Mixed Mode Chromatography, Complex Development for Large Opportunities

Author(s): Charlotte Cabanne*, Xavier Santarelli.

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Mixed mode chromatography resins with salt tolerance, large design space and orthogonal selectivity requires a slightly more complex development than traditional resins. It is important to screen several ligands and several binding and elution conditions. This allows taking full advantage of these resins. High-Throughput Screening (HTS) for Process Development should be done with the help of Design of Experiment (DoE). It could be performed in filter plates or Robocolumns, and assisted by liquid handling automated workstation. Modeling of the results allows the choice of optimal parameters that can then be validated and scaled up. All this leads to a better knowledge and robustness of the purification step.

Keywords: Mixed mode chromatography, high throughput process development, design of experiment, large opportunities, High-Throughput Screening (HTS), Design of Experiment (DoE).

[1]
Yon, R.J. Chromatography of lipophilic proteins on adsorbents containing mixed hydrophobic and ionic groups. Biochem. J., 1972, 126, 765-767.
[2]
Er-El, Z.; Zaidenzaig, Y.; Shaltiel, S. Hydrocarbon-coated Sepharoses. Use in the purification of glycogen phosphorylase. Biochem. Biophys. Res. Commun., 1972, 49(2), 383-390.
[3]
Hofstee, B.H.J. Protein binding by agarose carrying hydrophobic groups in conjunction with charges. Biochem. Biophys. Res. Commun., 1973, 50(3), 751-757.
[4]
Porath, J.; Aspberg, K.; Drevin, H.; Axén, R. Preparation of cyanogen bromide-activated agarose gels. J. Chromatogr. A, 1973, 86, 53-56.
[5]
Hjertén, S.; Rosengren, J.; Pahlman, S. Hydrophobic interaction chromatography: The synthesis and the use of some alkyl and aryl derivatives of agarose. J. Chromatogr. A, 1974, 101, 281-288.
[6]
Shaltiel, S.; Er-El, Z. Hydrophobic chromatography: use for purification of glycogen synthetase. Proc. Natl. Acad. Sci. USA, 1973, 70(3), 778-781.
[7]
Hofstee, B.H.J.; Otillio, N.F. Non-ionic adsorption chromatography of proteins. J. Chromatogr. A, 1978, 159(1), 57-69.
[8]
Sasaki, I.; Gotoh, H.; Yamamoto, R.; Hasegawa, H.; Yamashita, J.; Horio, T. Hydrophobic-ionic chromatography. Its application to purification of porcine pancreas enzymes. J. Biochem., 1979, 86(5), 1537-1548.
[9]
Sasaki, I.; Gotoh, H.; Yamamoto, R.; Tanaka, H.; Takami, K.; Yamashita, K.; Yamashita, J.; Horio, T. Hydrophobic-ionic chromatography: its application to microbial glucose oxidase, hyaluronidase, cholesterol oxidase, and cholesterol esterase. J. Biochem., 1982, 91(5), 1555-1561.
[10]
Kennedy, L.A.; Kopaciewicz, W.; Regnier, F.E. Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic- interaction mode. J. Chromatogr. A, 1986, 359, 73-84.
[11]
Bischoff, R.; McLaughlin, L.W. Nucleic acid resolution by mixed-mode chromatography. J. Chromatogr. A, 1984, 296, 329-337.
[12]
Burton, S.C.; Harding, D.R.K. Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers. J. Chromatogr. A, 1998, 814(1-2), 71-81.
[13]
Guerrier, L.; Girot, P.; Schwartz, W.; Boschetti, E. New method for the selective capture of antibodies under physiolgical conditions. Bioseparation, 2000, 9, 211-221.
[14]
Boschetti, E. Antibody separation by hydrophobic charge induction chromatography. Trends Biotechnol., 2002, 20(8), 333-337.
[15]
Arakawa, T.; Kita, Y.; Sato, H.; Ejima, D. MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution. Protein Expr. Purif., 2009, 63(2), 158-163.
[16]
Xia, H.F.; Lin, D.Q.; Wang, L.P.; Chen, Z.J.; Yao, S.J. Preparation and evaluation of cellulose adsorbents for hydrophobic charge induction chromatography. Ind. Eng. Chem. Res., 2008, 47, 9566-9572.
[17]
Zhao, G.; Peng, G.; Li, F.; Shi, Q.; Sun, Y. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography. J. Chromatogr. A, 2008, 1211, 90-98.
[18]
Shi, Q.H.; Shen, F.F.; Sun, S. Studies of lysozyme binding to histamine as a ligand for hydrophobic charge induction chromatography. Biotechnol. Prog., 2010, 26, 134-141.
[19]
Zhao, G.; Dong, X.Y.; Sun, Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J. Biotechnol., 2009, 144(1), 3-11.
[20]
Brenac Brochier, V.; Schapman, A.; Santambien, P.; Britsch, L. Fast purification process optimization using mixed-mode chromatography sorbents in pre-packed mini-columns. J. Chromatogr. A, 2008, 1177(2), 226-233.
[21]
Johansson, B.L.; Belew, M.; Eriksson, S.; Glad, G.; Lind, O.; Maloisel, J.L.; Norrman, N. Preparation and characterization of prototypes for multi-modal separation aimed for capture of positively charged biomolecules at high-salt conditions. J. Chromatogr. A, 2003, 1016(1), 35-49.
[22]
Johansson, B.L.; Belew, M.; Eriksson, S.; Glad, G.; Lind, O.; Maloisel, J.L.; Norrman, N. Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions. J. Chromatogr. A, 2003, 1016(1), 21-33.
[23]
Woo, J.A.; Chen, H.; Snyder, M.A.; Chai, Y.; Frost, R.G.; Cramer, S.M. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. J. Chromatogr. A, 2015, 1407, 58-68.
[24]
Yoshimoto, N.; Minakuchi, K.; Itoh, D.; Isakari, Y.; Yamamoto, S. High-throughput process development methods for chromatography and precipitation of proteins: Advantages and precautions. Eng. Life Sci., 2013, 13(5), 446-455.
[25]
Cabanne, C.; Santarelli, X. Media selection in ion-exchange chromatography in a single microplate. Methods Mol. Biol., 2014, 1129, 45-51.
[26]
Kramarczyk, J.F. High-throughput screening of chromatographic resins and excipients for optimizing selectivity. Master Thesis, Tufts University. 2003.
[27]
Bergander, T.; Nilsson-Välimaa, K.; Öberg, K.; Lacki, K.M. High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin. Biotechnol. Prog., 2008, 24(3), 632-639.
[28]
Charlton, H.; Galarza, B.; Beacon, B.; LeRiche, K.; Jones, R. Chromatography process development using 96-well microplate formats. BioPharm Int., 2006, 19, 20-27.
[29]
Baumann, P.; Baumgartner, K.; Hubbuch, J. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography. J. Chromatogr. A, 2015, 1396, 77-85.
[30]
Bensch, M.; Schulze Wierling, P.; von Lieres, E.; Hubbuch, J. High throughput screening of chromatographic phases for rapid process development. Chem. Eng. Technol., 2005, 28, 1274-1284.
[31]
Rege, K.; Pepsin, M.; Falcon, B.; Steele, L.; Heng, M. High-throughput process development for recombinant protein purification. Biotechnol. Bioeng., 2006, 93, 618-630.
[32]
Thiemann, J.; Jankowski, J.; Rykl, J.; Kurzawski, S.; Pohl, T.; Wittmann-Lievold, B.; Schluter, H. Principle and applications of the protein-purification-parameter screening system. J. Chromatogr. A, 2004, 1043, 73-80.
[33]
Toueille, M.; Uzel, A.; Depoisier, J.F.; Gantier, R. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents. J. Chromatogr. B., 2011, 879(13-14), 836-843.
[34]
Pezzini, J.; Joucla, G.; Gantier, R.; Toueille, M.; Lomenech, A.M.; Le Sénéchal, C.; Garbay, B.; Santarelli, X.; Cabanne, C. Antibody capture by mixed-mode chromatography: A comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. J. Chromatogr. A, 2011, 1218, 8197-8208.
[35]
Nfor, B.K.; Noverraz, M.; Chilamkurthi, S.; Verhaert, P.D.; van der Wielen, L.A.; Ottens, M. High-throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed mode adsorbents. J. Chromatogr. A, 2010, 1217(44), 6829-6850.
[36]
Bhambure, R.; Gupta, D.; Rathore, A.S. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product. J. Chromatogr. A, 2013, 1314, 188-198.
[37]
Sejergaard, L.; Karkov, H.S.; Krarup, J.K.; Hagel, A.B.; Cramer, S.M. Model-based process development for the purification of a modified human growth hormone using multimodal chromatography. Biotechnol. Prog., 2014, 30(5), 1057-1064.
[38]
Atkinson, A.C.; Tobias, R.D. Optimal experimental design in chromatography. J. Chromatogr. A, 2008, 1177(1), 1-11.
[39]
Lacki, K.M. High-throughput process development of chromatography steps: advantages and limitations of different formats used. Biotechnol. J., 2012, 7(10), 1192-1202.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 1
Year: 2019
Page: [22 - 27]
Pages: 6
DOI: 10.2174/1389203718666171030104211
Price: $58

Article Metrics

PDF: 17
HTML: 3
EPUB: 1
PRC: 1