Recent Progress of Crosslinking Strategies for Polymeric Micelles with Enhanced Drug Delivery in Cancer Therapy

Author(s): Wei Fan, Luye Zhang, Yiwen Li, Haoxing Wu*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 13 , 2019

  Journal Home
Translate in Chinese

Abstract:

Background: The drug delivery by versatile types of self-assembled micelles for tumor treatment, which improved the diagnostic and therapeutic effectiveness, is advocated. However, despite the numerous advantages, applications of most micelle system have been retarded by low in vivo bio-stability which led to premature drug release and nonspecific tissue accumulation. To date, a range of chemistries has been introduced in intermolecular non-covalent/covalent crosslinking strategies for these dynamic nanostructures to produce robust functional nanoparticles with enhanced circulation stability and lower non-targeted organ toxicity.

Objective: We focused on recent developments in crosslinking polymeric nanoparticles in cancer therapy.

Methods: Types of chemistries used in the crosslinking strategies of the micelles are outlined and their enhanced drug delivery abilities are discussed.

Results: We reviewed one hundred and nineteen papers and discussed in six aspect. More than 30 examples have been carefully discussed.

Conclusion: Over the last decade, numerous of strategies for micelles crosslinking, such as disulfide coupling, free radical polymerization, physical interactions, chelation, and formation of microenvironment- responsive bonds, have been developed for enhancing micelles circulation stability, minimizing organ toxicity and achieving higher tumor targeting specificity. The application of these chemistries for micelle stabilizing might bring a new generation of versatile crosslinked micelles with enhanced therapeutic index and facilitate their further clinical translations.

Keywords: Nanomedicine, polymeric micelle, crosslinking strategy, EPR effect, drug controlled release, cancer therapy.

[1]
Doane, T.L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev., 2012, 41(7), 2885-2911. [http://dx.doi.org/10.1039/c2cs15260f]. [PMID: 22286540].
[2]
Lee, D-E.; Koo, H.; Sun, I-C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 2012, 41(7), 2656-2672. [http://dx.doi.org/10.1039/C2CS15261D]. [PMID: 22189429].
[3]
Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev., 2012, 41(7), 2545-2561. [http://dx.doi.org/10.1039/c2cs15327k]. [PMID: 22334259].
[4]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939. [http://dx.doi.org/10.1021/cr400532z]. [PMID: 25260098].
[5]
Elsabahy, M.; Heo, G.S.; Lim, S-M.; Sun, G.; Wooley, K.L. Polymeric nanostructures for imaging and therapy. Chem. Rev., 2015, 115(19), 10967-11011. [http://dx.doi.org/10.1021/acs.chemrev.5b00135]. [PMID: 26463640].
[6]
Lyu, Y.; Fang, Y.; Miao, Q.; Zhen, X.; Ding, D.; Pu, K. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano, 2016, 10(4), 4472-4481. [http://dx.doi.org/10.1021/acsnano.6b00168]. [PMID: 26959505].
[7]
Miao, Q.; Lyu, Y.; Ding, D.; Pu, K. Semiconducting Oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH. Adv. Mater., 2016, 28(19), 3662-3668. [http://dx.doi.org/10.1002/adma.201505681]. [PMID: 27000431].
[8]
Tan, C.; Wang, Y.; Fan, W. Exploring polymeric micelles for improved delivery of anticancer agents: Recent developments in preclinical studies. Pharmaceutics, 2013, 5(1), 201-219. [http://dx.doi.org/10.3390/pharmaceutics5010201]. [PMID: 24300405].
[9]
Lukyanov, A.N.; Torchilin, V.P. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev., 2004, 56(9), 1273-1289. [http://dx.doi.org/10.1016/j.addr.2003.12.004]. [PMID: 15109769].
[10]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284. [http://dx.doi.org/10.1016/S0168-3659(99)00248-5]. [PMID: 10699287].
[11]
Zalipsky, S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev., 1995, 16(2), 157-182. [http://dx.doi.org/10.1016/0169-409X(95)00023-Z].
[12]
Li, S-D.; Huang, L. Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochim. Biophys. Acta, 2009, 1788(10), 2259-2266. [http://dx.doi.org/10.1016/j.bbamem.2009.06.022]. [PMID: 19595666].
[13]
Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine , 2011, 6(4), 715-728. [http://dx.doi.org/10.2217/nnm.11.19]. [PMID: 21718180].
[14]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99. [http://dx.doi.org/10.1016/j.phrs.2010.03.005]. [PMID: 20380880].
[15]
Fuguet, E.; Ràfols, C.; Rosés, M.; Bosch, E. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta, 2005, 548(1), 95-100. [http://dx.doi.org/10.1016/j.aca.2005.05.069].
[16]
Aniansson, E.; Wall, S.; Almgren, M.; Hoffmann, H.; Kielmann, I.; Ulbricht, W.; Zana, R.; Lang, J.; Tondre, C. Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem., 1976, 80(9), 905-922. [http://dx.doi.org/10.1021/j100550a001].
[17]
Lu, J.; Owen, S.C.; Shoichet, M.S. Stability of self-assembled polymeric micelles in serum. Macromolecules, 2011, 44(15), 6002-6008. [http://dx.doi.org/10.1021/ma200675w]. [PMID: 21818161].
[18]
Shao, Y.; Huang, W.; Shi, C.; Atkinson, S.T.; Luo, J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther. Deliv., 2012, 3(12), 1409-1427. [http://dx.doi.org/10.4155/tde.12.106]. [PMID: 23323559].
[19]
O’Reilly, R.K.; Hawker, C.J.; Wooley, K.L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem. Soc. Rev., 2006, 35(11), 1068-1083. [http://dx.doi.org/10.1039/b514858h]. [PMID: 17057836].
[20]
Talelli, M.; Barz, M.; Rijcken, C.J.; Kiessling, F.; Hennink, W.E.; Lammers, T. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today, 2015, 10(1), 93-117. [http://dx.doi.org/10.1016/j.nantod.2015.01.005]. [PMID: 25893004].
[21]
van Nostrum, C.F. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter, 2011, 7(7), 3246-3259. [http://dx.doi.org/10.1039/c0sm00999g].
[22]
Read, E.S.; Armes, S.P. Recent advances in shell cross-linked micelles. Chem. Commun. (Camb.), 2007, (29), 3021-3035. [http://dx.doi.org/10.1039/b701217a]. [PMID: 17639132].
[23]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev., 2001, 47(1), 113-131. [http://dx.doi.org/10.1016/S0169-409X(00)00124-1]. [PMID: 11251249].
[24]
Glavas, L.; Odelius, K.; Albertsson, A.C. Tuning loading and release by modification of micelle core crystallinity and preparation. Polym. Adv. Technol., 2015, 26(7), 880-888. [http://dx.doi.org/10.1002/pat.3524].
[25]
Yoo, H.S.; Park, T.G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Control. Release, 2001, 70(1-2), 63-70. [http://dx.doi.org/10.1016/S0168-3659(00)00340-0]. [PMID: 11166408].
[26]
Sawant, R.R.; Jhaveri, A.M.; Koshkaryev, A.; Qureshi, F.; Torchilin, V.P. The effect of dual ligand-targeted micelles on the delivery and efficacy of poorly soluble drug for cancer therapy. J. Drug Target., 2013, 21(7), 630-638. [http://dx.doi.org/10.3109/1061186X.2013.789032]. [PMID: 23594094].
[27]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27(12), 2569-2589. [http://dx.doi.org/10.1007/s11095-010-0233-4]. [PMID: 20725771].
[28]
Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine , 2010, 6(6), 714-729. [http://dx.doi.org/10.1016/j.nano.2010.05.005]. [PMID: 20542144].
[29]
Meng, F.; Hennink, W.E.; Zhong, Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 2009, 30(12), 2180-2198. [http://dx.doi.org/10.1016/j.biomaterials.2009.01.026]. [PMID: 19200596].
[30]
Kakizawa, Y.; Harada, A.; Kataoka, K. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J. Am. Chem. Soc., 1999, 121(48), 11247-11248. [http://dx.doi.org/10.1021/ja993057y].
[31]
Gerweck, L.E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res., 1996, 56(6), 1194-1198. [PMID: 8640796].
[32]
Schornack, P.A.; Gillies, R.J. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia, 2003, 5(2), 135-145. [http://dx.doi.org/10.1016/S1476-5586(03)80005-2]. [PMID: 12659686].
[33]
Ma, P.; Mumper, R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol., 2013, 4(2)1000164 [http://dx.doi.org/10.4172/2157-7439.1000164]. [PMID: 24163786].
[34]
Shao, Y.; Huang, W.; Shi, C.; Atkinson, S.T.; Luo, J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther. Deliv., 2012, 3(12), 1409-1427. [http://dx.doi.org/10.4155/tde.12.106]. [PMID: 23323559].
[35]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27(12), 2569-2589. [http://dx.doi.org/10.1007/s11095-010-0233-4]. [PMID: 20725771].
[36]
Saito, G.; Swanson, J.A.; Lee, K-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities. Adv. Drug Deliv. Rev., 2003, 55(2), 199-215. [http://dx.doi.org/10.1016/S0169-409X(02)00179-5]. [PMID: 12564977].
[37]
Lee, S-Y.; Kim, S.; Tyler, J.Y.; Park, K.; Cheng, J-X. Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. Biomaterials, 2013, 34(2), 552-561. [http://dx.doi.org/10.1016/j.biomaterials.2012.09.065]. [PMID: 23079665].
[38]
Li, Y.; Xiao, K.; Luo, J.; Xiao, W.; Lee, J.S.; Gonik, A.M.; Kato, J.; Dong, T.A.; Lam, K.S. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials, 2011, 32(27), 6633-6645. [http://dx.doi.org/10.1016/j.biomaterials.2011.05.050]. [PMID: 21658763].
[39]
Koo, A.N.; Min, K.H.; Lee, H.J.; Lee, S-U.; Kim, K.; Kwon, I.C.; Cho, S.H.; Jeong, S.Y.; Lee, S.C. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links. Biomaterials, 2012, 33(5), 1489-1499. [http://dx.doi.org/10.1016/j.biomaterials.2011.11.013]. [PMID: 22130564].
[40]
Li, Y.L.; Zhu, L.; Liu, Z.; Cheng, R.; Meng, F.; Cui, J.H.; Ji, S.J.; Zhong, Z. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew. Chem. Int. Ed. Engl., 2009, 48(52), 9914-9918. [http://dx.doi.org/10.1002/anie.200904260]. [PMID: 19937876].
[41]
Kong, K.V.; Goh, D.; Olivo, M. Dual trigger crosslinked micelles based polyamidoamine for effective paclitaxel delivery. J. Nanomed. Nanotechnol., 2014, 5(4)1000212
[42]
Xu, Y.; Meng, F.; Cheng, R.; Zhong, Z. Reduction-sensitive reversibly crosslinked biodegradable micelles for triggered release of doxorubicin. Macromol. Biosci., 2009, 9(12), 1254-1261. [http://dx.doi.org/10.1002/mabi.200900233]. [PMID: 19904724].
[43]
Wu, L.; Zou, Y.; Deng, C.; Cheng, R.; Meng, F.; Zhong, Z. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34(21), 5262-5272. [http://dx.doi.org/10.1016/j.biomaterials.2013.03.035]. [PMID: 23570719].
[44]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25. [http://dx.doi.org/10.1016/j.addr.2013.11.009]. [PMID: 24270007].
[45]
Wang, J.; Mao, W.; Lock, L.L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano, 2015, 9(7), 7195-7206. [http://dx.doi.org/10.1021/acsnano.5b02017]. [PMID: 26149286].
[46]
Fan, W.; Wang, Y.; Dai, X.; Shi, L.; Mckinley, D.; Tan, C. Reduction-responsive crosslinked micellar nanoassemblies for tumor-targeted drug delivery. Pharm. Res., 2015, 32(4), 1325-1340. [http://dx.doi.org/10.1007/s11095-014-1537-6]. [PMID: 25319102].
[47]
Jia, Z.; Wong, L.; Davis, T.P.; Bulmus, V. One-pot conversion of RAFT-generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid- and reductant-sensitive crosslinked micelles. Biomacromolecules, 2008, 9(11), 3106-3113. [http://dx.doi.org/10.1021/bm800657e]. [PMID: 18844406].
[48]
Yildirim, T.; Traeger, A.; Preussger, E.; Stumpf, S.; Fritzsche, C.; Hoeppener, S.; Schubert, S.; Schubert, U.S. Dual responsive nanoparticles from a raft copolymer library for the controlled delivery of doxorubicin. Macromolecules, 2016, 49(10), 3856-3868. [http://dx.doi.org/10.1021/acs.macromol.5b02603].
[49]
Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.; Mayadunne, R.T.; Meijs, G.F.; Moad, C.L.; Moad, G. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules, 1998, 31(16), 5559-5562. [http://dx.doi.org/10.1021/ma9804951].
[50]
McRae Page, S.; Martorella, M.; Parelkar, S.; Kosif, I.; Emrick, T. Disulfide cross-linked phosphorylcholine micelles for triggered release of camptothecin. Mol. Pharm., 2013, 10(7), 2684-2692. [http://dx.doi.org/10.1021/mp400114n]. [PMID: 23742055].
[51]
Navarro, G.; Pan, J.; Torchilin, V.P. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol. Pharm., 2015, 12(2), 301-313. [http://dx.doi.org/10.1021/mp5007213]. [PMID: 25557580].
[52]
Miyata, K.; Kakizawa, Y.; Nishiyama, N.; Harada, A.; Yamasaki, Y.; Koyama, H.; Kataoka, K. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc., 2004, 126(8), 2355-2361. [http://dx.doi.org/10.1021/ja0379666]. [PMID: 14982439].
[53]
Miyata, K.; Kakizawa, Y.; Nishiyama, N.; Yamasaki, Y.; Watanabe, T.; Kohara, M.; Kataoka, K. Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver. J. Control. Release, 2005, 109(1-3), 15-23. [http://dx.doi.org/10.1016/j.jconrel.2005.09.043]. [PMID: 16298011].
[54]
Neu, M.; Germershaus, O.; Behe, M.; Kissel, T. Bioreversibly crosslinked polyplexes of PEI and high molecular weight PEG show extended circulation times in vivo. J. Control. Release, 2007, 124(1-2), 69-80. [http://dx.doi.org/10.1016/j.jconrel.2007.08.009]. [PMID: 17897749].
[55]
Zhao, N.; Roesler, S.; Kissel, T. Synthesis of a new potential biodegradable disulfide containing poly(ethylene imine)-poly(ethylene glycol) copolymer cross-linked with click cluster for gene delivery. Int. J. Pharm., 2011, 411(1-2), 197-205. [http://dx.doi.org/10.1016/j.ijpharm.2011.03.038]. [PMID: 21439364].
[56]
Novo, L.; van Gaal, E.V.; Mastrobattista, E.; van Nostrum, C.F.; Hennink, W.E. Decationized crosslinked polyplexes for redox-triggered gene delivery. J. Control. Release, 2013, 169(3), 246-256. [http://dx.doi.org/10.1016/j.jconrel.2013.03.035]. [PMID: 23583705].
[57]
Novo, L.; Rizzo, L.Y.; Golombek, S.K.; Dakwar, G.R.; Lou, B.; Remaut, K.; Mastrobattista, E.; van Nostrum, C.F.; Jahnen-Dechent, W.; Kiessling, F.; Braeckmans, K.; Lammers, T.; Hennink, W.E. Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. J. Control. Release, 2014, 195, 162-175. [http://dx.doi.org/10.1016/j.jconrel.2014.08.028]. [PMID: 25204289].
[58]
Novo, L.; Takeda, K.M.; Petteta, T.; Dakwar, G.R.; van den Dikkenberg, J.B.; Remaut, K.; Braeckmans, K.; van Nostrum, C.F.; Mastrobattista, E.; Hennink, W.E. Targeted decationized polyplexes for siRNA delivery. Mol. Pharm., 2015, 12(1), 150-161. [http://dx.doi.org/10.1021/mp500499x]. [PMID: 25384057].
[59]
Procházka, K.; Baloch, M.K.; Tuzar, Z. Photochemical stabilization of block copolymer micelles. Macromol. Chem. Phys., 1979, 180(10), 2521-2523. [http://dx.doi.org/10.1002/macp.1979.021801029].
[60]
Underhill, R.S.; Liu, G. Triblock nanospheres and their use as templates for inorganic nanoparticle preparation. Chem. Mater., 2000, 12(8), 2082-2091. [http://dx.doi.org/10.1021/cm0000705].
[61]
Jiang, X.; Luo, S.; Armes, S.P.; Shi, W.; Liu, S. UV irradiation-induced shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules, 2006, 39(18), 5987-5994. [http://dx.doi.org/10.1021/ma061386m].
[62]
Yan, L.; Yang, L.; He, H.; Hu, X.; Xie, Z.; Huang, Y.; Jing, X. Photo-cross-linked mPEG-poly (γ-cinnamyl-l-glutamate) micelles as stable drug carriers. Polym. Chem., 2012, 3(5), 1300-1307. [http://dx.doi.org/10.1039/c2py20049j].
[63]
Dickerson, M.; Winquist, N.; Bae, Y. Photo-inducible crosslinked nanoassemblies for pH-controlled drug release. Pharm. Res., 2014, 31(5), 1254-1263. [http://dx.doi.org/10.1007/s11095-013-1246-6]. [PMID: 24254196].
[64]
Lin, W.; Kim, D. pH-Sensitive micelles with cross-linked cores formed from polyaspartamide derivatives for drug delivery. Langmuir, 2011, 27(19), 12090-12097. [http://dx.doi.org/10.1021/la200120p]. [PMID: 21861467].
[65]
Long, Y-B.; Gu, W-X.; Pang, C.; Ma, J.; Gao, H. Construction of coumarin-based cross-linked micelles with pH responsive hydrazone bond and tumor targeting moiety. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(8), 1480-1488. [http://dx.doi.org/10.1039/C5TB02729B].
[66]
Kumar, E.K.; Feldborg, L.N.; Almdal, K.; Andresen, T.L. Synthesis and characterization of a micelle-based pH nanosensor with an unprecedented broad measurement range. Chem. Mater., 2013, 25(9), 1496-1501. [http://dx.doi.org/10.1021/cm302922d].
[67]
Petruczok, C.D.; Armagan, E.; Ince, G.O.; Gleason, K.K. Initiated chemical vapor deposition and light-responsive cross-linking of poly(vinyl cinnamate) thin films. Macromol. Rapid Commun., 2014, 35(15), 1345-1350. [http://dx.doi.org/10.1002/marc.201400130]. [PMID: 24817405].
[68]
He, H.; Ren, Y.; Dou, Y.; Ding, T.; Fang, X.; Xu, Y.; Xu, H.; Zhang, W.; Xie, Z. Photo-cross-linked poly (ether amine) micelles for controlled drug release. RSC Advances, 2015, 5(128), 105880-105888. [http://dx.doi.org/10.1039/C5RA22679A].
[69]
Kaur, G.; Chang, S.L.; Bell, T.D.; Hearn, M.T.; Saito, K. Bioinspired core‐crosslinked micelles from thymine‐functionalized amphiphilic block copolymers: Hydrogen bonding and photo‐crosslinking study. J. Polym. Sci. A Polym. Chem., 2011, 49(19), 4121-4128. [ https://doi.org/10.1002/pola.24853].
[70]
Kuang, H.; He, H.; Hou, J.; Xie, Z.; Jing, X.; Huang, Y. Thymine modified amphiphilic biodegradable copolymers for photo-cross-linked micelles as stable drug carriers. Macromol. Biosci., 2013, 13(11), 1593-1600. [http://dx.doi.org/10.1002/mabi.201300254] [PMID: 23966335
[71]
Shi, Y.; Cardoso, R.M.; Van Nostrum, C.F.; Hennink, W.E. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polym. Chem., 2015, 6(11), 2048-2053. [http://dx.doi.org/10.1039/C4PY01759E].
[72]
Yang, R.; Meng, F.; Ma, S.; Huang, F.; Liu, H.; Zhong, Z. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel. Biomacromolecules, 2011, 12(8), 3047-3055. [http://dx.doi.org/10.1021/bm2006856]. [PMID: 21726090].
[73]
Zheng, G.; Zheng, Q.; Pan, C. One‐pot synthesis of micelles with a cross‐linked poly (acrylic acid) core. Macromol. Chem. Phys., 2006, 207(2), 216-223. [http://dx.doi.org/10.1002/macp.200500428].
[74]
Tian, K.; Jia, X.; Zhao, X.; Liu, P. PH reductant dual-responsive core-cross-linked micelles via facile in situ atrp for tumor-targeted delivery of anticancer drug with enhanced anticancer efficiency. Mol. Pharm., 2016, 13(8), 2683-2690. [http://dx.doi.org/10.1021/acs.molpharmaceut.6b00241]. [PMID: 27379461].
[75]
Cohn, D.; Sagiv, H.; Benyamin, A.; Lando, G. Engineering thermoresponsive polymeric nanoshells. Biomaterials, 2009, 30(19), 3289-3296. [http://dx.doi.org/10.1016/j.biomaterials.2009.02.026]. [PMID: 19285720].
[76]
Gregory, A.; Stenzel, M.H. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog. Polym. Sci., 2012, 37(1), 38-105. [http://dx.doi.org/10.1016/j.progpolymsci.2011.08.004].
[77]
Hales, M.; Barner-Kowollik, C.; Davis, T.P.; Stenzel, M.H. Shell-cross-linked vesicles synthesized from block copolymers of Poly(D,L-lactide) and Poly(N-isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir, 2004, 20(25), 10809-10817. [http://dx.doi.org/10.1021/la0484016]. [PMID: 15568828].
[78]
Talelli, M.; Iman, M.; Varkouhi, A.K.; Rijcken, C.J.; Schiffelers, R.M.; Etrych, T.; Ulbrich, K.; van Nostrum, C.F.; Lammers, T.; Storm, G.; Hennink, W.E. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials, 2010, 31(30), 7797-7804. [http://dx.doi.org/10.1016/j.biomaterials.2010.07.005]. [PMID: 20673684].
[79]
Hu, Q.; Rijcken, C.J.; Bansal, R.; Hennink, W.E.; Storm, G.; Prakash, J. Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials, 2015, 53, 370-378. [http://dx.doi.org/10.1016/j.biomaterials.2015.02.085]. [PMID: 25890735].
[80]
Weaver, J.V.; Tang, Y.; Liu, S.; Iddon, P.D.; Grigg, R.; Billingham, N.C.; Armes, S.P.; Hunter, R.; Rannard, S.P. Preparation of shell cross-linked micelles by polyelectrolyte complexation. Angew. Chem. Int. Ed. Engl., 2004, 43(11), 1389-1392. [http://dx.doi.org/10.1002/anie.200352428]. [PMID: 15368414].
[81]
Liu, H.; Gao, C. Preparation and properties of ionically cross‐linked chitosan nanoparticles. Polym. Adv. Technol., 2009, 20(7), 613-619. [http://dx.doi.org/10.1002/pat.1306].
[82]
Jonassen, H.; Kjøniksen, A-L.; Hiorth, M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules, 2012, 13(11), 3747-3756. [http://dx.doi.org/10.1021/bm301207a]. [PMID: 23046433].
[83]
Bontha, S.; Kabanov, A.V.; Bronich, T.K. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control. Release, 2006, 114(2), 163-174. [http://dx.doi.org/10.1016/j.jconrel.2006.06.015]. [PMID: 16914223].
[84]
Oberoi, H.S.; Laquer, F.C.; Marky, L.A.; Kabanov, A.V.; Bronich, T.K. Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum(II). J. Control. Release, 2011, 153(1), 64-72. [http://dx.doi.org/10.1016/j.jconrel.2011.03.028]. [PMID: 21497174].
[85]
Li, M.; Tang, Z.; Lv, S.; Song, W.; Hong, H.; Jing, X.; Zhang, Y.; Chen, X. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials, 2014, 35(12), 3851-3864. [http://dx.doi.org/10.1016/j.biomaterials.2014.01.018]. [PMID: 24495487].
[86]
Li, J.; Li, Z.; Li, M.; Zhang, H.; Xie, Z. Synergistic effect and drug‐resistance relief of paclitaxel and cisplatin caused by Co‐delivery using polymeric micelles. J. Appl. Polym. Sci., 2015, 132(6), 41440. [http://dx.doi.org/10.1002/app.41440].
[87]
Song, H.; Wang, R.; Xiao, H.; Cai, H.; Zhang, W.; Xie, Z.; Huang, Y.; Jing, X.; Liu, T. A cross-linked polymeric micellar delivery system for cisplatin(IV) complex. Eur. J. Pharm. Biopharm., 2013, 83(1), 63-75. [http://dx.doi.org/10.1016/j.ejpb.2012.09.004]. [PMID: 23046872].
[88]
Hall, M.D.; Mellor, H.R.; Callaghan, R.; Hambley, T.W. Basis for design and development of platinum(IV) anticancer complexes. J. Med. Chem., 2007, 50(15), 3403-3411. [http://dx.doi.org/10.1021/jm070280u]. [PMID: 17602547].
[89]
Carie, A.; Sill, K. Block copolymers for stable micelles. U.S. Patent 20,140,113,879, , 2014.
[90]
Wu, X.; Zhou, L.; Su, Y.; Dong, C-M. An autoreduction method to prepare plasmonic gold-embedded polypeptide micelles for synergistic chemo-photothermal therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(12), 2142-2152. [http://dx.doi.org/10.1039/C6TB00198J].
[91]
Cambre, J.N.; Sumerlin, B.S. Biomedical applications of boronic acid polymers. Polymer (Guildf.), 2011, 52(21), 4631-4643. [http://dx.doi.org/10.1016/j.polymer.2011.07.057].
[92]
Bapat, A.P.; Roy, D.; Ray, J.G.; Savin, D.A.; Sumerlin, B.S. Dynamic-covalent macromolecular stars with boronic ester linkages. J. Am. Chem. Soc., 2011, 133(49), 19832-19838. [http://dx.doi.org/10.1021/ja207005z]. [PMID: 22103352].
[93]
Cambre, J.N.; Roy, D.; Gondi, S.R.; Sumerlin, B.S. Facile strategy to well-defined water-soluble boronic acid (co)polymers. J. Am. Chem. Soc., 2007, 129(34), 10348-10349. [http://dx.doi.org/10.1021/ja074239s]. [PMID: 17676853].
[94]
Roy, D.; Cambre, J.N.; Sumerlin, B.S. Sugar-responsive block copolymers by direct RAFT polymerization of unprotected boronic acid monomers. Chem. Commun. , 2008, (21), 2477-2479.
[95]
Li, Y.; Xiao, W.; Xiao, K.; Berti, L.; Luo, J.; Tseng, H.P.; Fung, G.; Lam, K.S. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew. Chem. Int. Ed. Engl., 2012, 51(12), 2864-2869. [http://dx.doi.org/10.1002/anie.201107144]. [PMID: 22253091].
[96]
Springsteen, G.; Wang, B. A detailed examination of boronic acid–diol complexation. Tetrahedron, 2002, 58(26), 5291-5300. [http://dx.doi.org/10.1016/S0040-4020(02)00489-1].
[97]
Zhu, L.; Shabbir, S.H.; Gray, M.; Lynch, V.M.; Sorey, S.; Anslyn, E.V. A structural investigation of the N-B interaction in an o-(N,N-dialkylaminomethyl)arylboronate system. J. Am. Chem. Soc., 2006, 128(4), 1222-1232. [http://dx.doi.org/10.1021/ja055817c]. [PMID: 16433539].
[98]
Ren, J.; Zhang, Y.; Zhang, J.; Gao, H.; Liu, G.; Ma, R.; An, Y.; Kong, D.; Shi, L. PH sugar dual responsive core-cross-linked PIC micelles for enhanced intracellular protein delivery. Biomacromolecules, 2013, 14(10), 3434-3443. [http://dx.doi.org/10.1021/bm4007387]. [PMID: 24063314].
[99]
Zhao, Z.; Yao, X.; Zhang, Z.; Chen, L.; He, C.; Chen, X. Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery. Macromol. Biosci., 2014, 14(11), 1609-1618. [http://dx.doi.org/10.1002/mabi.201400251]. [PMID: 25142134].
[100]
Albini, A.; Sporn, M.B. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer, 2007, 7(2), 139-147. [http://dx.doi.org/10.1038/nrc2067]. [PMID: 17218951].
[101]
Manchun, S.; Dass, C.R.; Sriamornsak, P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci., 2012, 90(11-12), 381-387. [http://dx.doi.org/10.1016/j.lfs.2012.01.008]. [PMID: 22326503].
[102]
Gu, J.; Cheng, W-P.; Liu, J.; Lo, S-Y.; Smith, D.; Qu, X.; Yang, Z. PH-triggered reversible “stealth” polycationic micelles. Biomacromolecules, 2008, 9(1), 255-262. [http://dx.doi.org/10.1021/bm701084w]. [PMID: 18095651].
[103]
Nishiyama, N.; Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther., 2006, 112(3), 630-648. [http://dx.doi.org/10.1016/j.pharmthera.2006.05.006]. [PMID: 16815554].
[104]
Xu, X.; Flores, J.D.; McCormick, C.L. Reversible imine shell cross-linked micelles from aqueous RAFT-synthesized thermoresponsive triblock copolymers as potential nanocarriers for “pH-triggered” drug release. Macromolecules, 2011, 44(6), 1327-1334. [http://dx.doi.org/10.1021/ma102804h].
[105]
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl., 2009, 48(38), 6974-6998. [http://dx.doi.org/10.1002/anie.200900942]. [PMID: 19714693].
[106]
Etrych, T.; Chytil, P.; Jelínková, M.; Říhová, B.; Ulbrich, K. Synthesis of HPMA copolymers containing doxorubicin bound via a hydrazone linkage. Effect of spacer on drug release and in vitro cytotoxicity. Macromol. Biosci., 2002, 2(1), 43-52. [http://dx.doi.org/10.1002/1616-5195(20020101)2:1<43:AID-MABI43>3.0.CO;2-8].
[107]
Shi, Y.; van Nostrum, C.F.; Hennink, W.E. Interfacially Hydrazone cross-linked thermosensitive polymeric micelles for acid-triggered release of paclitaxel. ACS Biomater. Sci. Eng., 2015, 1(6), 393-404. [http://dx.doi.org/10.1021/acsbiomaterials.5b00006].
[108]
Wang, D.; Su, Y.; Jin, C.; Zhu, B.; Pang, Y.; Zhu, L.; Liu, J.; Tu, C.; Yan, D.; Zhu, X. Supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases for drug delivery. Biomacromolecules, 2011, 12(4), 1370-1379. [http://dx.doi.org/10.1021/bm200155t]. [PMID: 21366351].
[109]
Fan, J.; Zeng, F.; Wu, S.; Wang, X. Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules, 2012, 13(12), 4126-4137. [http://dx.doi.org/10.1021/bm301424r]. [PMID: 23145920].
[110]
Zhang, R.; Yang, J.; Sima, M.; Zhou, Y.; Kopeček, J. Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12181-12186. [http://dx.doi.org/10.1073/pnas.1406233111]. [PMID: 25092316].
[111]
Fan, W.; Shi, W.; Zhang, W.; Jia, Y.; Zhou, Z.; Brusnahan, S.K.; Garrison, J.C. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer. Biomaterials, 2016, 103, 101-115. [http://dx.doi.org/10.1016/j.biomaterials.2016.05.036]. [PMID: 27372424].
[112]
Shieh, P.; Bertozzi, C.R. Design strategies for bioorthogonal smart probes. Org. Biomol. Chem., 2014, 12(46), 9307-9320. [http://dx.doi.org/10.1039/C4OB01632G]. [PMID: 25315039].
[113]
Wong, C-H.; Zimmerman, S.C. Orthogonality in organic, polymer, and supramolecular chemistry: From Merrifield to click chemistry. Chem. Commun. , 2013, 49(17), 1679-1695. [http://dx.doi.org/10.1039/c2cc37316e]. [PMID: 23282586].
[114]
Wu, H.; Devaraj, N.K. Inverse electron-demand diels-alder bioorthogonal reactions. Top. Curr. Chem. (Cham), 2016, 374(1), 3. [http://dx.doi.org/10.1007/s41061-015-0005-z]. [PMID: 27572986].
[115]
Zhu, H.; Wu, H.; Wu, M.; Gong, Q. Tetrazine bioorthogonal reaction: A novel scheme for polymer and biomaterials. Curr. Org. Chem., 2016, 20(17), 1756-1767. [http://dx.doi.org/10.2174/1385272820666151102212821].
[116]
Algar, W.R.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjug. Chem., 2011, 22(5), 825-858. [http://dx.doi.org/10.1021/bc200065z]. [PMID: 21585205].
[117]
Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36(8), 1249-1262. [http://dx.doi.org/10.1039/B613014N]. [PMID: 17619685].
[118]
Hoyle, C.E.; Lowe, A.B.; Bowman, C.N. Thiol-click chemistry: A multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev., 2010, 39(4), 1355-1387. [http://dx.doi.org/10.1039/b901979k]. [PMID: 20309491].
[119]
Golas, P.L.; Matyjaszewski, K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev., 2010, 39(4), 1338-1354. [http://dx.doi.org/10.1039/B901978M]. [PMID: 20309490].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 13
Year: 2019
Page: [2356 - 2376]
Pages: 21
DOI: 10.2174/0929867324666171121102255
Price: $58

Article Metrics

PDF: 37
HTML: 4