Mixed Mode Chromatography: A Novel Way Toward New Selectivity

Author(s): Xavier Santarelli , Charlotte Cabanne* .

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Mixed mode chromatography offers a diversity of ligands, each providing a new selectivity. This allows the design of novel purification processes with reduced column steps. Structure of ligands is based on both hydrophobic and ionic groups. Thanks to its salt tolerance, crude extracts or post-IEX samples can be loaded directly without conditioning. The selectivity could be enhanced by modulating elution parameters or by using additives. More importantly, mixed mode chromatography could be as effective as affinity chromatography for mAb purification processes. Mixed mode chromatography opens the way to short and economical processes.

Keywords: Mixed mode chromatography, multimodal chromatography, selectivity, protein purification, ligands, additives.

Vijayalakshmi, M.A. Pseudobiospecific ligand affinity chromatography. Trends Biotechnol., 1989, 7, 71-76.
Burton, S.C.; Haggarty, N.W.; Harding, D.R.K. One step purification of chymosin by mixed mode chromatography. Biotechnol. Bioeng., 1997, 56, 45-55.
Guerrier, L.; Flayeux, I.; Boschetti, E. A dual-mode approach to the selective separation of antibodies and their fragments. J. Chromatogr. B , 2001, 755(1-2), 37-46.
Boschetti, E. Antibody separation by hydrophobic charge induction chromatography. Trends Biotechnol., 2002, 20(8), 333-337.
Ghose, S.; Hubbard, B.; Cramer, S.M. Evaluation and comparison of alternatives to Protein A chromatography. J. Chromatogr. A, 2006, 1122, 144-152.
Mowry, M.C.; Meagher, M.; Smith, L.; Marks, J.; Subramanian, A. Production and purification of a chimeric monoclonal antibody against botulinum neurotoxin serotype A. Protein Expr. Purif., 2004, 37, 399-408.
Bak, H.; Thomas, O.R.T. Evaluation of commercial chromatographic adsorbents for the direct capture of polyclonal rabbit antibodies from clarified antiserum. J. Chromatogr. B ., 2007, 848, 116-130.
Chen, J.; Tetrault, J.; Zhang, Y.; Wasserman, A.; Conley, G.; Dileo, M.; Haimes, E.; Nixon, A.E.; Ley, A. The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process. J. Chromatogr. A, 2010, 1217, 216-224.
Toueille, M.; Uzel, A.; Depoisier, J.F.; Gantier, R. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents. J. Chromatogr. B ., 2011, 879(13-14), 836-843.
Weatherly, G.T.; Bouvier, A.; Lydiard, D.D.; Chapline, J.; Henderson, I.; Schrimsher, J.L.; Shepard, S.R. Initial purification of recombinant botulinum neurotoxin fragments for pharmaceutical production using hydrophobic charge induction chromatography. J. Chromatogr. A, 2002, 952, 99-110.
Follman, D.K.; Fahrner, R.L. Factorial screening of antibody purification processes using three chromatography steps without protein A. J. Chromatogr. A, 2004, 1024, 79-85.
Voitl, A.; Müller-Späth, T.; Morbidelli, M. Application of mixed mode resins for the purification of antibodies. J. Chromatogr. A, 2010, 1217, 5753-5760.
Pezzini, J.; Joucla, G.; Gantier, R.; Toueille, M.; Lomenech, A.M.; Le Sénéchal, C.; Garbay, B.; Santarelli, X.; Cabanne, C. Antibody capture by mixed-mode chromatography: a comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. J. Chromatogr. A, 2011, 1218, 8197-8208.
Maria, S.; Joucla, G.; Garbay, B.; Dieryck, W.; Lomenech, A.M.; Santarelli, X.; Cabanne, C. Purification process of recombinant monoclonal antibodies with mixed mode chromatography. J. Chromatogr. A, 2015, 1393, 57-64.
Cromwell, M.E.M.; Hilario, E.; Jacobson, F. Protein aggregation and bioprocessing. AAPS J., 2006, 8, E572-E579.
Gao, D.; Wang, L.L.; Lin, D.Q.; Yao, S.J. Evaluating antibody monomer separation from associated aggregates using mixed-mode chromatography. J. Chromatogr. A, 2013, 1294, 70-75.
Vajda, J. Separation of monoclonal IgG and its aggregates using TOYOPEARL MX-Trp-650M. Bioprocess Int., 2013, 2013-2014, 73-75.
Coulon, D.; Cabanne, C.; Fitton, V.; Noubhani, A.M.; Saint-Christophe, E.; Santarelli, X. Penicillin acylase purification with the aid of hydrophobic charge induction chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 808(1), 111-115.
Dux, M.P.; Barent, R.; Sinha, J.; Gouthro, M.; Swanson, T.; Barthuli, A.; Inan, M.; Ross, J.T.; Smith, L.A.; Smith, T.J.; Webb, R.; Loveless, B.; Henderson, I.; Meagher, M.M. Purification and scale-up of a recombinant heavy chain fragment C of botulinum neurotoxin serotype E in Pichia pastoris GS115. Protein Expr. Purif., 2006, 45(2), 359-367.
Rege, K.; Pepsin, M.; Falcon, B.; Steele, L.; Heng, M. High-throughput process development for recombinant protein purification. Biotechnol. Bioeng., 2006, 93(4), 618-630.
Cabanne, C.; Pezzini, J.; Joucla, G.; Hocquellet, A.; Barbot, C.; Garbay, B.; Santarelli, X. Efficient purification of recombinant proteins fused to maltose-binding protein by mixed-mode chromatography. J. Chromatogr. A, 2009, 1216, 4451-4456.
Ranjini, S.S.; Vijayalakshmi, M.A. Study of catalase adsorption on two mixed-mode ligands and the mechanism involved therein. J. Mol. Recognit., 2012, 25(11), 542-548.
Ranjini, S.S.; Bimal, D.; Dhivya, A.P.; Vijayalakshmi, M.A. Study of the mechanism of interaction of antibody (IgG) on two mixed mode sorbents. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(15-16), 1031-1037.
Peters, J.; Oehme, F. Mixed-mode chromatography in downstream process development salt-tolerant adsorption and unique selectivity are the major advantages of mixed-mode materials over single-mode resins. BioPharm Int. Suppl., 2010, 3, 1-2.
Bhambure, R.; Gupta, D.; Rathore, A.S. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product. J. Chromatogr. A, 2013, 1314, 188-198.
Fox, J.D.; Kapust, R.B.; Waugh, D.S. Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins. Protein Sci., 2001, 10(3), 622-630.
Johansson, B.L.; Belew, M.; Eriksson, S.; Glad, G.; Lind, O.; Maloisel, J.L.; Norrman, N. Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions. J. Chromatogr. A, 2003, 1016(1), 21-33.
Clarkson, J.; Campbell, I.D. Studies of protein-ligand interactions by NMR. Biochem. Soc. Trans., 2003, 5, 1006-1009.
Chung, W.K.; Freed, A.S.; Holstein, M.A.; McCallum, S.A.; Cramer, S.M. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR. Proc. Natl. Acad. Sci. USA, 2010, 107, 16811-16816.
Holstein, M.A.; Chung, W.K.; Parimal, S.; Freed, A.S.; Barquera, B.; McCallum, S.A.; Cramer, S.M. Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations. J. Chromatogr. A, 2012, 1229, 113-120.
Woo, J.A.; Chen, H.; Snyder, M.A.; Chai, Y.; Frost, R.G.; Cramer, S.M. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. J. Chromatogr. A, 2015, 1407, 58-68.
Woo, J.; Parimal, S.; Brown, M.R.; Heden, R.; Cramer, S.M. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces. J. Chromatogr. A, 2015, 1412, 33-42.
Holstein, M.A.; Nikfetrat, A.A.M.; Gage, M.; Hirsh, A.G.; Cramer, S.M. Improving selectivity in multimodal chromatography using controlled pH gradient elution. J. Chromatogr. A, 2012, 1233, 152-155.
Tsonev, L.I.; Hirsh, A.G. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases. J. Chromatogr. A, 2008, 1200(2), 166-182.
Lee, Y.F.; Schmidt, M.; Graalfs, H.; Hafner, M.; Frech, C. Modeling of dual gradient elution in ion exchange and mixed-mode chromatography. J. Chromatogr. A, 2015, 1417, 64-72.
Wolfe, L.S.; Barringer, C.P.; Mostafa, S.S.; Shukla, A.A. Multimodal chromatography: Characterization of protein binding and selectivity enhancement through mobile phase modulators. J. Chromatogr. A, 2014, 1340, 151-156.
Arakawa, T.; Kita, Y.; Sato, H.; Ejima, D. MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution. Protein Expr. Purif., 2009, 63, 158-163.
Arakawa, T.; Futatsumori-Sugai, M.; Tsumoto, K.; Kita, Y.; Sato, H.; Ejima, D. (). MEP HyperCel chromatography II: Binding, washing and elution. Protein Expr. Purif., 2010, 71(2), 168-173.
Pezzini, J.; Cabanne, C.; Gantier, R.; Janakiraman, V.N.; Santarelli, X. A comprehensive evaluation of mixed mode interactions of HEA and PPA HyperCelTM chromatographic media. J. Chromatogr. B ., 2015, 976-977, 68-77.
Hirano, A.; Maruyama, T.; Shiraki, K.; Arakawa, T.; Kameda, T. Mechanism of protein desorption from 4-mercaptoethylpyridine resins by arginine solutions. J. Chromatogr. A, 2014, 1373, 141-148.
Sejergaard, L.; Krarup, J.K.; Karkov, H.S.; Bagge Hagel, A.B.; Cramer, S.M. Model based process development for the purification of a modified human growth hormone using multimodal chromatography. Biotechnol. Prog., 2014, 30(5), 1057-1064.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [14 - 21]
Pages: 8
DOI: 10.2174/1389203718666171024121137
Price: $58

Article Metrics

PDF: 30
PRC: 1