Trends and Prospects of Plant Proteases in Therapeutics

Author(s): Anastasia V. Balakireva, Natalia V. Kuznetsova, Anastasiia I. Petushkova, Lyudmila V. Savvateeva*, Andrey A. Zamyatnin Jr.*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 3 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

The main function of proteases in any living organism is the cleavage of proteins resulting in the degradation of damaged, misfolded and potentially harmful proteins and therefore providing the cell with amino acids essential for the synthesis of new proteins. Besides this main function, proteases may play an important role as signal molecules and participate in numerous protein cascades to maintain the vital processes of an organism. Plant proteases are no exception to this rule. Moreover, in contrast to humanencoded enzymes, many plant proteases possess exceptional features such as higher stability, unique substrate specificity and a wide pH range for enzymatic activity. These valuable features make plant-derived proteolytic enzymes suitable for many biomedical applications, and furthermore, the plants can serve as factories for protein production. Plant proteases are already applied in the treatment of several pathological conditions in the human organism. Some of the enzymes possess antitumour, antibacterial and antifungal activity. The collagenolytic activity of plant proteases determines important medical applications such as the healing of wounds and burn debridement. Plant proteases may affect blood coagulation processes and can be applied in the treatment of digestive disorders. The present review summarizes recent advances and possible applications for plant proteases in biomedicine, and proposes further development of plant-derived proteolytic enzymes in the biotechnology and pharmaceutical industries.

Keywords: Plant protease, biomedicine, application, antitumoural, wound healing, burn debridement, thrombolysis, immunomodulation.

[1]
Matsubayashi, Y. Post-translational modifications in secreted peptide hormones in plants. Plant Cell Physiol., 2011, 52(1), 5-13.
[2]
Zamyatnin, A.A., Jr Plant proteases involved in regulated cell death. Biochemistry (Mosc.), 2015, 80(13), 1701-1715.
[3]
Zelisko, A.; Jackowski, G. Senescence-dependent degradation of Lhcb3 is mediated by a thylakoid membrane-bound protease. J. Plant Physiol., 2004, 161(10), 1157-1170.
[4]
Figueiredo, A.; Monteiro, F.; Sebastiana, M. Subtilisin-like proteases in plant-pathogen recognition and immune priming: A perspective. Front. Plant Sci., 2014, 5, 739.
[5]
Bozhkov, P.V.; Suarez, M.F.; Filonova, L.H.; Daniel, G.; Zamyatnin, A.A., Jr; Rodriguez-Nieto, S.; Zhivotovsky, B.; Smertenko, A. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14463-14468.
[6]
van der Hoorn, R.A. Plant proteases: From phenotypes to molecular mechanisms. Annu. Rev. Plant Biol., 2008, 59, 191-223.
[7]
Khan, A.R.; James, M.N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci., 1998, 7(4), 815-836.
[8]
Gruissem, W.; Biochemistry, J.R.B. Biochemistry and molecular biology of plants; (2nd ed.),. , 2015. 1280, 467
[9]
López-Otín, C.; Bond, J.S. Proteases: multifunctional enzymes in life and disease. J. Biol. Chem., 2008, 283(45), 30433-30437.
[10]
Rawlings, N.D.; Barrett, A.J.; Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res., 2016, 44(D1), D343-D350.
[11]
Kobayashi, T.; Kobayashi, E.; Sato, S.; Hotta, Y.; Miyajima, N.; Tanaka, A.; Tabata, S. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res., 1994, 1(1), 15-26.
[12]
Tornero, P.; Conejero, V.; Vera, P. Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. J. Biol. Chem., 1997, 272(22), 14412-14419.
[13]
Takeda, N.; Sato, S.; Asamizu, E.; Tabata, S.; Parniske, M. Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J., 2009, 58(5), 766-777.
[14]
Chichkova, N.V.; Shaw, J.; Galiullina, R.A.; Drury, G.E.; Tuzhikov, A.I.; Kim, S.H.; Kalkum, M.; Hong, T.B.; Gorshkova, E.N.; Torrance, L.; Vartapetian, A.B.; Taliansky, M. Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J., 2010, 29(6), 1149-1161.
[15]
Solomon, M.; Belenghi, B.; Delledonne, M.; Menachem, E.; Levine, A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell, 1999, 11(3), 431-444.
[16]
Hara-Nishimura, I.; Hatsugai, N.; Nakaune, S.; Kuroyanagi, M.; Nishimura, M. Vacuolar processing enzyme: An executor of plant cell death. Curr. Opin. Plant Biol., 2005, 8(4), 404-408.
[17]
Adam, Z.; Adamska, I.; Nakabayashi, K.; Ostersetzer, O.; Haussuhl, K.; Manuell, A.; Zheng, B.; Vallon, O.; Rodermel, S.R.; Shinozaki, K.; Clarke, A.K. Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol., 2001, 125(4), 1912-1918.
[18]
Yamamoto, H.; Tabata, M. Correlation of papain-like enzyme production with laticifer formation in somatic embryos of papaya. Plant Cell Rep., 1989, 8(4), 251-254.
[19]
Souza, D.P.; Freitas, C.D.; Pereira, D.A.; Nogueira, F.C.; Silva, F.D.; Salas, C.E.; Ramos, M.V. Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens. Planta, 2011, 234(1), 183-193.
[20]
El Moussaoui, A.; Nijs, M.; Paul, C.; Wintjens, R.; Vincentelli, J.; Azarkan, M.; Looze, Y. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell. Mol. Life Sci., 2001, 58(4), 556-570.
[21]
Ratnaparkhe, S.M.; Egertsdotter, E.M.; Flinn, B.S. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. Planta, 2009, 230(2), 339-354.
[22]
Vierstra, R.D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci., 2003, 8(3), 135-142.
[23]
Chen, H.J.; Huang, Y.H.; Huang, G.J.; Huang, S.S.; Chow, T.J.; Lin, Y.H. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. J. Plant Physiol., 2015, 180, 1-17.
[24]
Guo, R.; Xu, X.; Carole, B.; Li, X.; Gao, M.; Zheng, Y.; Wang, X. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genomics, 2013, 14, 554.
[25]
Niu, N.; Liang, W.; Yang, X.; Jin, W.; Wilson, Z.A.; Hu, J.; Zhang, D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat. Commun., 2013, 4, 1445.
[26]
Feijoo-Siota, L.; Villa, T.G. Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Technol., 2010, 4(6), 1066-1088.
[27]
Salas, C.E.; Gomes, M.T.; Hernandez, M.; Lopes, M.T. Plant cysteine proteinases: Evaluation of the pharmacological activity. Phytochemistry, 2008, 69(12), 2263-2269.
[28]
Geisen, U.; Zenthoefer, M.; Peipp, M.; Kerber, J.; Plenge, J.; Managò, A.; Fuhrmann, M.; Geyer, R.; Hennig, S.; Adam, D.; Piker, L.; Rimbach, G.; Kalthoff, H. Molecular mechanisms by which a Fucus vesiculosus extract mediates cell cycle inhibition and cell death in pancreatic cancer cells. Mar. Drugs, 2015, 13(7), 4470-4491.
[29]
Malacrida, A.; Maggioni, D.; Cassetti, A.; Nicolini, G.; Cavaletti, G.; Miloso, M. antitumoral effect of hibiscus sabdariffa on human squamous cell carcinoma and multiple myeloma cells. Nutr. Cancer, 2016, 68(7), 1161-1170.
[30]
Jahanban-Esfahlan, A.; Modaeinama, S.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti-proliferative properties of melissa officinalis in different human cancer cells. Asian Pac. J. Cancer Prev., 2015, 16(14), 5703-5707.
[31]
Pulito, C.; Mori, F.; Sacconi, A.; Casadei, L.; Ferraiuolo, M.; Valerio, M.C.; Santoro, R.; Goeman, F.; Maidecchi, A.; Mattoli, L.; Manetti, C.; Di Agostino, S.; Muti, P.; Blandino, G.; Strano, S. Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget, 2015, 6(20), 18134-18150.
[32]
Chou, C.W.; Cheng, Y.W.; Tsai, C.H. Phyllostachys edulis extract induces apoptosis signaling in osteosarcoma cells, associated with AMPK activation. Drug Des. Devel. Ther., 2014, 8, 1577-1584.
[33]
Baines, B.S.; Brocklehurst, K. A necessary modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for the structural integrity of the enzyme produced by traditional methods. Biochem. J., 1979, 177(2), 541-548.
[34]
Mazzei, D.; Novi, C.; Bazzi, C. Mitogenic action of papain. Lancet, 1966, 2(7467), 802-803.
[35]
Tinacci, F.; Franchi Micheli, S. [Mitogenic action of papain on various parenchymatous organs of the rat. (Microscopic and electron microscopic study)]. Sperimentale, 1970, 120(3), 131-157.
[36]
Zetter, B.R.; Chen, L.B.; Buchanan, J.M. Effects of protease treatment on growth, morphology, adhesion, and cell surface proteins of secondary chick embryo fibroblasts. Cell, 1976, 7(3), 407-412.
[37]
Otsuki, N.; Dang, N.H.; Kumagai, E.; Kondo, A.; Iwata, S.; Morimoto, C. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J. Ethnopharmacol., 2010, 127(3), 760-767.
[38]
Bellelli, A.; Mattioni, M.; Rusconi, V.; Sezzi, M.L.; Bellelli, L. Inhibition of tumor growth, invasion and metastasis in papain-immunized mice. Invasion Metastasis, 1990, 10(3), 142-169.
[39]
Trejo-Becerril, C.; Pérez-Cardenas, E.; Gutiérrez-Díaz, B.; De La Cruz-Sigüenza, D.; Taja-Chayeb, L.; González-Ballesteros, M.; García-López, P.; Chanona, J.; Dueñas-González, A. antitumor effects of systemic DNASE I and proteases in an in vivo model. Integr. Cancer Ther., 2016, 15(4), NP35-NP43.
[40]
Kelly, G.S. Bromelain: A literature review and discussion of its therapeutic applications. Altern. Med. Rev., 1996, 1(4), 243-257.
[41]
Grabowska, E.; Eckert, K.; Fichtner, I.; Schulzeforster, K.; Maurer, H. Bromelain proteases suppress growth, invasion and lung metastasis of B16F10 mouse melanoma cells. Int. J. Oncol., 1997, 11(2), 243-248.
[42]
Müller, A.; Barat, S.; Chen, X.; Bui, K.C.; Bozko, P.; Malek, N.P.; Plentz, R.R. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines. Int. J. Oncol., 2016, 48(5), 2025-2034.
[43]
Romano, B.; Fasolino, I.; Pagano, E.; Capasso, R.; Pace, S.; De Rosa, G.; Milic, N.; Orlando, P.; Izzo, A.A.; Borrelli, F. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Mol. Nutr. Food Res., 2014, 58(3), 457-465.
[44]
Barth, H.; Guseo, A.; Klein, R. In vitro study on the immunological effect of bromelain and trypsin on mononuclear cells from humans. Eur. J. Med. Res., 2005, 10(8), 325-331.
[45]
Beuth, J. Proteolytic enzyme therapy in evidence-based complementary oncology: Fact or fiction? Integr. Cancer Ther., 2008, 7(4), 311-316.
[46]
Lah, T.T.; Kos, J. Cysteine proteinases in cancer progression and their clinical relevance for prognosis. Biol. Chem., 1998, 379(2), 125-130.
[47]
Dittz, D.; Figueiredo, C.; Lemos, F.O.; Viana, C.T.; Andrade, S.P.; Souza-Fagundes, E.M.; Fujiwara, R.T.; Salas, C.E.; Lopes, M.T. Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of Proteases from V. cundinamarcensis (C. candamarcensis) in murine melanoma B16F1. Int. J. Mol. Sci., 2015, 16(4), 7027-7044.
[48]
Cabral, H.; Leopoldino, A.M.; Tajara, E.H.; Greene, L.J.; Faça, V.M.; Mateus, R.P.; Ceron, C.R.; de Souza Judice, W.A.; Julianod, L.; Bonilla-Rodriguez, G.O. Preliminary functional characterization, cloning and primary sequence of fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa. Protein Pept. Lett., 2006, 13(1), 83-89.
[49]
Guimarães-Ferreira, C.A.; Rodrigues, E.G.; Mortara, R.A.; Cabral, H.; Serrano, F.A.; Ribeiro-dos-Santos, R.; Travassos, L.R. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia, 2007, 9(9), 723-733.
[50]
Alexander, B.; Pechet, L.; Kliman, A. Proteolysis, fibrinolysis, and coagulation. Significance in thrombolytic therapy. Circulation, 1962, 26, 596-611.
[51]
Weisel, J.W.; Litvinov, R.I. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc. Hematol. Agents Med. Chem., 2008, 6(3), 161-180.
[52]
Weisel, J.W. Fibrinogen and fibrin. Adv. Protein Chem., 2005, 70, 247-299.
[53]
Gorkun, O.V.; Veklich, Y.I.; Medved, L.V.; Henschen, A.H.; Weisel, J.W. Role of the alpha C domains of fibrin in clot formation. Biochemistry, 1994, 33(22), 6986-6997.
[54]
Shivaprasad, H.V.; Rajaiah, R.; Frey, B.M.; Frey, F.J.; Vishwanath, B.S. ‘Pergularain e I’--a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb. Res., 2010, 125(3), e100-e105.
[55]
Rajesh, R.; Raghavendra Gowda, C.D.; Nataraju, A.; Dhananjaya, B.L.; Kemparaju, K.; Vishwanath, B.S. Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon, 2005, 46(1), 84-92.
[56]
Shivaprasad, H.V.; Riyaz, M.; Venkatesh Kumar, R.; Dharmappa, K.K.; Tarannum, S.; Siddesha, J.M.; Rajesh, R.; Vishwanath, B.S. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities. J. Thromb. Thrombolysis, 2009, 28(3), 304-308.
[57]
de Menezes, Y.A.; Félix-Silva, J.; da Silva-Júnior, A.A.; Rebecchi, I.M.; de Oliveira, A.S.; Uchoa, A.F. Fernandes-Pedrosa, Mde.F. Protein-rich fraction of Cnidoscolus urens (L.) Arthur leaves: enzymatic characterization and procoagu-lant and fibrinogenolytic activities. Molecules, 2014, 19(3), 3552-3569.
[58]
Rajesh, R.; Nataraju, A.; Gowda, C.D.; Frey, B.M.; Frey, F.J.; Vishwanath, B.S. Purification and characterization of a 34-kDa, heat stable glycoprotein from Synadenium grantii latex: Action on human fibrinogen and fibrin clot. Biochimie, 2006, 88(10), 1313-1322.
[59]
Richter, G.; Schwarz, H.P.; Dorner, F.; Turecek, P.L. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br. J. Haematol., 2002, 119(4), 1042-1051.
[60]
Eagle, H.; Harris, T.N. Studies in blood coagulation: V. the coagulation of blood by proteolytic enzymes (Trypsin, Papain). J. Gen. Physiol., 1937, 20(4), 543-560.
[61]
Singh, K.A.; Nayak, M.K.; Jagannadham, M.V.; Dash, D. Thrombolytic along with anti-platelet activity of crinumin, a protein constituent of Crinum asiaticum. Blood Cells Mol. Dis., 2011, 47(2), 129-132.
[62]
Choi, J.H.; Kim, D.W.; Park, S.E.; Choi, B.S.; Sapkota, K.; Kim, S.; Kim, S.J. Novel thrombolytic protease from edible and medicinal plant Aster yomena (Kitam.) Honda with anticoagulant activity: Purification and partial characterization. J. Biosci. Bioeng., 2014, 118(4), 372-377.
[63]
Kim, D.W.; Choi, J.H.; Park, S.E.; Kim, S.; Sapkota, K.; Kim, S.J. Purification and characterization of a fibrinolytic enzyme from Petasites japonicus. Int. J. Biol. Macromol., 2015, 72, 1159-1167.
[64]
Maurer, H.R. Bromelain: Biochemistry, pharmacology and medical use. Cell. Mol. Life Sci., 2001, 58(9), 1234-1245.
[65]
Choi, J.H.; Sapkota, K.; Park, S.E.; Kim, S.; Kim, S.J. Thrombolytic, anticoagulant and antiplatelet activities of codiase, a bi-functional fibrinolytic enzyme from Codium fragile. Biochimie, 2013, 95(6), 1266-1277.
[66]
Matsubara, K.; Hori, K.; Matsuura, Y.; Miyazawa, K. A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry, 1999, 52(6), 993-999.
[67]
Kim, D-W.; Sapkota, K.; Choi, J-H.; Kim, Y-S.; Kim, S.; Kim, S-J. Direct acting anti-thrombotic serine protease from brown seaweed Costaria costata. Process Biochem., 2013, 48(2), 340-350.
[68]
Taussig, S.J. The mechanism of the physiological action of bromelain. Med. Hypotheses, 1980, 6(1), 99-104.
[69]
Errasti, M.E.; Prospitti, A.; Viana, C.A.; Gonzalez, M.M.; Ramos, M.V.; Rotelli, A.E.; Caffini, N.O. Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with bromelain. Blood Coagul. Fibrinolysis, 2016, 27(4), 441-449.
[70]
Matsubara, K.; Hori, K.; Matsuura, Y.; Miyazawa, K. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2000, 125(1), 137-143.
[71]
Siritapetawee, J.; Thammasirirak, S. Purification and characterization of a heteromultimeric glycoprotein from Artocarpus heterophyllus latex with an inhibitory effect on human blood coagulation. Acta Biochim. Pol., 2011, 58(4), 521-528.
[72]
Yosipovitch, G.; Maibach, H.I. [Significance of skin surface pH]. Harefuah, 1996, 130(7), 478-480.
[73]
Hertzberg, M. Biochemistry of factor X. Blood Rev., 1994, 8(1), 56-62.
[74]
Rajesh, R.; Raghavendra Gowda, C.D.; Nataraju, A.; Dhananjaya, B.L.; Kemparaju, K.; Vishwanath, B.S. Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon, 2005, 46(1), 84-92.
[75]
Doolittle, R.F. Clotting of mammalian fibrinogens by papain: A re-examination. Biochemistry, 2014, 53(42), 6687-6694.
[76]
Singh, M.K.; Usha, R.; Hithayshree, K.R.; Bindhu, O.S. Hemostatic potential of latex proteases from Tabernaemontana divaricata (L.) R. Br. ex. Roem. and Schult. and Artocarpus altilis (Parkinson ex. F.A. Zorn) Forsberg. J. Thromb. Thrombolysis, 2015, 39(1), 43-49.
[77]
Shivalingu, B.R.; Vivek, H.K.; Nafeesa, Z.; Priya, B.S.; Swamy, S.N. Comparative analysis of procoagulant and fibrinogenolytic activity of crude protease fractions of turmeric species. J. Ethnopharmacol., 2015, 172, 261-264.
[78]
Ramos, M.V.; Viana, C.A.; Silva, A.F.; Freitas, C.D.; Figueiredo, I.S.; Oliveira, R.S.; Alencar, N.M.; Lima-Filho, J.V.; Kumar, V.L. Proteins derived from latex of C. procera maintain coagulation homeostasis in septic mice and exhibit thrombin- and plasmin-like activities. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(5), 455-463.
[79]
Rajesh, R.; Shivaprasad, H.V.; Gowda, C.D.; Nataraju, A.; Dhananjaya, B.L.; Vishwanath, B.S. Comparative study on plant latex proteases and their involvement in hemostasis: A special emphasis on clot inducing and dissolving properties. Planta Med., 2007, 73(10), 1061-1067.
[80]
Viana, C.A.; Oliveira, J.S.; Freitas, C.D.; Alencar, N.M.; Carvalho, C.P.; Nishi, B.C.; Ramos, M.V. Thrombin and plasmin-like activities in the latices of Cryptostegia grandiflora and Plumeria rubra. Blood Coagul. Fibrinolysis, 2013, 24(4), 386-392.
[81]
Badgujar, S.B.; Mahajan, R.T. Characterization of thermo- and detergent stable antigenic glycosylated cysteine protease of Euphorbia nivulia Buch.-Ham. and evaluation of its ecofriendly applications. Sci. World J., 2013, 2013, 716545.
[82]
Kemparaju, K.; Manasagangothri, M. Biochemical characteri- zation of protease isoforms in cucumber sap extract Int. J. Pharm. Phytopharm. Res, 2014, 4(2)
[83]
Chung, D-M.; Choi, N-S.; Maeng, P.J.; Chun, H.K.; Kim, S-H. Purification and characterization of a novel fibrinolytic enzyme from chive (Allium tuberosum). Food Sci. Biotechnol., 2010, 19(3), 697-702.
[84]
Chung, D.M.; Choi, N.S.; Chun, H.K.; Maeng, P.J.; Park, S.B.; Kim, S.H. A new fibrinolytic enzyme (55 kDa) from Allium tuberosum: Purification, characterization, and comparison. J. Med. Food, 2010, 13(6), 1532-1536.
[85]
Choi, H.S.; Sa, Y.S. Fibrinolytic and antithrombotic protease from Spirodela polyrhiza. Biosci. Biotechnol. Biochem., 2001, 65(4), 781-786.
[86]
Fonseca, K.C.; Morais, N.C.; Queiroz, M.R.; Silva, M.C.; Gomes, M.S.; Costa, J.O.; Mamede, C.C.; Torres, F.S.; Penha-Silva, N.; Beletti, M.E.; Canabrava, H.A.; Oliveira, F. Purification and biochemical characterization of Eumiliin from Euphorbia milii var. hislopii latex. Phytochemistry, 2010, 71(7), 708-715.
[87]
Patel, G.K.; Kawale, A.A.; Sharma, A.K. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol. Biochem., 2012, 52, 104-111.
[88]
Siritapetawee, J.; Limphirat, W.; Kantachot, C.; Kongmark, C. The effects of metal ions in Euphorbia cf. lactea latex on the fibrinogenolytic activity of a plant protease. Appl. Biochem. Biotechnol., 2015, 175(1), 232-242.
[89]
Siritapetawee, J.; Thumanu, K.; Sojikul, P.; Thammasirirak, S. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. Biochim. Biophys. Acta, 2012, 1824(7), 907-912.
[90]
Gangaraju, S.M.B.; Subbaiah, G.K.; Kempaiah, K.; Shashidharamurthy, R.; Plow, J.H.; Martin, S.S.; Shindhe, M.; Sannaningaiah, D. Jackfruit (Artocarpus heteophyllus) seed extract exhibits fibrino(geno)lytic activity. Phcog J, 2015, 7(3), 171-177.
[91]
Bilheiro, R.P.; Braga, A.D.; Filho, M.L.; Carvalho-Tavares, J.; Agero, U.; Carvalho, Md.; Sanchez, E.F.; Salas, C.E.; Lopes, M.T. The thrombolytic action of a proteolytic fraction (P1G10) from Carica candamarcensis. Thromb. Res., 2013, 131(4), e175-e182.
[92]
Pepe, A.; Frey, M.E.; Muñoz, F.; Fernández, M.B.; Pedraza, A.; Galbán, G.; García, D.N.; Daleo, G.R.; Guevara, M.G. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3). Biochimie, 2016, 125, 163-170.
[93]
Matsubara, K.; Sumi, H.; Hori, K.; Miyazawa, K. Purifica-tion and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1998, 119(1), 177-181.
[94]
Shivaprasad, H.V.; Rajaiah, R.; Frey, B.M.; Frey, F.J.; Vishwanath, B.S. ‘Pergularain e I’--a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb. Res., 2010, 125(3), e100-e105.
[95]
Yariswamy, M.; Shivaprasad, H.V.; Joshi, V.; Nanjaraj Urs, A.N.; Nataraju, A.; Vishwanath, B.S. Topical application of serine proteases from Wrightia tinctoria R. Br. (Apocyanaceae) latex augments healing of experimentally induced excision wound in mice. J. Ethnopharmacol., 2013, 149(1), 377-383.
[96]
Rose, B.; Herder, C.; Löffler, H.; Meierhoff, G.; Schloot, N.C.; Walz, M.; Martin, S. Dose-dependent induction of IL-6 by plant-derived proteases in vitro. Clin. Exp. Immunol., 2006, 143(1), 85-92.
[97]
Müller, S.; März, R.; Schmolz, M.; Drewelow, B.; Eschmann, K.; Meiser, P. Placebo-controlled randomized clinical trial on the immunomodulating activities of low- and high-dose bromelain after oral administration - new evidence on the antiinflammatory mode of action of bromelain. Phytother. Res., 2013, 27(2), 199-204.
[98]
Altemeier, W.A.; Coith, R.; Culbertson, W.; Tytell, A. Enzymatic debridement of burns. Ann. Surg., 1951, 134(4), 581-587.
[99]
Prytz, B.; Connell, J.F., Jr; Rousselot, L.M. Bacillus subtilis protease in the digestion of burn eschar. Clin. Pharmacol. Ther., 1966, 7(3), 347-351.
[100]
Webster, M.E.; Altieri, P.L.; Conklin, D.A.; Berman, S.; Lowenthal, J.P.; Gochenour, R.B. Enzymatic debridement of third-degree burns on guinea pigs by Clostridium histolyticum proteinases. J. Bacteriol., 1962, 83(3), 602-608.
[101]
Kemble, J.V. PH changes on the surface of burns. Br. J. Plast. Surg., 1975, 28(3), 181-184.
[102]
Vijaykumar, H.; Pai, S.A.; Pandey, V.; Kamble, P. Comparative study of collagenase and papain-urea based preparations in the management of chronic non healing limb ulcers. Indian J. Sci. Technol., 2011, 4(9), 1096-1100.
[103]
Klein, G.K. Enzymatic debridement of third degree burns in animals with bromelains. A preliminary report. J. Maine Med. Assoc., 1964, 55, 169-171.
[104]
Burke, J.F.; Golden, T. A clinical evaluation of enzymatic debridement with papain-urea-chlorophyllin ointment. Am. J. Surg., 1958, 95(5), 828-842.
[105]
Langer, V.; Bhandari, P.S.; Rajagopalan, S.; Mukherjee, M.K. Enzymatic debridement of large burn wounds with papain-urea: Is it safe? Med. J. Armed Forces India, 2013, 69(2), 144-150.
[106]
Connell, J.F., Jr; Del Guercio, L.R.; Rousselot, L.M. Debricin; clinical experiences with a new proteolytic enzyme in surgical wounds. Surg. Gynecol. Obstet., 1959, 108(1), 93-99.
[107]
Maurer, H.R. Bromelain: biochemistry, pharmacology and medical use. Cell. Mol. Life Sci., 2001, 58(9), 1234-1245.
[108]
Levenson, S.M.; Kan, D.; Gruber, C.; Crowley, L.V.; Lent, R.; Watford, A.; Seifter, E. Chemical debridement of burns. Ann. Surg., 1974, 180(4), 670-704.
[109]
Houck, J.C.; Chang, C.M.; Klein, G. Isolation of an effective debriding agent from the stems of pineapple plants. Int. J. Tissue React., 1983, 5(2), 125-134.
[110]
Singer, A.J.; Taira, B.R.; Anderson, R.; McClain, S.A.; Rosenberg, L. The effects of rapid enzymatic debridement of deep partial-thickness burns with Debrase on wound reepithelialization in swine. J. Burn Care Res., 2010, 31(5), 795-802.
[111]
Singer, A.J.; Taira, B.R.; Anderson, R.; McClain, S.A.; Rosenberg, L. Reepithelialization of mid-dermal porcine burns after rapid enzymatic debridement with Debrase®. J. Burn Care Res., 2011, 32(6), 647-653.
[112]
Gurfinkel, R.; Lavon, I.; Cagnano, E.; Volgin, K.; Shaltiel, L.; Grossman, N.; Kost, J.; Singer, A.J.; Rosenberg, L. Combined ultrasonic and enzymatic debridement of necrotic eschars in an animal model. J. Burn Care Res., 2009, 30(3), 505-513.
[113]
Rosenberg, L.; Shoham, Y.; Krieger, Y.; Rubin, G.; Sander, F.; Koller, J.; David, K.; Egosi, D.; Ahuja, R.; Singer, A.J. Minimally invasive burn care: a review of seven clinical studies of rapid and selective debridement using a bromelain-based debriding enzyme (Nexobrid®). Ann. Burns Fire Disasters, 2015, 28(4), 264-274.
[114]
Rosenberg, L.; Krieger, Y.; Bogdanov-Berezovski, A.; Silberstein, E.; Shoham, Y.; Singer, A.J. A novel rapid and selective enzymatic debridement agent for burn wound management: A multi-center RCT. Burns, 2014, 40(3), 466-474.
[115]
Skrabut, E.M.; Hebda, P.A.; Samuels, J.A.; Richards, S.M.; Edmunds, T.; Cunneen, M.F.; Vaccaro, C.A.; McPherson, J.M. Removal of necrotic tissue with an ananain-based enzyme-debriding preparation. Wound Repair Regen., 1996, 4(4), 433-443.
[116]
Hafezi, F.; Rad, H.E.; Naghibzadeh, B.; Nouhi, A.; Naghibzadeh, G. Actinidia deliciosa (kiwifruit), a new drug for enzymatic debridement of acute burn wounds. Burns, 2010, 36(3), 352-355.
[117]
Gomes, F.S. Spínola, Cde.V.; Ribeiro, H.A.; Lopes, M.T.; Cassali, G.D.; Salas, C.E. Wound-healing activity of a proteolytic fraction from Carica candamarcensis on experimentally induced burn. Burns, 2010, 36(2), 277-283.
[118]
Gomes, M.T.; Mello, V.J.; Rodrigues, K.C.; Bemquerer, M.P.; Lopes, M.T.; Faça, V.M.; Salas, C.E. Isolation of two plant proteinases in latex from Carica candamarcensis acting as mitogens for mammalian cells. Planta Med., 2005, 71(3), 244-248.
[119]
Savvateeva, L.V.; Gorokhovets, N.V.; Makarov, V.A.; Serebryakova, M.V.; Solovyev, A.G.; Morozov, S.Y.; Reddy, V.P.; Zernii, E.Y.; Zamyatnin, A.A., Jr; Aliev, G. Glutenase and collagenase activities of wheat cysteine protease Triticain-α: Feasibility for enzymatic therapy assays. Int. J. Biochem. Cell Biol., 2015, 62, 115-124.
[120]
Dayem, R.N.; Tameesh, M.A. A new concept in hybridization: Bromelain enzyme for deproteinizing dentin before application of adhesive system. Contemp. Clin. Dent., 2013, 4(4), 421-426.
[121]
Goldman, M.; Kronman, J.H. A preliminary report on a chemomechanical means of removing caries. J. Am. Dent. Assoc., 1976, 93(6), 1149-1153.
[122]
Yazici, A.R.; Atílla, P.; Ozgünaltay, G.; Müftüoglu, S. In vitro comparison of the efficacy of Carisolv and conventional rotary instrument in caries removal. J. Oral Rehabil., 2003, 30(12), 1177-1182.
[123]
Bussadori, S.K.; Castro, L.C.; Galvão, A.C. Papain gel: A new chemo-mechanical caries removal agent. J. Clin. Pediatr. Dent., 2005, 30(2), 115-119.
[124]
Kotb, R.M.; Abdella, A.A.; El Kateb, M.A.; Ahmed, A.M. Clinical evaluation of Papacarie in primary teeth. J. Clin. Pediatr. Dent., 2009, 34(2), 117-123.
[125]
Venkataraghavan, K.; Kush, A.; Lakshminarayana, C.; Diwakar, L.; Ravikumar, P.; Patil, S.; Karthik, S. Chemome-chanical caries removal: A review and study of an indigenously developed agent (Carie Care (TM) gel) in children. J. Int. Oral Health, 2013, 5(4), 84-90.
[126]
Sahana, S.; Vasa, A.A.; Geddam, D.; Reddy, V.K.; Nalluri, S.; Velagapudi, N. Effectiveness of chemomechanical caries removal agents Papacarie(®) and Carie-Care in primary molars: An in vitro study. J. Int. Soc. Prev. Community Dent., 2016, 6(Suppl. 1), S17-S22.
[127]
Kush, A.; Thakur, R.; Patil, S.D.; Paul, S.T.; Kakanur, M. Evaluation of antimicrobial action of Carie Care and Papacarie Duo on Aggregatibacter actinomycetemcomitans a major periodontal pathogen using polymerase chain reaction. Contemp. Clin. Dent., 2015, 6(4), 534-538.
[128]
Pithon, M.M.; Campos, M.S. Coqueiro, Rda.S. Effect of bromelain and papain gel on enamel deproteinisation before orthodontic bracket bonding. Aust. Orthod. J., 2016, 32(1), 23-30.
[129]
Chakravarthy, P.; Acharya, S. Efficacy of extrinsic stain removal by novel dentifrice containing papain and bromelain extracts. J. Young Pharm., 2012, 4(4), 245-249.
[130]
Kalyana, P.; Shashidhar, A.; Meghashyam, B.; Sreevidya, K.R.; Sweta, S. Stain removal efficacy of a novel dentifrice containing papain and Bromelain extracts--an in vitro study. Int. J. Dent. Hyg., 2011, 9(3), 229-233.
[131]
Eshamah, H.; Han, I.; Naas, H.; Acton, J.; Dawson, P. Antibacterial effects of natural tenderizing enzymes on different strains of Escherichia coli O157:H7 and Listeria monocytogenes on beef. Meat Sci., 2014, 96(4), 1494-1500.
[132]
Osato, J.A.; Santiago, L.A.; Remo, G.M.; Cuadra, M.S.; Mori, A. Antimicrobial and antioxidant activities of unripe papaya. Life Sci., 1993, 53(17), 1383-1389.
[133]
dos Anjos, M.M.; da Silva, A.A.; de Pascoli, I.C.; Mikcha, J.M.; Machinski, M., Jr; Peralta, R.M.; de Abreu Filho, B.A. Antibacterial activity of papain and bromelain on Alicyclobacillus spp. Int. J. Food Microbiol., 2016, 216, 121-126.
[134]
da Silva, C.R.; Oliveira, M.B.; Motta, E.S.; de Almeida, G.S.; Varanda, L.L.; de Pádula, M.; Leitão, A.C.; Caldeira-de-Araújo, A. Genotoxic and cytotoxic safety evaluation of papain (carica papaya l.) using in vitro assays. J. Biomed. Biotechnol., 2010, 2010, 197898.
[135]
Siritapetawee, J.; Thammasirirak, S.; Samosornsuk, W. Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(1), 132-137.
[136]
Guevara, M.; Veríssimo, P.; Pires, E.; Faro, C.; Daleo, G. Potato aspartic proteases: Induction, antimicrobial activity and substrate specificity. J. Plant Pathol., 2004, 86, 233-238.
[137]
Mendieta, J.R.; Pagano, M.R.; Muñoz, F.F.; Daleo, G.R.; Guevara, M.G. Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization. Microbiology, 2006, 152(Pt 7), 2039-2047.
[138]
Niderman, T.; Genetet, I.; Bruyère, T.; Gees, R.; Stintzi, A.; Legrand, M.; Fritig, B.; Mösinger, E. Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol., 1995, 108(1), 17-27.
[139]
Pagano, M.R.; Mendieta, J.R.; Muñoz, F.F.; Daleo, G.R.; Guevara, M.G. Roles of glycosylation on the antifungal activity and apoplast accumulation of StAPs (Solanum tuberosum aspartic proteases). Int. J. Biol. Macromol., 2007, 41(5), 512-520.
[140]
Karnchanatat, A.; Tiengburanatam, N.; Boonmee, A.; Puthong, S.; Sangvanich, P. Zingipain, A cysteine protease from Zingiber ottensii Valeton rhizomes with antiproliferative activities against fungi and human malignant cell lines. Prep. Biochem. Biotechnol., 2011, 41(2), 138-153.
[141]
Berger, J.; Asenjo, C.F. Anthelmintic activity of crystalline papain. Science, 1940, 91(2364), 387-388.
[142]
Stepek, G.; Buttle, D.J.; Duce, I.R.; Lowe, A.; Behnke, J.M. Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology, 2005, 130(Pt 2), 203-211.
[143]
Chen, C.F.; Chen, S.M.; Chow, S.Y.; Han, P.W. Protective effects of Carica papaya Linn on the exogenous gastric ulcer in rats. Am. J. Chin. Med., 1981, 9(3), 205-212.
[144]
Mello, V.J.; Gomes, M.T.; Lemos, F.O.; Delfino, J.L.; Andrade, S.P.; Lopes, M.T.; Salas, C.E. The gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcensis. Phytomedicine, 2008, 15(4), 237-244.
[145]
Kane, S.; Goldberg, M.J. Use of bromelain for mild ulcerative colitis. Ann. Intern. Med., 2000, 132(8), 680.
[146]
Gorokhovets, N.V.; Makarov, V.A.; Petushkova, A.I.; Prokopets, O.S.; Rubtsov, M.A.; Savvateeva, L.V.; Zernii, E.Y.; Zamyatnin, A.A., Jr Rational design of recombinant papain-like cysteine protease: Optimal domain structure and expres-sion conditions for wheat-derived enzyme triticain-α. Int. J. Mol. Sci., 2017, 18(7), 1395.
[147]
Shan, L.; Molberg, Ø.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.M.; Sollid, L.M.; Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science, 2002, 297(5590), 2275-2279.
[148]
Balakireva, A.V.; Zamyatnin, A.A. Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients, 2016, 8(10), 644.
[149]
Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr., 2016, 35(6), 1236-1241.
[150]
Bethune, M.T.; Khosla, C. Oral enzyme therapy for celiac sprue. Methods Enzymol., 2012, 502, 241-271.
[151]
Savvateeva, L.V.; Zamyatnin, A.A. Prospects of developing medicinal therapeutic strategies and pharmaceutical design for effective gluten intolerance treatment. Curr. Pharm. Des., 2016, 22(16), 2439-2449.
[152]
Kiyosaki, T.; Asakura, T.; Matsumoto, I.; Tamura, T.; Terauchi, K.; Funaki, J.; Kuroda, M.; Misaka, T.; Abe, K. Wheat cysteine proteases triticain alpha, beta and gamma exhibit mutually distinct responses to gibberellin in germinating seeds. J. Plant Physiol., 2009, 166(1), 101-106.
[153]
Lähdeaho, M.L.; Kaukinen, K.; Laurila, K.; Vuotikka, P.; Koivurova, O.P.; Kärjä-Lahdensuu, T.; Marcantonio, A.; Adelman, D.C.; Mäki, M. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology, 2014, 146(7), 1649-1658.
[154]
Zayachkivska, O.S.; Konturek, S.J.; Drozdowicz, D.; Kon-turek, P.C.; Brzozowski, T.; Ghegotsky, M.R. Gastroprotective effects of flavonoids in plant extracts. J. Physiol. Pharmacol, 2005, 56 (Suppl 1(1)), 219-231
[155]
Knill-Jones, R.P.; Pearce, H.; Batten, J.; Williams, R. Comparative trial of Nutrizym in chronic pancreatic insufficiency. BMJ, 1970, 4(5726), 21-24.
[156]
Felton, G.E. Does kinin released by pineapple stem bromelain stimulate production of prostaglandin E1-like compounds? Hawaii Med. J., 1977, 36(2), 39-47.
[157]
Mynott, T.L.; Luke, R.K.; Chandler, D.S. Oral administration of protease inhibits enterotoxigenic Escherichia coli receptor activity in piglet small intestine. Gut, 1996, 38(1), 28-32.
[158]
Hale, L.P.; Greer, P.K.; Trinh, C.T.; Gottfried, M.R. Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clin. Immunol., 2005, 116(2), 135-142.
[159]
Walker-Renard, P. Update on the medicinal management of phytobezoars. Am. J. Gastroenterol., 1993, 88(10), 1663-1666.
[160]
Ley, C.M.; Tsiami, A.; Ni, Q.; Robinson, N. A review of the use of bromelain in cardiovascular diseases. J. Chin. Integr. Med., 2011, 9(7), 702-710.
[161]
Gutfreund, A.E.; Taussig, S.J.; Morris, A.K. Effect of oral bromelain on blood pressure and heart rate of hypertensive patients. Hawaii Med. J., 1978, 37(5), 143-146.
[162]
Seligman, B. Oral bromelains as adjuncts in the treatment of acute thrombophlebitis. Angiology, 1969, 20(1), 22-26.
[163]
Seltzer, A.P. A Double-blind study of bromelains in the treatment of edema and ecchymoses following surgical and nonsurgical trauma to the face. Eye Ear Nose Throat Mon., 1964, 43, 54-57.
[164]
Blonstein, J.L. Control of Swelling in Boxing Injuries. Practitioner, 1964, 193, 334.
[165]
Morrison, A.W.; Morrison, M.C. Bromelain-a clinical assessment in the post-operative treatment of arthrotomies of the knee and facial injuries. Br. J. Clin. Pract., 1964, 19, 207-210.
[166]
Walker, A.F.; Bundy, R.; Hicks, S.M.; Middleton, R.W. Bromelain reduces mild acute knee pain and improves well-being in a dose-dependent fashion in an open study of otherwise healthy adults. Phytomedicine, 2002, 9(8), 681-686.
[167]
Kopp, S.; Mejersjö, C.; Clemensson, E.; Hicks, S.M.; Middleton, D. Induction of osteoarthrosis in the guinea pig knee by papain. Oral Surg. Oral Med. Oral Pathol., 1983, 55(3), 259-266.
[168]
Kahn, S. The use of proteolytic enzymes from Carica papaya in nasal plastic surgery. Plast. Reconstr. Surg., 1965, 35(4), 428-432.
[169]
Kopp, S.; Mejersjö, C.; Clemensson, E. Induction of osteoarthrosis in the guinea pig knee by papain. Oral Surg. Oral Med. Oral Pathol., 1983, 55(3), 259-266.
[170]
Hulth, A.; Westerborn, O. The effect of crude papain on the epiphysial cartilage of laboratory animals. J. Bone Joint Surg. Br., 1959, 41-B(4), 836-847.
[171]
Simmons, J.W.; Nordby, E.J.; Hadjipavlou, A.G. Chemonucleolysis: The state of the art. Eur. Spine J., 2001, 10(3), 192-202.
[172]
Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Efficient absorption of x-hydroxyproline (hyp)-gly after oral administration of a novel gelatin hydrolysate prepared using ginger protease. J. Agric. Food Chem., 2016, 64(14), 2962-2970.
[173]
Li, W.; Luo, Z.; Liu, X.; Fu, L.; Xu, Y.; Wu, L.; Shen, X. Effect of Ginkgo biloba extract on experimental cardiac remodeling. BMC Complement. Altern. Med., 2015, 15(1), 277.
[174]
Ahmad, F.; Khan, R.A.; Rasheed, S. Study of analgesic and anti-inflammatory activity from plant extracts of Lactuca scariola and Artemisia absinthium. J. Islam. Acad. Sci., 1992, 5(2), 111-114.
[175]
Beck, V.; Unterrieder, E.; Krenn, L.; Kubelka, W.; Jungbauer, A. Comparison of hormonal activity (estrogen, androgen and progestin) of standardized plant extracts for large scale use in hormone replacement therapy. J. Steroid Biochem. Mol. Biol., 2003, 84(2-3), 259-268.
[176]
Liu, J.; Burdette, J.E.; Xu, H.; Gu, C.; van Breemen, R.B.; Bhat, K.P.; Booth, N.; Constantinou, A.I.; Pezzuto, J.M.; Fong, H.H.; Farnsworth, N.R.; Bolton, J.L. Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J. Agric. Food Chem., 2001, 49(5), 2472-2479.
[177]
Grover, A.K.; Samson, S.E. Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr. J., 2016, 15(1), 1.
[178]
Ozlen, S.N. Cosmetic composition containing alpha hydrox-yacids, salicyclic acid , and enzyme mixture of bromelain and papain US 5441740 A, 1995.
[179]
Langer, V.; Bhandari, P.S.; Rajagopalan, S.; Mukherjee, M.K. Enzymatic debridement of large burn wounds with papain-urea: Is it safe? Med. J. Armed Forces India, 2013, 69(2), 144-150.
[180]
Bertassoni, L.E.; Marshall, G.W. Papain-gel degrades intact nonmineralized type I collagen fibrils. Scanning, 2009, 31(6), 253-258.
[181]
Klein, G.; Kullich, W.; Schnitker, J.; Schwann, H. Efficacy and tolerance of an oral enzyme combination in painful osteoarthritis of the hip. A double-blind, randomised study comparing oral enzymes with non-steroidal anti-inflammatory drugs. Clin. Exp. Rheumatol., 2006, 24(1), 25-30.
[182]
Liang, J.F.; Park, Y.J.; Song, H.; Li, Y.T.; Yang, V.C. ATTEMPTS: A heparin/protamine-based prodrug approach for delivery of thrombolytic drugs. J. Control. Release, 2001, 72(1-3), 145-156.
[183]
Liang, J.F.; Li, Y.T.; Yang, V.C. A novel approach for delivery of enzyme drugs: Preliminary demonstration of feasibility and utility in vitro. Int. J. Pharm., 2000, 202(1-2), 11-20.
[184]
Senthilkumar, R.; Karaman, D.S.; Paul, P.; Björk, E.M.; Odén, M.; Eriksson, J.E.; Rosenholm, J.M. Targeted delivery of a novel anticancer compound anisomelic acid using chitosan-coated porous silica nanorods for enhancing the apoptotic effect. Biomater. Sci., 2015, 3(1), 103-111.
[185]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release, 2012, 161(1), 38-49.
[186]
Gifre, L.; Arís, A.; Bach, À.; Garcia-Fruitós, E. Trends in recombinant protein use in animal production. Microb. Cell Fact., 2017, 16(1), 40.
[187]
Singh, K.A.; Kumar, R.; Rao, G.; Jagannadham, M.V. Crinumin, a chymotrypsin-like but glycosylated serine protease from Crinum asiaticum: Purification and physicochemical characterisation. Food Chem., 2010, 119(4), 1352-1358.
[188]
Yadav, R.P.; Patel, A.K.; Jagannadham, M.V. Neriifolin S, a dimeric serine protease from Euphorbia neriifolia Linn.: Purification and biochemical characterisation. Food Chem., 2012, 132(3), 1296-1304.
[189]
Singh, V.K.; Patel, A.K.; Moir, A.J.; Jagannadham, M.V. Indicain, a dimeric serine protease from Morus indica cv. K2. Phytochemistry, 2008, 69(11), 2110-2119.
[190]
Tomar, R.; Kumar, R.; Jagannadham, M.V. A stable serine protease, wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: Purification and biochemical properties. J. Agric. Food Chem., 2008, 56(4), 1479-1487.
[191]
Shah, M.A.; Mir, S.A.; Paray, M.A. Plant proteases as milk-clotting enzymes in cheesemaking: A review. Dairy Sci. Technol., 2014, 94(1), 5-16.
[192]
Kumar, R.; Singh, K.A.; Tomar, R.; Jagannadham, M.V. Biochemical and spectroscopic characterization of a novel metalloprotease, cotinifolin from an antiviral plant shrub: Euphorbia cotinifolia. Plant Physiol. Biochem., 2011, 49(7), 721-728.
[193]
Wilken, L.R.; Nikolov, Z.L. Recovery and purification of plant-made recombinant proteins. Biotechnol. Adv., 2012, 30(2), 419-433.
[194]
Hopf, T.A.; Schärfe, C.P.; Rodrigues, J.P.; Green, A.G.; Kohlbacher, O.; Sander, C.; Bonvin, A.M.; Marks, D.S. Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife, 2014, 3, 3.
[195]
Eijsink, V.G.; Gåseidnes, S.; Borchert, T.V.; van den Burg, B. Directed evolution of enzyme stability. Biomol. Eng., 2005, 22(1-3), 21-30.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 3
Year: 2019
Page: [465 - 486]
Pages: 22
DOI: 10.2174/0929867325666171123204403
Price: $58

Article Metrics

PDF: 26
HTML: 2