, 66(2), 123-130.
[http://dx.doi.org/10.1016/0304-3835(92)90224-J] [PMID: 1394116]
[262]
Kuttan, G.; Kuttan, R. Immunomodulatory activity of a peptide isolated from Viscum album extract (NSC 635 089). Immunol. Invest., 1992, 21(4), 285-296.
[http://dx.doi.org/10.3109/08820139209069368] [PMID: 1398778 ]
[263]
McDonald, D.M.; Byrne, S.N.; Payne, R.J. Synthetic self-adjuvanting glycopeptide cancer vaccines. Front Chem., 2015, 3, 60.
[http://dx.doi.org/10.3389/fchem.2015.00060] [PMID: 26557640 ]
[264]
Liu, Y.; Zhang, W.; He, Q.; Yu, F.; Song, T.; Liu, T.; Zhang, Z.; Zhou, J.; Wang, P.G.; Zhao, W. Fully synthetic self-adjuvanting MUC1-fibroblast stimulating lipopeptide 1 conjugates as potential cancer vaccines. Chem. Commun. (Camb.), 2016, 52(72), 10886-10889.
[http://dx.doi.org/10.1039/C6CC04623A] [PMID: 27530357]
[265]
McDonald, D.M.; Wilkinson, B.L.; Corcilius, L.; Thaysen-Andersen, M.; Byrne, S.N.; Payne, R.J. Synthesis and immunological evaluation of self-adjuvanting MUC1-macrophage activating lipopeptide 2 conjugate vaccine candidates. Chem. Commun. (Camb.), 2014, 50(71), 10273-10276.
[http://dx.doi.org/10.1039/C4CC03510K] [PMID: 25056269]
[266]
Abdel-Aal, A.B.; Lakshminarayanan, V.; Thompson, P.; Supekar, N.; Bradley, J.M.; Wolfert, M.A.; Cohen, P.A.; Gendler, S.J.; Boons, G.J. Immune and anticancer responses elicited by fully synthetic aberrantly glycosylated MUC1 tripartite vaccines modified by a TLR2 or TLR9 agonist. ChemBioChem, 2014, 15(10), 1508-1513.
[http://dx.doi.org/10.1002/cbic.201402077] [PMID: 24890740 ]
[267]
Liu, T-Y.; Hussein, W.M.; Jia, Z.; Ziora, Z.M.; McMillan, N.A.J.; Monteiro, M.J.; Toth, I.; Skwarczynski, M. Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules, 2013, 14(8), 2798-2806.
[http://dx.doi.org/10.1021/bm400626w] [PMID: 23837675 ]
[268]
Aranda, F.; Vacchelli, E.; Eggermont, A.; Galon, J.; Sautès-Fridman, C.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Peptide vaccines in cancer therapy. OncoImmunology, 2013, 2(12)e26621
[http://dx.doi.org/10.4161/onci.26621] [PMID: 24498550 ]
[269]
Palitzsch, B.; Glaffig, M.; Kunz, H. Mucin Glycopeptide-Protein Conjugates - Promising Antitumor Vaccine Candidates. Isr. J. Chem., 2015, 55(3-4), 256-267.
[http://dx.doi.org/10.1002/ijch.201400131]
[270]
Karmakar, P.; Lee, K.; Sarkar, S.; Wall, K.A.; Sucheck, S.J. Synthesis of a liposomal MUC1 glycopeptide-based immunotherapeutic and evaluation of the effect of l-rhamnose targeting on cellular immune responses. Bioconjug. Chem., 2016, 27(1), 110-120.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00528] [PMID: 26595674 ]
[271]
Cai, H.; Degliangeli, F.; Palitzsch, B.; Gerlitzki, B.; Kunz, H.; Schmitt, E.; Fiammengo, R.; Westerlind, U. Glycopeptide-functionalized gold nanoparticles for antibody induction against the tumor associated mucin-1 glycoprotein. Bioorg. Med. Chem., 2016, 24(5), 1132-1135.
[http://dx.doi.org/10.1016/j.bmc.2016.01.044] [PMID: 26853835 ]
[272]
Almeida, J.P.M.; Lin, A.Y.; Figueroa, E.R.; Foster, A.E.; Drezek, R.A. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small, 2015, 11(12), 1453-1459.
[http://dx.doi.org/10.1002/smll.201402179] [PMID: 25354691 ]
[273]
Tavernaro, I.; Hartmann, S.; Sommer, L.; Hausmann, H.; Rohner, C.; Ruehl, M.; Hoffmann-Roeder, A.; Schlecht, S. Synthesis of tumor-associated MUC1-glycopeptides and their multivalent presentation by functionalized gold colloids. Org. Biomol. Chem., 2015, 13(1), 81-97.
[http://dx.doi.org/10.1039/C4OB01339E] [PMID: 25212389]
[274]
Brune, K.D.; Leneghan, D.B.; Brian, I.J.; Ishizuka, A.S.; Bachmann, M.F.; Draper, S.J.; Biswas, S.; Howarth, M. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci. Rep., 2016, 6, 19234.
[http://dx.doi.org/10.1038/srep19234] [PMID: 26781591 ]
[275]
Rad-Malekshahi, M.; Fransen, M.F.; Krawczyk, M.; Mansourian, M.; Bourajjaj, M.; Chen, J.; Ossendorp, F.; Hennink, W.E.; Mastrobattista, E.; Amidi, M. Self-assembling peptide epitopes as novel platform for anticancer vaccination. Mol. Pharm., 2017, 14(5), 1482-1493.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01003] [PMID: 28088862 ]
[276]
Liu, Y.F.; Sun, Z.Y.; Chen, P.G.; Huang, Z.H.; Gao, Y.; Shi, L.; Zhao, Y.F.; Chen, Y.X.; Li, Y.M. Glycopeptide nanoconjugates based on multilayer self-assembly as an antitumor vaccine. Bioconjug. Chem., 2015, 26(8), 1439-1442.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00150] [PMID: 26108637 ]
[277]
Sun, Z.Y.; Chen, P.G.; Liu, Y.F.; Zhang, B.D.; Wu, J.J.; Chen, Y.X.; Zhao, Y.F.; Li, Y.M. Multi-component self-assembled anti-tumor nano-vaccines based on MUC1 glycopeptides. Chem. Commun. (Camb.), 2016, 52(48), 7572-7575.
[http://dx.doi.org/10.1039/C6CC02000C] [PMID: 27216415 ]
[278]
Butterfield, L.H. Cancer vaccines. BMJ, 2015, 350, h988.
[http://dx.doi.org/10.1136/bmj.h988] [PMID: 25904595 ]
[279]
Ogi, C.; Aruga, A. Immunological monitoring of anticancer vaccines in clinical trials. OncoImmunology, 2013, 2(8)e26012
[http://dx.doi.org/10.4161/onci.26012] [PMID: 24083085 ]
[280]
Tsukahara, T.; Hirohashi, Y.; Kanaseki, T.; Nakatsugawa, M.; Kubo, T.; Sato, N.; Torigoe, T. Peptide vaccination therapy: Towards the next generation. Pathol. Int., 2016, 66(10), 547-553.
[http://dx.doi.org/10.1111/pin.12438] [PMID: 27435148 ]
[281]
Jacobs, J.J.; Snackey, C.; Geldof, A.A.; Characiejus, D.; Van Moorselaar, R.J.; Den Otter, W. Inefficacy of therapeutic cancer vaccines and proposed improvements. Casus of prostate cancer. Anticancer Res., 2014, 34(6), 2689-2700.
[PMID: 24922629]
[282]
Ophir, E.; Bobisse, S.; Coukos, G.; Harari, A.; Kandalaft, L.E. Personalized approaches to active immunotherapy in cancer. Biochimica et Biophysica Acta (BBA) -. Rev. Can., 2016, 1865(1), 72-82.
[283]
Zhang, X.; Sharma, P.K.; Peter Goedegebuure, S.; Gillanders, W.E. Personalized cancer vaccines: Targeting the cancer mutanome. Vaccine, 2017, 35(7), 1094-1100.
[http://dx.doi.org/10.1016/j.vaccine.2016.05.073] [PMID: 27449681 ]
[284]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2017.
[PMID: 28720325]
[285]
Smietana, K.; Siatkowski, M.; Møller, M. Trends in clinical success rates. Nat. Rev. Drug Discov., 2016, 15(6), 379-380.
[http://dx.doi.org/10.1038/nrd.2016.85] [PMID: 27199245]
[286]
Sachdeva, S. Peptides as ‘drugs’: the journey so far. Int. J. Pept. Res. Ther., 2017, 23(1), 49-60.
[http://dx.doi.org/10.1007/s10989-016-9534-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy