Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Exploring the Unique Selectivity of Hydrophobic Cation Exchanger Nuvia cPrime for the Removal of a Major Process Impurity: A Case Study with IgM

Author(s): Xuemei M. He*, Carsten Voß and Jidong Li

Volume 20, Issue 1, 2019

Page: [65 - 74] Pages: 10

DOI: 10.2174/1389203718666171017130506

Price: $65

Abstract

Background: Mixed-mode chromatography is becoming an important tool for downstream process purification, as it provides the selectivity and robustness unmatched by conventional singlemode chromatographic methods. The joint action of multiple functionalities present on the ligands of mixed-mode chromatography matrices effectively enhances the separation of target molecules from impurities.

Material and Methods: Using Nuvia cPrime as an example, we elucidate the separation principles of hydrophobic cation exchange mixed-mode chromatography and its difference from traditional strong cation exchangers. We have developed a Nuvia cPrime based polish purification step specifically for the removal of a major process contaminant, which has an isoelectric point similar to that of the target monoclonal IgM molecule. Additional purification was accomplished using a second mixed-mode chromatography column packed with Ceramic Hydroxyapatite.

Conclusion: The monoclonal IgM prepared with this new process fully retained its biological activity and was free of high molecular weight aggregates, a product quality that was not achievable in previous attempts using traditional ion exchange or hydrophobic interaction chromatography.

Keywords: Mixed-mode, protein purification, chromatography method development, hydrophobic cation exchange, IgM, selectivity, process impurity.

Graphical Abstract
[1]
Tswett, M. Physikalisch-chemische Studien über das Chlorophyll. Die Adsorptionen. Berichte der Deutschen Botanischen Gesellschaft., 1906, 24, 316-323.
[2]
Hjertén, S.; Rosengren, J.; Påhlman, S. Hydrophobic interation chromatography. The synthesis and the use of some alkyl and aryl derivatives of agarose. J. Chromatogr. A, 1974, 101, 281-288.
[3]
Hofstee, B.H.J.; Otillio, N.F. Non-ionic adsorption chromatography of proteins. J. Chromatogr. A, 1978, 159, 57-69.
[4]
Queiroz, J.A.; Tomaz, C.T.; Cabral, J.M.S. Hydrophobic interaction chromatography of proteins. J. Biotechnol., 2001, 87, 143-159.
[5]
Kallberg, K.; Johansson, H-O.; Bulow, L. Multimodal chromatography: An efficient tool in downstream processing of proteins. Biotechnol. J., 2012, 7, 1-11.
[6]
Gorbunoff, M.J. The interaction of proteins with hydroxyapatite: I. Role of protein charge and structure. Anal. Biochem., 1984, 136, 425-432.
[7]
Gorbunoff, M.J. The interaction of proteins with hydroxyapatite: II. Role of acidic and basic groups. Anal. Biochem., 1984, 136, 433-439.
[8]
Gorbunoff, M.J.; Timasheff, S.N. The interaction of proteins with hydroxyapatite: III. Mechanism. Anal. Biochem., 1984, 136, 440-445.
[9]
Yon, R.J. Chromatography of lipophilic proteins on adsorbents containing mixed hydrophobic and ionic groups. Biochem. J., 1972, 126, 765-767.
[10]
Er-El, Z.; Zaidenzaig, Y.; Shaltiel, S. Hydrocarbon-coated Sepharoses. Use in the purification of glycogen phosphorylase. Biochem. Biophys. Res. Commun., 1972, 49, 383-390.
[11]
Hofstee, B.H.J. Protein binding by agarose carrying hydrophobic groups in conjunction with charges. Biochem. Biophys. Res. Commun., 1973, 50, 751-757.
[12]
Porath, J.; Aspberg, K.; Drevin, H.; Axén, R. Preparation of cyanogen bromide-activated agarose gels. J. Chromatogr. A, 1973, 86, 53-56.
[13]
Shaltiel, S.; Er-El, Z. Hydrophobic chromatography: Use for purification of glycogen synthetase. Proc. Natl. Acad. Sci. USA, 1973, 70, 778-781.
[14]
Kennedy, L.A.; Kopaciewicz, W.; Regnier, F.E. Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic- interaction mode. J. Chromatogr., 1986, 359, 73-84.
[15]
Sasaki, I.; Gotoh, H.; Yamamoto, R.; Hasegawa, H.; Yamashita, J.; Horio, T. Hydrophobic-ionic chromatography. Its application to purification of porcine pancreas enzymes. J. Biochem., 1979, 86, 1537-1548.
[16]
Sasaki, I.; Gotoh, H.; Yamamoto, R.; Tanaka, H.; Takami, K.; Yamashita, K.; Yamashita, J.; Horio, T. Hydrophobic-ionic chromatography: its application to microbial glucose oxidase, hyaluronidase, cholesterol oxidase, and cholesterol esterase. J. Biochem., 1982, 91, 1555-1561.
[17]
Woo, J.A.; Chen, H.; Snyder, M.A.; Chai, Y.; Frost, R.G.; Cramer, S.M. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. J. Chromatogr. A, 2015, 1407, 58-68.
[18]
Lončar, N.; Slavić, M.Š.; Vujčić, Z.; Božić, N. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases. Nat. Sci. Rep., 2015, 5, 15772.
[19]
Kaplan, L.J.; Fostes, J.F. Isoelectric focusing behavior of bovine plasma albumin, mercaptalbumin, and β-lactoglobulins A and B. Biochemistry, 1971, 10, 630-636.
[20]
Zhu, M.; Carta, G. Protein adsorption equilibrium and kinetics in multimodal cation exchange resins. Absorption, 2016, 22, 165-179.
[21]
Vassalli, P.; Tedghi, R.; Lisowska-Bernstein, B.; Tartakoff, A.; Jaton, J-C. Evidence for hydrophobic region within heavy chains of mouse B lymphocyte membrane-bound IgM. Proc. Natl. Acad. Sci. USA, 1979, 76, 5515-5519.
[22]
Gagnon, P.; Hensel, F.; Lee, S.; Zaidi, S. Chromatographic behavior of IgM:DNA complexes. J. Chromatogr. A, 2011, 1218, 2405-2412.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy