The Medicinal Chemistry of Therapeutic Peptides: Recent Developments in Synthesis and Design Optimizations

Author(s): Anutthaman Parthasarathy, Sasikala K. Anandamma, Karunakaran A. Kalesh*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 13 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Peptide therapeutics has made tremendous progress in the past decade. Many of the inherent weaknesses of peptides which hampered their development as therapeutics are now more or less effectively tackled with recent scientific and technological advancements in integrated drug discovery settings. These include recent developments in synthetic organic chemistry, high-throughput recombinant production strategies, highresolution analytical methods, high-throughput screening options, ingenious drug delivery strategies and novel formulation preparations. Here, we will briefly describe the key methodologies and strategies used in the therapeutic peptide development processes with selected examples of the most recent developments in the field. The aim of this review is to highlight the viable options a medicinal chemist may consider in order to improve a specific pharmacological property of interest in a peptide lead entity and thereby rationally assess the therapeutic potential this class of molecules possesses while they are traditionally (and incorrectly) considered ‘undruggable’.

Keywords: Therapeutic peptides, solid-phase peptide synthesis, high-throughput screening, stapled peptides, unnatural amino acids, liposome encapsulation, cyclic peptides/peptoids, cell-penetrating peptides.

[1]
Tager, H.S.; Steiner, D.F. Peptide hormones. Annu. Rev. Biochem., 1974, 43(0), 509-538. [http://dx.doi.org/10.1146/annurev.bi.43.070174.002453]. [PMID: 4368999].
[2]
Snyder, S.H.; Innis, R.B. Peptide neurotransmitters. Annu. Rev. Biochem., 1979, 48, 755-782. [http://dx.doi.org/10.1146/annurev.bi.48.070179.003543]. [PMID: 38738].
[3]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557. [http://dx.doi.org/10.1038/nbt1267]. [PMID: 17160061].
[4]
Sporn, M.B.; Roberts, A.B. Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Invest., 1986, 78(2), 329-332. [http://dx.doi.org/10.1172/JCI112580]. [PMID: 3525608].
[5]
Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov., 2003, 2(7), 587-593. [http://dx.doi.org/10.1038/nrd1133]. [PMID: 12815383].
[6]
Lam, K.S.; Hruby, V.J.; Lebl, M.; Knapp, R.J.; Kazmierski, W.M.; Hersh, E.M.; Salmon, S.E. The chemical synthesis of large random peptide libraries and their use for the discovery of ligands for macromolecular acceptors. Bioorg. Med. Chem. Lett., 1993, 3(3), 419-424. [http://dx.doi.org/10.1016/S0960-894X(01)80224-9].
[7]
Merrifield, R.B. Solid phase peptide synthesis. 1. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14), 2149-2154. [http://dx.doi.org/10.1021/ja00897a025].
[8]
Carpino, L.A.; Han, G.Y. 9-Fluorenylmethoxy-carbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc., 1970, 92(19), 5748-5749. [http://dx.doi.org/10.1021/ja00722a043].
[9]
Rink, H. Solid-phase synthesis of protected peptide-fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett., 1987, 28(33), 3787-3790. [http://dx.doi.org/10.1016/S0040-4039(00)96384-6].
[10]
Kang, M.C.; Bray, B.; Lichty, M.; Mader, C.; Merutka, G. Methods and composition for peptide synthesis. U.S. Patent,, 6,015,881. 2000.
[11]
Harre, M.; Nickisch, K.; Tilstam, U. An efficient method for activation and recycling of trityl resins. React. Funct. Polym., 1999, 41(1-3), 111-114. [http://dx.doi.org/10.1016/S1381-5148(99)00039-5].
[12]
Zwanziger, D.; Böhme, I.; Lindner, D.; Beck-Sickinger, A.G. First selective agonist of the neuropeptide Y1-receptor with reduced size. J. Pept. Sci., 2009, 15(12), 856-866. [http://dx.doi.org/10.1002/psc.1188]. [PMID: 19890892].
[13]
Hofmann, S.; Frank, R.; Hey-Hawkins, E.; Beck-Sickinger, A.G.; Schmidt, P. Manipulating Y receptor subtype activation of short neuropeptide Y analogs by introducing carbaboranes. Neuropeptides, 2013, 47(2), 59-66. [http://dx.doi.org/10.1016/j.npep.2012.12.001]. [PMID: 23352609].
[14]
Palomo, J.M. Solid-phase peptide synthesis: An overview focused on the preparation of biologically relevant peptides. RSC Advances, 2014, 4(62), 32658-32672. [http://dx.doi.org/10.1039/C4RA02458C].
[15]
Broncel, M.; Falenski, J.A.; Wagner, S.C.; Hackenberger, C.P.; Koksch, B. How post-translational modifications influence amyloid formation: A systematic study of phosphorylation and glycosylation in model peptides. Chemistry, 2010, 16(26), 7881-7888. [http://dx.doi.org/10.1002/chem.200902452]. [PMID: 20491120].
[16]
Gao, L.; Uttamchandani, M.; Yao, S.Q. Comparative proteomic profiling of mammalian cell lysates using phosphopeptide microarrays. Chem. Commun. (Camb.), 2012, 48(16), 2240-2242. [http://dx.doi.org/10.1039/c2cc17701c]. [PMID: 22252530].
[17]
Gao, L.; Sun, H.; Yao, S.Q. Activity-based high-throughput determination of PTPs substrate specificity using a phosphopeptide microarray. Biopolymers, 2010, 94(6), 810-819. [http://dx.doi.org/10.1002/bip.21533]. [PMID: 20725946].
[18]
Sun, H.; Tan, L.P.; Gao, L.; Yao, S.Q. High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray. Chem. Commun. (Camb.), 2009, (6), 677-679. [http://dx.doi.org/10.1039/B817853D]. [PMID: 19322419].
[19]
Kalesh, K.A.; Tan, L.P.; Lu, K.; Gao, L.; Wang, J.; Yao, S.Q. Peptide-based activity-based probes (ABPs) for target-specific profiling of protein tyrosine phosphatases (PTPs). Chem. Commun. (Camb.), 2010, 46(4), 589-591. [http://dx.doi.org/10.1039/B919744C]. [PMID: 20062871].
[20]
Galan, M.C.; Dumy, P.; Renaudet, O. Multivalent glyco(cyclo)peptides. Chem. Soc. Rev., 2013, 42(11), 4599-4612. [http://dx.doi.org/10.1039/C2CS35413F]. [PMID: 23263159].
[21]
Hurevich, M.; Seeberger, P.H. Automated glycopeptide assembly by combined solid-phase peptide and oligosaccharide synthesis. Chem. Commun. (Camb.), 2014, 50(15), 1851-1853. [http://dx.doi.org/10.1039/C3CC48761J]. [PMID: 24401870].
[22]
Kragol, G.; Lumbierres, M.; Palomo, J.M.; Waldmann, H. Solid-phase synthesis of lipidated peptides. Angew. Chem. Int. Ed. Engl., 2004, 43(43), 5839-5842. [http://dx.doi.org/10.1002/anie.200461150]. [PMID: 15523710].
[23]
Triola, G.; Gerauer, M.; Görmer, K.; Brunsveld, L.; Waldmann, H. Solid-phase synthesis of lipidated Ras peptides employing the ellman sulfonamide linker. Chemistry, 2010, 16(31), 9585-9591. [http://dx.doi.org/10.1002/chem.201001642]. [PMID: 20648498].
[24]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N.; Smith, C.D. Azide monoliths as convenient flow reactors for efficient curtius rearrangement reactions. Org. Biomol. Chem., 2008, 6(9), 1587-1593. [http://dx.doi.org/10.1039/b801634h]. [PMID: 18421390].
[25]
Cai, H.; Sun, Z.Y.; Chen, M.S.; Zhao, Y.F.; Kunz, H.; Li, Y.M. Synthetic multivalent glycopeptide-lipopeptide antitumor vaccines: Impact of the cluster effect on the killing of tumor cells. Angew. Chem. Int. Ed. Engl., 2014, 53(6), 1699-1703. [http://dx.doi.org/10.1002/anie.201308875]. [PMID: 24449389].
[26]
Shen, B.; Makley, D.M.; Johnston, J.N. Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465(7301), 1027-1032. [http://dx.doi.org/10.1038/nature09125]. [PMID: 20577205].
[27]
Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science, 2007, 317(5839), 790-792. [http://dx.doi.org/10.1126/science.1145295]. [PMID: 17690291].
[28]
Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. The thermal and boron-catalysed direct amide formation reactions: Mechanistically understudied yet important processes. Chem. Commun. (Camb.), 2010, 46(11), 1813-1823. [http://dx.doi.org/10.1039/b923093a]. [PMID: 20198220].
[29]
Yoo, W.J.; Li, C.J. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J. Am. Chem. Soc., 2006, 128(40), 13064-13065. [http://dx.doi.org/10.1021/ja064315b]. [PMID: 17017781].
[30]
Chan, W.K.; Ho, C.M.; Wong, M.K.; Che, C.M. Oxidative amide synthesis and N-terminal alpha-amino group ligation of peptides in aqueous medium. J. Am. Chem. Soc., 2006, 128(46), 14796-14797. [http://dx.doi.org/10.1021/ja064479s]. [PMID: 17105276].
[31]
Crich, D.; Sasaki, K. Reaction of thioacids with isocyanates and isothiocyanates: a convenient amide ligation process. Org. Lett., 2009, 11(15), 3514-3517. [http://dx.doi.org/10.1021/ol901370y]. [PMID: 19719195].
[32]
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186), 776-779. [http://dx.doi.org/10.1126/science.7973629]. [PMID: 7973629].
[33]
Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature, 2011, 480(7378), 471-479. [http://dx.doi.org/10.1038/nature10702]. [PMID: 22193101].
[34]
Ullman, C.G.; Frigotto, L.; Cooley, R.N. In vitro methods for peptide display and their applications. Brief. Funct. Genomics, 2011, 10(3), 125-134. [http://dx.doi.org/10.1093/bfgp/elr010]. [PMID: 21628313].
[35]
Sidhu, S.S.; Lowman, H.B.; Cunningham, B.C.; Wells, J.A. Phage display for selection of novel binding peptides. Methods Enzymol., 2000, 328, 333-363. [http://dx.doi.org/10.1016/S0076-6879(00)28406-1]. [PMID: 11075354].
[36]
Gai, S.A.; Wittrup, K.D. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol., 2007, 17(4), 467-473. [http://dx.doi.org/10.1016/j.sbi.2007.08.012]. [PMID: 17870469].
[37]
Daugherty, P.S. Protein engineering with bacterial display. Curr. Opin. Struct. Biol., 2007, 17(4), 474-480. [http://dx.doi.org/10.1016/j.sbi.2007.07.004]. [PMID: 17728126].
[38]
Rockberg, J.; Löfblom, J.; Hjelm, B.; Uhlén, M.; Ståhl, S. Epitope mapping of antibodies using bacterial surface display. Nat. Methods, 2008, 5(12), 1039-1045. [http://dx.doi.org/10.1038/nmeth.1272]. [PMID: 19029907].
[39]
Mattheakis, L.C.; Bhatt, R.R.; Dower, W.J. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA, 1994, 91(19), 9022-9026. [http://dx.doi.org/10.1073/pnas.91.19.9022]. [PMID: 7522328].
[40]
Odegrip, R.; Coomber, D.; Eldridge, B.; Hederer, R.; Kuhlman, P.A.; Ullman, C.; FitzGerald, K.; McGregor, D. CIS display: In vitro selection of peptides from libraries of protein-DNA complexes. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2806-2810. [http://dx.doi.org/10.1073/pnas.0400219101]. [PMID: 14981246].
[41]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17. [http://dx.doi.org/10.1016/j.addr.2012.09.019]. [PMID: 11259830].
[42]
Winn, M.; Fyans, J.K.; Zhuo, Y.; Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep., 2016, 33(2), 317-347. [http://dx.doi.org/10.1039/C5NP00099H]. [PMID: 26699732].
[43]
Traber, R.; Hofmann, H.; Kobel, H. Cyclosporins--new analogues by precursor directed biosynthesis. J. Antibiot. , 1989, 42(4), 591-597. [http://dx.doi.org/10.7164/antibiotics.42.591]. [PMID: 2722674].
[44]
Hojati, Z.; Milne, C.; Harvey, B.; Gordon, L.; Borg, M.; Flett, F.; Wilkinson, B.; Sidebottom, P.J.; Rudd, B.A.; Hayes, M.A.; Smith, C.P.; Micklefield, J. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem. Biol., 2002, 9(11), 1175-1187. [http://dx.doi.org/10.1016/S1074-5521(02)00252-1]. [PMID: 12445768].
[45]
Liu, J.; Zhu, X.; Kim, S.J.; Zhang, W. Antimycin-type depsipeptides: Discovery, biosynthesis, chemical synthesis, and bioactivities. Nat. Prod. Rep., 2016, 33(10), 1146-1165. [http://dx.doi.org/10.1039/C6NP00004E]. [PMID: 27307039].
[46]
Reimer, D.; Pos, K.M.; Thines, M.; Grün, P.; Bode, H.B. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat. Chem. Biol., 2011, 7(12), 888-890. [http://dx.doi.org/10.1038/nchembio.688]. [PMID: 21926994].
[47]
Wyatt, M.A.; Magarvey, N.A. Optimizing dimodular nonribosomal peptide synthetases and natural dipeptides in an Escherichia coli heterologous host. Biochem. Cell Biol., 2013, 91(4), 203-208. [http://dx.doi.org/10.1139/bcb-2012-0097]. [PMID: 23859013].
[48]
Li, M.Z.; Elledge, S.J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods, 2007, 4(3), 251-256. [http://dx.doi.org/10.1038/nmeth1010]. [PMID: 17293868].
[49]
Gibson, D.G.; Young, L.; Chuang, R.Y.; Venter, J.C.; Hutchison, C.A., III; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods, 2009, 6(5), 343-345. [http://dx.doi.org/10.1038/nmeth.1318]. [PMID: 19363495].
[50]
Shao, Z.; Zhao, H.; Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res., 2009, 37(2)e16 [http://dx.doi.org/10.1093/nar/gkn991]. [PMID: 19074487].
[51]
Li, L.; Zhao, Y.; Ruan, L.; Yang, S.; Ge, M.; Jiang, W.; Lu, Y. A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering. Metab. Eng., 2015, 29, 12-25. [http://dx.doi.org/10.1016/j.ymben.2015.02.001]. [PMID: 25708513].
[52]
Engler, C.; Kandzia, R.; Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3(11)e3647 [http://dx.doi.org/10.1371/journal.pone.0003647]. [PMID: 18985154].
[53]
de Kok, S.; Stanton, L.H.; Slaby, T.; Durot, M.; Holmes, V.F.; Patel, K.G.; Platt, D.; Shapland, E.B.; Serber, Z.; Dean, J.; Newman, J.D.; Chandran, S.S. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol., 2014, 3(2), 97-106. [http://dx.doi.org/10.1021/sb4001992]. [PMID: 24932563].
[54]
Shao, Z.; Rao, G.; Li, C.; Abil, Z.; Luo, Y.; Zhao, H. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth. Biol., 2013, 2(11), 662-669. [http://dx.doi.org/10.1021/sb400058n]. [PMID: 23968564].
[55]
Joung, J.K.; Sander, J.D. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol., 2013, 14(1), 49-55. [http://dx.doi.org/10.1038/nrm3486]. [PMID: 23169466].
[56]
Cobb, R.E.; Wang, Y.; Zhao, H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol., 2015, 4(6), 723-728. [http://dx.doi.org/10.1021/sb500351f]. [PMID: 25458909].
[57]
Tong, Y.; Charusanti, P.; Zhang, L.; Weber, T.; Lee, S.Y. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol., 2015, 4(9), 1020-1029. [http://dx.doi.org/10.1021/acssynbio.5b00038]. [PMID: 25806970].
[58]
Lincke, T.; Behnken, S.; Ishida, K.; Roth, M.; Hertweck, C. Closthioamide: An unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed. Engl., 2010, 49(11), 2011-2013. [http://dx.doi.org/10.1002/anie.200906114]. [PMID: 20157900].
[59]
Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459. [http://dx.doi.org/10.1038/nature14098]. [PMID: 25561178].
[60]
Wilson, M.C.; Mori, T.; Rückert, C.; Uria, A.R.; Helf, M.J.; Takada, K.; Gernert, C.; Steffens, U.A.; Heycke, N.; Schmitt, S.; Rinke, C.; Helfrich, E.J.; Brachmann, A.O.; Gurgui, C.; Wakimoto, T.; Kracht, M.; Crüsemann, M.; Hentschel, U.; Abe, I.; Matsunaga, S.; Kalinowski, J.; Takeyama, H.; Piel, J. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature, 2014, 506(7486), 58-62. [http://dx.doi.org/10.1038/nature12959]. [PMID: 24476823].
[61]
Johnston, C.W.; Plumb, J.; Li, X.; Grinstein, S.; Magarvey, N.A. Informatic analysis reveals Legionella as a source of novel natural products. Synth Syst Biotechnol, 2016, 1(2), 130-136. [http://dx.doi.org/10.1016/j.synbio.2015.12.001]. [PMID: 29062936].
[62]
Skinnider, M.A.; Dejong, C.A.; Rees, P.N.; Johnston, C.W.; Li, H.; Webster, A.L.; Wyatt, M.A.; Magarvey, N.A. Genomes to natural products prediction informatics for secondary metabolomes (PRISM). Nucleic Acids Res., 2015, 43(20), 9645-9662. [PMID: 26442528].
[63]
Skinnider, M.A.; Johnston, C.W.; Edgar, R.E.; Dejong, C.A.; Merwin, N.J.; Rees, P.N.; Magarvey, N.A. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc. Natl. Acad. Sci. USA, 2016, 113(42), E6343-E6351. [http://dx.doi.org/10.1073/pnas.1609014113]. [PMID: 27698135].
[64]
Yang, L.; Ibrahim, A.; Johnston, C.W.; Skinnider, M.A.; Ma, B.; Magarvey, N.A. Exploration of nonribosomal peptide families with an automated informatic search algorithm. Chem. Biol., 2015, 22(9), 1259-1269. [http://dx.doi.org/10.1016/j.chembiol.2015.08.008]. [PMID: 26364933].
[65]
Dejong, C.A.; Chen, G.M.; Li, H.; Johnston, C.W.; Edwards, M.R.; Rees, P.N.; Skinnider, M.A.; Webster, A.L.; Magarvey, N.A. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat. Chem. Biol., 2016, 12(12), 1007-1014. [http://dx.doi.org/10.1038/nchembio.2188]. [PMID: 27694801].
[66]
Johnston, C.W.; Skinnider, M.A.; Wyatt, M.A.; Li, X.; Ranieri, M.R.; Yang, L.; Zechel, D.L.; Ma, B.; Magarvey, N.A. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat. Commun., 2015, 6, 8421. [http://dx.doi.org/10.1038/ncomms9421]. [PMID: 26412281].
[67]
Hamley, I.W. Peptide fibrillization. Angew. Chem. Int. Ed. Engl., 2007, 46(43), 8128-8147. [http://dx.doi.org/10.1002/anie.200700861]. [PMID: 17935097].
[68]
Riber, D.; Macchi, F.; Giehm, L.; Andersen, M.S.; Osterlund, T.; Norregaard, P.; Valeur, A.; Neerup, T.S. A novel glucagon analogue, ZP-GA-1, displays increased chemical and physical stability in liquid formulation. Diabetes, 2013, 62, A103-A103.
[69]
Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; Hoyer, D.; Schmid, H.A.; Jelinek, R.; Gilon, C.; Hoffman, A.; Kessler, H. Improving oral bioavailability of peptides by multiple N-methylation: Somatostatin analogues. Angew. Chem. Int. Ed. Engl., 2008, 47(14), 2595-2599. [http://dx.doi.org/10.1002/anie.200705797]. [PMID: 18297660].
[70]
White, T.R.; Renzelman, C.M.; Rand, A.C.; Rezai, T.; McEwen, C.M.; Gelev, V.M.; Turner, R.A.; Linington, R.G.; Leung, S.S.; Kalgutkar, A.S.; Bauman, J.N.; Zhang, Y.; Liras, S.; Price, D.A.; Mathiowetz, A.M.; Jacobson, M.P.; Lokey, R.S. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol., 2011, 7(11), 810-817. [http://dx.doi.org/10.1038/nchembio.664]. [PMID: 21946276].
[71]
Henchey, L.K.; Jochim, A.L.; Arora, P.S. Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr. Opin. Chem. Biol., 2008, 12(6), 692-697. [http://dx.doi.org/10.1016/j.cbpa.2008.08.019]. [PMID: 18793750].
[72]
Guo, Z.; Mohanty, U.; Noehre, J.; Sawyer, T.K.; Sherman, W.; Krilov, G. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem. Biol. Drug Des., 2010, 75(4), 348-359. [http://dx.doi.org/10.1111/j.1747-0285.2010.00951.x]. [PMID: 20331649].
[73]
Sawyer, T.K. AILERON therapeutics. Chem. Biol. Drug Des., 2009, 73(1), 3-6. [http://dx.doi.org/10.1111/j.1747-0285.2008.00744.x]. [PMID: 19152629].
[74]
Cromm, P.M.; Spiegel, J.; Grossmann, T.N. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem. Biol., 2015, 10(6), 1362-1375. [http://dx.doi.org/10.1021/cb501020r]. [PMID: 25798993].
[75]
Kee, K.S.; Jois, S.D. Design of beta-turn based therapeutic agents. Curr. Pharm. Des., 2003, 9(15), 1209-1224. [http://dx.doi.org/10.2174/1381612033454900]. [PMID: 12769748].
[76]
O’Neil, K.T.; Hoess, R.H.; Jackson, S.A.; Ramachandran, N.S.; Mousa, S.A.; DeGrado, W.F. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins, 1992, 14(4), 509-515. [http://dx.doi.org/10.1002/prot.340140411]. [PMID: 1438188].
[77]
Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed. Engl., 2013, 52(1), 254-269. [http://dx.doi.org/10.1002/anie.201205674]. [PMID: 23161799].
[78]
Penchala, S.C.; Miller, M.R.; Pal, A.; Dong, J.; Madadi, N.R.; Xie, J.; Joo, H.; Tsai, J.; Batoon, P.; Samoshin, V.; Franz, A.; Cox, T.; Miles, J.; Chan, W.K.; Park, M.S.; Alhamadsheh, M.M. A biomimetic approach for enhancing the in vivo half-life of peptides. Nat. Chem. Biol., 2015, 11(10), 793-798. [http://dx.doi.org/10.1038/nchembio.1907]. [PMID: 26344696].
[79]
Schafmeister, C.E.; Po, J.; Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc., 2000, 122(24), 5891-5892. [http://dx.doi.org/10.1021/ja000563a].
[80]
Chang, Y.S.; Graves, B.; Guerlavais, V.; Tovar, C.; Packman, K.; To, K.H.; Olson, K.A.; Kesavan, K.; Gangurde, P.; Mukherjee, A.; Baker, T.; Darlak, K.; Elkin, C.; Filipovic, Z.; Qureshi, F.Z.; Cai, H.; Berry, P.; Feyfant, E.; Shi, X.E.; Horstick, J.; Annis, D.A.; Manning, A.M.; Fotouhi, N.; Nash, H.; Vassilev, L.T.; Sawyer, T.K. Stapled α-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. USA, 2013, 110(36), E3445-E3454. [http://dx.doi.org/10.1073/pnas.1303002110]. [PMID: 23946421].
[81]
Mendive-Tapia, L.; Preciado, S.; García, J.; Ramón, R.; Kielland, N.; Albericio, F.; Lavilla, R. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun., 2015, 6, 7160. [http://dx.doi.org/10.1038/ncomms8160]. [PMID: 25994485].
[82]
Vinogradova, E.V.; Zhang, C.; Spokoyny, A.M.; Pentelute, B.L.; Buchwald, S.L. Organometallic palladium reagents for cysteine bioconjugation. Nature, 2015, 526(7575), 687-691. [http://dx.doi.org/10.1038/nature15739]. [PMID: 26511579].
[83]
Verdine, G.L.; Hilinski, G.J. Stapled peptides for intracellular drug targets. Methods Enzymol., 2012, 503, 3-33. [http://dx.doi.org/10.1016/B978-0-12-396962-0.00001-X]. [PMID: 22230563].
[84]
Aoki, K.; Maeda, M.; Nakae, T.; Okada, Y.; Ohya, K.; Chiba, K. A disulfide bond replacement strategy enables the efficient design of artificial therapeutic peptides. Tetrahedron, 2014, 70(42), 7774-7779. [http://dx.doi.org/10.1016/j.tet.2014.05.079].
[85]
Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev., 2014, 114(2), 901-926. [http://dx.doi.org/10.1021/cr400031z]. [PMID: 24446748].
[86]
Cheek, S.; Krishna, S.S.; Grishin, N.V. Structural classification of small, disulfide-rich protein domains. J. Mol. Biol., 2006, 359(1), 215-237. [http://dx.doi.org/10.1016/j.jmb.2006.03.017]. [PMID: 16618491].
[87]
Yang, D.; Biragyn, A.; Kwak, L.W.; Oppenheim, J.J. Mammalian defensins in immunity: More than just microbicidal. Trends Immunol., 2002, 23(6), 291-296. [http://dx.doi.org/10.1016/S1471-4906(02)02246-9]. [PMID: 12072367].
[88]
Hartman, M.C.; Josephson, K.; Lin, C.W.; Szostak, J.W. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS One, 2007, 2(10)e972 [http://dx.doi.org/10.1371/journal.pone.0000972]. [PMID: 17912351].
[89]
Schlippe, Y.V.; Hartman, M.C.; Josephson, K.; Szostak, J.W. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc., 2012, 134(25), 10469-10477. [http://dx.doi.org/10.1021/ja301017y]. [PMID: 22428867].
[90]
Subtelny, A.O.; Hartman, M.C.; Szostak, J.W. Ribosomal synthesis of N-methyl peptides. J. Am. Chem. Soc., 2008, 130(19), 6131-6136. [http://dx.doi.org/10.1021/ja710016v]. [PMID: 18402453].
[91]
Seebeck, F.P.; Ricardo, A.; Szostak, J.W. Artificial lantipeptides from in vitro translations. Chem. Commun. (Camb.), 2011, 47(21), 6141-6143. [http://dx.doi.org/10.1039/c0cc05663d]. [PMID: 21528125].
[92]
Ohta, A.; Murakami, H.; Higashimura, E.; Suga, H. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol., 2007, 14(12), 1315-1322. [http://dx.doi.org/10.1016/j.chembiol.2007.10.015]. [PMID: 18096500].
[93]
Ohuchi, M.; Murakami, H.; Suga, H. The flexizyme system: A highly flexible tRNA aminoacylation tool for the translation apparatus. Curr. Opin. Chem. Biol., 2007, 11(5), 537-542. [http://dx.doi.org/10.1016/j.cbpa.2007.08.011]. [PMID: 17884697].
[94]
Xiao, H.; Murakami, H.; Suga, H.; Ferré-D’Amaré, A.R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature, 2008, 454(7202), 358-361. [http://dx.doi.org/10.1038/nature07033]. [PMID: 18548004].
[95]
Goto, Y.; Katoh, T.; Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc., 2011, 6(6), 779-790. [http://dx.doi.org/10.1038/nprot.2011.331]. [PMID: 21637198].
[96]
Reid, P.C.; Goto, Y.; Katoh, T.; Suga, H. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers. Methods Mol. Biol., 2012, 805, 335-348. [http://dx.doi.org/10.1007/978-1-61779-379-0_19]. [PMID: 22094815].
[97]
Osberger, T.J.; Rogness, D.C.; Kohrt, J.T.; Stepan, A.F.; White, M.C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature, 2016, 537(7619), 214-219. [http://dx.doi.org/10.1038/nature18941]. [PMID: 27479323].
[98]
Wright, T.H.; Bower, B.J.; Chalker, J.M.; Bernardes, G.J.; Wiewiora, R.; Ng, W-L.; Raj, R.; Faulkner, S.; Vallée, M.R.; Phanumartwiwath, A.; Coleman, O.D.; Thézénas, M-L.; Khan, M.; Galan, S.R.; Lercher, L.; Schombs, M.W.; Gerstberger, S.; Palm-Espling, M.E.; Baldwin, A.J.; Kessler, B.M.; Claridge, T.D.; Mohammed, S.; Davis, B.G. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science, 2016, 354(6312)aag1465 [http://dx.doi.org/10.1126/science.aag1465]. [PMID: 27708059].
[99]
Varga, C.M.; Wickham, T.J.; Lauffenburger, D.A. Receptor-mediated targeting of gene delivery vectors: Insights from molecular mechanisms for improved vehicle design. Biotechnol. Bioeng., 2000, 70(6), 593-605. [http://dx.doi.org/10.1002/1097-0290(20001220)70:6<593:AID-BIT1>3.0.CO;2-N]. [PMID: 11064328].
[100]
Arnheiter, H.; Haller, O. Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J., 1988, 7(5), 1315-1320. [http://dx.doi.org/10.1002/j.1460-2075.1988.tb02946.x]. [PMID: 3409866].
[101]
White, T.R.; Renzelman, C.M.; Rand, A.C.; Rezai, T.; McEwen, C.M.; Gelev, V.M.; Turner, R.A.; Linington, R.G.; Leung, S.S.; Kalgutkar, A.S.; Bauman, J.N.; Zhang, Y.; Liras, S.; Price, D.A.; Mathiowetz, A.M.; Jacobson, M.P.; Lokey, R.S. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol., 2011, 7(11), 810-817. [http://dx.doi.org/10.1038/nchembio.664]. [PMID: 21946276].
[102]
Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. (Camb.), 2016, 7(4), 2492-2500. [http://dx.doi.org/10.1039/C5SC04392A]. [PMID: 28660018].
[103]
Kozlowski, A.; Harris, J.M. Improvements in protein PEGylation: Pegylated interferons for treatment of hepatitis C. J. Control. Release, 2001, 72(1-3), 217-224. [http://dx.doi.org/10.1016/S0168-3659(01)00277-2]. [PMID: 11390000].
[104]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221. [http://dx.doi.org/10.1038/nrd1033]. [PMID: 12612647].
[105]
Briers, Y.; Walmagh, M.; Van Puyenbroeck, V.; Cornelissen, A.; Cenens, W.; Aertsen, A.; Oliveira, H.; Azeredo, J.; Verween, G.; Pirnay, J.P.; Miller, S.; Volckaert, G.; Lavigne, R. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio, 2014, 5(4), e01379-e14. [http://dx.doi.org/10.1128/mBio.01379-14]. [PMID: 24987094].
[106]
Schmidt, N.W.; Deshayes, S.; Hawker, S.; Blacker, A.; Kasko, A.M.; Wong, G.C. Engineering persister-specific antibiotics with synergistic antimicrobial functions. ACS Nano, 2014, 8(9), 8786-8793. [http://dx.doi.org/10.1021/nn502201a]. [PMID: 25130648].
[107]
Ma, W.; Cheetham, A.G.; Cui, H. Building Nanostructures with Drugs. Nano Today, 2016, 11(1), 13-30. [http://dx.doi.org/10.1016/j.nantod.2015.11.003]. [PMID: 27066106].
[108]
Arosio, D.; Casagrande, C. Advancement in integrin facilitated drug delivery. Adv. Drug Deliv. Rev., 2016, 97, 111-143. [http://dx.doi.org/10.1016/j.addr.2015.12.001]. [PMID: 26686830].
[109]
Wender, P.A.; Cooley, C.B.; Geihe, E.I. Beyond cell penetrating peptides: Designed molecular transporters. Drug Discov. Today. Technol., 2012, 9(1), e49-e55. [http://dx.doi.org/10.1016/j.ddtec.2011.07.004]. [PMID: 22712022].
[110]
Zhang, P.; Cheetham, A.G.; Lock, L.L.; Cui, H. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug. Chem., 2013, 24(4), 604-613. [http://dx.doi.org/10.1021/bc300585h]. [PMID: 23514455].
[111]
Zhang, P.; Lock, L.L.; Cheetham, A.G.; Cui, H. Enhanced cellular entry and efficacy of tat conjugates by rational design of the auxiliary segment. Mol. Pharm., 2014, 11(3), 964-973. [http://dx.doi.org/10.1021/mp400619v]. [PMID: 24437690].
[112]
Wang, H.B.; Liu, G.Y.; Gao, H.Q.; Wang, Y.B. A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery. Polym. Chem., 2015, 6(26), 4715-4718. [http://dx.doi.org/10.1039/C5PY00584A].
[113]
Yuan, Y.; Kwok, R.T.; Tang, B.Z.; Liu, B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc., 2014, 136(6), 2546-2554. [http://dx.doi.org/10.1021/ja411811w]. [PMID: 24437551].
[114]
Lock, L.L.; Tang, Z.; Keith, D.; Reyes, C.; Cui, H.G. Enzyme-specific doxorubicin drug beacon as drug-resistant theranostic molecular probes. ACS Macro Lett., 2015, 4(5), 552-555. [http://dx.doi.org/10.1021/acsmacrolett.5b00170].
[115]
Hu, B.H.; Messersmith, P.B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc., 2003, 125(47), 14298-14299. [http://dx.doi.org/10.1021/ja038593b]. [PMID: 14624577].
[116]
Matson, J.B.; Stupp, S.I. Drug release from hydrazone-containing peptide amphiphiles. Chem. Commun. (Camb.), 2011, 47(28), 7962-7964. [http://dx.doi.org/10.1039/c1cc12570b]. [PMID: 21674107].
[117]
Couvreur, P.; Stella, B.; Reddy, L.H.; Hillaireau, H.; Dubernet, C.; Desmaële, D.; Lepêtre-Mouelhi, S.; Rocco, F.; Dereuddre-Bosquet, N.; Clayette, P.; Rosilio, V.; Marsaud, V.; Renoir, J.M.; Cattel, L. Squalenoyl nanomedicines as potential therapeutics. Nano Lett., 2006, 6(11), 2544-2548. [http://dx.doi.org/10.1021/nl061942q]. [PMID: 17090088].
[118]
Cheetham, A.G.; Zhang, P.; Lin, Y.A.; Lock, L.L.; Cui, H. Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc., 2013, 135(8), 2907-2910. [http://dx.doi.org/10.1021/ja3115983]. [PMID: 23379791].
[119]
Lin, Y.A.; Cheetham, A.G.; Zhang, P.; Ou, Y.C.; Li, Y.; Liu, G.; Hermida-Merino, D.; Hamley, I.W.; Cui, H. Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles. ACS Nano, 2014, 8(12), 12690-12700. [http://dx.doi.org/10.1021/nn505688b]. [PMID: 25415538].
[120]
Zhang, D.; Qi, G.B.; Zhao, Y.X.; Qiao, S.L.; Yang, C.; Wang, H. In Situ Formation of Nanofibers from Purpurin18-Peptide Conjugates and the Assembly Induced Retention Effect in Tumor Sites. Adv. Mater., 2015, 27(40), 6125-6130. [http://dx.doi.org/10.1002/adma.201502598]. [PMID: 26350172].
[121]
Kratz, F.; Müller, I.A.; Ryppa, C.; Warnecke, A. Prodrug strategies in anticancer chemotherapy. ChemMedChem, 2008, 3(1), 20-53. [http://dx.doi.org/10.1002/cmdc.200700159]. [PMID: 17963208].
[122]
Valéry, C.; Paternostre, M.; Robert, B.; Gulik-Krzywicki, T.; Narayanan, T.; Dedieu, J.C.; Keller, G.; Torres, M.L.; Cherif-Cheikh, R.; Calvo, P.; Artzner, F. Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10258-10262. [http://dx.doi.org/10.1073/pnas.1730609100]. [PMID: 12930900].
[123]
Pouget, E.; Fay, N.; Dujardin, E.; Jamin, N.; Berthault, P.; Perrin, L.; Pandit, A.; Rose, T.; Valéry, C.; Thomas, D.; Paternostre, M.; Artzner, F. Elucidation of the self-assembly pathway of lanreotide octapeptide into beta-sheet nanotubes: role of two stable intermediates. J. Am. Chem. Soc., 2010, 132(12), 4230-4241. [http://dx.doi.org/10.1021/ja9088023]. [PMID: 20199027].
[124]
Valéry, C.; Artzner, F.; Robert, B.; Gulick, T.; Keller, G.; Grabielle-Madelmont, C.; Torres, M.L.; Cherif-Cheikh, R.; Paternostre, M. Self-association process of a peptide in solution: from beta-sheet filaments to large embedded nanotubes. Biophys. J., 2004, 86(4), 2484-2501. [http://dx.doi.org/10.1016/S0006-3495(04)74304-0]. [PMID: 15041685].
[125]
Yu, Z.; Xu, Q.; Dong, C.; Lee, S.S.; Gao, L.; Li, Y.; D’Ortenzio, M.; Wu, J. Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform. Curr. Pharm. Des., 2015, 21(29), 4342-4354. [http://dx.doi.org/10.2174/1381612821666150901104821]. [PMID: 26323419].
[126]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160. [http://dx.doi.org/10.1038/nrd1632]. [PMID: 15688077].
[127]
Allen, T.M.; Hansen, C.B.; Demenezes, D.E. Pharmacokinetics of long-circulating liposomes. Adv. Drug Deliv. Rev., 1995, 16(2-3), 267-284. [http://dx.doi.org/10.1016/0169-409X(95)00029-7].
[128]
Torchilin, V.P. Liposomes as targetable drug carriers. Crit. Rev. Ther. Drug Carrier Syst., 1985, 2(1), 65-115. [PMID: 3913530].
[129]
Das, P.K.; Murray, G.J.; Zirzow, G.C.; Brady, R.O.; Barranger, J.A. Lectin-specific targeting of beta-glucocerebrosidase to different liver cells via glycosylated liposomes. Biochem. Med., 1985, 33(1), 124-131. [http://dx.doi.org/10.1016/0006-2944(85)90135-8]. [PMID: 3994697].
[130]
Shariat, S.; Badiee, A.; Jalali, S.A.; Mansourian, M.; Yazdani, M.; Mortazavi, S.A.; Jaafari, M.R. P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett., 2014, 355(1), 54-60. [http://dx.doi.org/10.1016/j.canlet.2014.09.016]. [PMID: 25224570].
[131]
Shalaev, E.Y.; Steponkus, P.L. Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. Biochim. Biophys. Acta, 1999, 1419(2), 229-247. [http://dx.doi.org/10.1016/S0005-2736(99)00068-1]. [PMID: 10407074].
[132]
Simões, S.; Moreira, J.N.; Fonseca, C.; Düzgüneş, N.; de Lima, M.C. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev., 2004, 56(7), 947-965. [http://dx.doi.org/10.1016/j.addr.2003.10.038]. [PMID: 15066754].
[133]
Fattal, E.; Couvreur, P.; Dubernet, C. “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Deliv. Rev., 2004, 56(7), 931-946. [http://dx.doi.org/10.1016/j.addr.2003.10.037]. [PMID: 15066753].
[134]
Shigeta, K.; Kawakami, S.; Higuchi, Y.; Okuda, T.; Yagi, H.; Yamashita, F.; Hashida, M. Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J. Control. Release, 2007, 118(2), 262-270. [http://dx.doi.org/10.1016/j.jconrel.2006.12.019]. [PMID: 17267065].
[135]
Sudimack, J.J.; Guo, W.; Tjarks, W.; Lee, R.J. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim. Biophys. Acta, 2002, 1564(1), 31-37. [http://dx.doi.org/10.1016/S0005-2736(02)00399-1]. [PMID: 12100993].
[136]
Asokan, A.; Cho, M.J. Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim. Biophys. Acta, 2003, 1611(1-2), 151-160. [http://dx.doi.org/10.1016/S0005-2736(03)00050-6]. [PMID: 12659956].
[137]
Kakudo, T.; Chaki, S.; Futaki, S.; Nakase, I.; Akaji, K.; Kawakami, T.; Maruyama, K.; Kamiya, H.; Harashima, H. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry, 2004, 43(19), 5618-5628. [http://dx.doi.org/10.1021/bi035802w]. [PMID: 15134436].
[138]
Turk, M.J.; Reddy, J.A.; Chmielewski, J.A.; Low, P.S. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta, 2002, 1559(1), 56-68. [http://dx.doi.org/10.1016/S0005-2736(01)00441-2]. [PMID: 11825588].
[139]
Shi, G.; Guo, W.; Stephenson, S.M.; Lee, R.J. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J. Control. Release, 2002, 80(1-3), 309-319. [http://dx.doi.org/10.1016/S0168-3659(02)00017-2]. [PMID: 11943407].
[140]
Ducat, E.; Deprez, J.; Gillet, A.; Noël, A.; Evrard, B.; Peulen, O.; Piel, G. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles. Int. J. Pharm., 2011, 420(2), 319-332. [http://dx.doi.org/10.1016/j.ijpharm.2011.08.034]. [PMID: 21889584].
[141]
Zhao, Y.; Ren, W.; Zhong, T.; Zhang, S.; Huang, D.; Guo, Y.; Yao, X.; Wang, C.; Zhang, W.Q.; Zhang, X.; Zhang, Q. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release, 2016, 222, 56-66. [http://dx.doi.org/10.1016/j.jconrel.2015.12.006]. [PMID: 26682502].
[142]
Geisert, E.E., Jr; Del Mar, N.A.; Owens, J.L.; Holmberg, E.G. Transfecting neurons and glia in the rat using pH-sensitive immunoliposomes. Neurosci. Lett., 1995, 184(1), 40-43. [http://dx.doi.org/10.1016/0304-3940(94)11163-D]. [PMID: 7739802].
[143]
Yessine, M.A.; Leroux, J.C. Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv. Drug Deliv. Rev., 2004, 56(7), 999-1021. [http://dx.doi.org/10.1016/j.addr.2003.10.039]. [PMID: 15066757].
[144]
Chen, G.; Hoffman, A.S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 1995, 373(6509), 49-52. [http://dx.doi.org/10.1038/373049a0]. [PMID: 7800038].
[145]
Rothbard, J.B.; Jessop, T.C.; Wender, P.A. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv. Drug Deliv. Rev., 2005, 57(4), 495-504. [http://dx.doi.org/10.1016/j.addr.2004.10.003]. [PMID: 15722160].
[146]
Wadia, J.S.; Stan, R.V.; Dowdy, S.F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med., 2004, 10(3), 310-315. [http://dx.doi.org/10.1038/nm996]. [PMID: 14770178].
[147]
Wadia, J.S.; Dowdy, S.F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev., 2005, 57(4), 579-596. [http://dx.doi.org/10.1016/j.addr.2004.10.005]. [PMID: 15722165].
[148]
Mayor, S.; Pagano, R.E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol., 2007, 8(8), 603-612. [http://dx.doi.org/10.1038/nrm2216]. [PMID: 17609668].
[149]
Futaki, S.; Nakase, I.; Tadokoro, A.; Takeuchi, T.; Jones, A.T. Arginine-rich peptides and their internalization mechanisms. Biochem. Soc. Trans., 2007, 35(Pt 4), 784-787. [http://dx.doi.org/10.1042/BST0350784]. [PMID: 17635148].
[150]
Vandenbroucke, R.E.; De Smedt, S.C.; Demeester, J.; Sanders, N.N. Cellular entry pathway and gene transfer capacity of TAT-modified lipoplexes. Biochim. Biophys. Acta, 2007, 1768(3), 571-579. [http://dx.doi.org/10.1016/j.bbamem.2006.11.006]. [PMID: 17188643].
[151]
Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 2014, 8(3), 1972-1994. [http://dx.doi.org/10.1021/nn4057269]. [PMID: 24559246].
[152]
Koren, E.; Torchilin, V.P. Cell-penetrating peptides: breaking through to the other side. Trends Mol. Med., 2012, 18(7), 385-393. [http://dx.doi.org/10.1016/j.molmed.2012.04.012]. [PMID: 22682515].
[153]
Duchardt, F.; Fotin-Mleczek, M.; Schwarz, H.; Fischer, R.; Brock, R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic, 2007, 8(7), 848-866. [http://dx.doi.org/10.1111/j.1600-0854.2007.00572.x]. [PMID: 17587406].
[154]
Fittipaldi, A.; Ferrari, A.; Zoppé, M.; Arcangeli, C.; Pellegrini, V.; Beltram, F.; Giacca, M. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem., 2003, 278(36), 34141-34149. [http://dx.doi.org/10.1074/jbc.M303045200]. [PMID: 12773529].
[155]
Richard, J.P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L.V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem., 2005, 280(15), 15300-15306. [http://dx.doi.org/10.1074/jbc.M401604200]. [PMID: 15687490].
[156]
Chuard, N.; Fujisawa, K.; Morelli, P.; Saarbach, J.; Winssinger, N.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Activation of cell-penetrating peptides with ionpair-π interactions and fluorophiles. J. Am. Chem. Soc., 2016, 138(35), 11264-11271. [http://dx.doi.org/10.1021/jacs.6b06253]. [PMID: 27568814].
[157]
Young Kim, H.; Young Yum, S.; Jang, G.; Ahn, D.R. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Sci. Rep., 2015, 5, 11719. [http://dx.doi.org/10.1038/srep11719]. [PMID: 26114640].
[158]
Farrera-Sinfreu, J.; Giralt, E.; Castel, S.; Albericio, F.; Royo, M. Cell-penetrating cis-gamma-amino-l-proline-derived peptides. J. Am. Chem. Soc., 2005, 127(26), 9459-9468. [http://dx.doi.org/10.1021/ja051648k]. [PMID: 15984873].
[159]
Patel, L.N.; Zaro, J.L.; Shen, W.C. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm. Res., 2007, 24(11), 1977-1992. [http://dx.doi.org/10.1007/s11095-007-9303-7]. [PMID: 17443399].
[160]
Ezzat, K.; Andaloussi, S.E.; Zaghloul, E.M.; Lehto, T.; Lindberg, S.; Moreno, P.M.; Viola, J.R.; Magdy, T.; Abdo, R.; Guterstam, P.; Sillard, R.; Hammond, S.M.; Wood, M.J.; Arzumanov, A.A.; Gait, M.J.; Smith, C.I.; Hällbrink, M.; Langel, Ü. PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res., 2011, 39(12), 5284-5298. [http://dx.doi.org/10.1093/nar/gkr072]. [PMID: 21345932].
[161]
Mandal, D.; Nasrolahi Shirazi, A.; Parang, K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew. Chem. Int. Ed. Engl., 2011, 50(41), 9633-9637. [http://dx.doi.org/10.1002/anie.201102572]. [PMID: 21919161].
[162]
Bodor, N.; Tóth-Sarudy, E.; Holm, T.; Pallagi, I.; Vass, E.; Buchwald, P.; Langel, U. Novel, cell-penetrating molecular transporters with flexible backbones and permanently charged side-chains. J. Pharm. Pharmacol., 2007, 59(8), 1065-1076. [http://dx.doi.org/10.1211/jpp.59.8.0003]. [PMID: 17725848].
[163]
Andaloussi, S.E.; Lehto, T.; Mäger, I.; Rosenthal-Aizman, K.; Oprea, I.I.; Simonson, O.E.; Sork, H.; Ezzat, K.; Copolovici, D.M.; Kurrikoff, K.; Viola, J.R.; Zaghloul, E.M.; Sillard, R.; Johansson, H.J.; Said Hassane, F.; Guterstam, P.; Suhorutšenko, J.; Moreno, P.M.; Oskolkov, N.; Hälldin, J.; Tedebark, U.; Metspalu, A.; Lebleu, B.; Lehtiö, J.; Smith, C.I.; Langel, U. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res., 2011, 39(9), 3972-3987. [http://dx.doi.org/10.1093/nar/gkq1299]. [PMID: 21245043].
[164]
Oskolkov, N.; Arukuusk, P.; Copolovici, D.M.; Lindberg, S.; Margus, H.; Padari, K.; Pooga, M.; Langel, U. NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. Int. J. Pept. Res. Ther., 2011, 17(2), 147-157. [http://dx.doi.org/10.1007/s10989-011-9252-1].
[165]
Ezzat, K.; Helmfors, H.; Tudoran, O.; Juks, C.; Lindberg, S.; Padari, K.; El-Andaloussi, S.; Pooga, M.; Langel, U. Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. FASEB J., 2012, 26(3), 1172-1180. [http://dx.doi.org/10.1096/fj.11-191536]. [PMID: 22138034].
[166]
Nelson, A.R.; Borland, L.; Allbritton, N.L.; Sims, C.E. Myristoyl-based transport of peptides into living cells. Biochemistry, 2007, 46(51), 14771-14781. [http://dx.doi.org/10.1021/bi701295k]. [PMID: 18044965].
[167]
Gautam, A.; Nanda, J.S.; Samuel, J.S.; Kumari, M.; Priyanka, P.; Bedi, G.; Nath, S.K.; Mittal, G.; Khatri, N.; Raghava, G.P. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Sci. Rep., 2016, 6, 26278. [http://dx.doi.org/10.1038/srep26278]. [PMID: 27189051].
[168]
Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2012, 64, 302-315. [http://dx.doi.org/10.1016/j.addr.2012.09.031]. [PMID: 17092599].
[169]
Du, A.W.; Stenzel, M.H. Drug carriers for the delivery of therapeutic peptides. Biomacromolecules, 2014, 15(4), 1097-1114. [http://dx.doi.org/10.1021/bm500169p]. [PMID: 24661025].
[170]
Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851. [http://dx.doi.org/10.1016/j.addr.2012.02.002]. [PMID: 22342438].
[171]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764. [http://dx.doi.org/10.1039/C3CS60273G]. [PMID: 24220322].
[172]
Javadpour, M.M.; Juban, M.M.; Lo, W.C.; Bishop, S.M.; Alberty, J.B.; Cowell, S.M.; Becker, C.L.; McLaughlin, M.L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem., 1996, 39(16), 3107-3113. [http://dx.doi.org/10.1021/jm9509410]. [PMID: 8759631].
[173]
Ellerby, H.M.; Arap, W.; Ellerby, L.M.; Kain, R.; Andrusiak, R.; Rio, G.D.; Krajewski, S.; Lombardo, C.R.; Rao, R.; Ruoslahti, E.; Bredesen, D.E.; Pasqualini, R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med., 1999, 5(9), 1032-1038. [http://dx.doi.org/10.1038/12469]. [PMID: 10470080].
[174]
Mai, J.C.; Mi, Z.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res., 2001, 61(21), 7709-7712. [PMID: 11691780].
[175]
Chen, W.H.; Xu, X.D.; Luo, G.F.; Jia, H.Z.; Lei, Q.; Cheng, S.X.; Zhuo, R.X.; Zhang, X.Z. Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage. Sci. Rep., 2013, 3, 3468. [http://dx.doi.org/10.1038/srep03468]. [PMID: 24336626].
[176]
Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17450-17455. [http://dx.doi.org/10.1073/pnas.1114518108]. [PMID: 21969599].
[177]
Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light induced drug delivery into cancer cells. Biomaterials, 2011, 32(5), 1377-1386. [http://dx.doi.org/10.1016/j.biomaterials.2010.10.029]. [PMID: 21074848].
[178]
Toft, D.J.; Moyer, T.J.; Standley, S.M.; Ruff, Y.; Ugolkov, A.; Stupp, S.I.; Cryns, V.L. Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer. ACS Nano, 2012, 6(9), 7956-7965. [http://dx.doi.org/10.1021/nn302503s]. [PMID: 22928955].
[179]
Ma, X.; Wang, X.; Zhou, M.; Fei, H. A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv. Healthc. Mater., 2013, 2(12), 1638-1643. [http://dx.doi.org/10.1002/adhm.201300037]. [PMID: 23657942].
[180]
Qiao, Z.Y.; Hou, C.Y.; Zhang, D.; Liu, Y.; Lin, Y.X.; An, H.W.; Li, X.J.; Wang, H. Self-assembly of cytotoxic peptide conjugated poly(beta-amino ester)s for synergistic cancer chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(15), 2943-2953. [http://dx.doi.org/10.1039/C4TB02144D].
[181]
Qiao, Z.Y.; Lin, Y.X.; Lai, W.J.; Hou, C.Y.; Wang, Y.; Qiao, S.L.; Zhang, D.; Fang, Q.J.; Wang, H. A General strategy for facile synthesis and in situ screening of self-assembled polymer-peptide nanomaterials. Adv. Mater., 2016, 28(9), 1859-1867. [http://dx.doi.org/10.1002/adma.201504564]. [PMID: 26698326].
[182]
Sun, J.; Zhang, L.; Wang, J.; Feng, Q.; Liu, D.; Yin, Q.; Xu, D.; Wei, Y.; Ding, B.; Shi, X.; Jiang, X. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater., 2015, 27(8), 1402-1407. [http://dx.doi.org/10.1002/adma.201404788]. [PMID: 25529120].
[183]
Petersen, S.; Barchanski, A.; Taylor, U.; Klein, S.; Rath, D.; Barcikowski, S. Penetratin-conjugated gold nanoparticles - design of cell-penetrating nanomarkers by femtosecond laser ablation. J. Phys. Chem. C, 2011, 115(12), 5152-5159. [http://dx.doi.org/10.1021/jp1093614].
[184]
Santra, S.; Yang, H.; Dutta, D.; Stanley, J.T.; Holloway, P.H.; Tan, W.; Moudgil, B.M.; Mericle, R.A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. (Camb.), 2004, (24), 2810-2811. [http://dx.doi.org/10.1039/b411916a]. [PMID: 15599418].
[185]
Josephson, L.; Tung, C.H.; Moore, A.; Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem., 1999, 10(2), 186-191. [http://dx.doi.org/10.1021/bc980125h]. [PMID: 10077466].
[186]
Nitin, N.; LaConte, L.E.; Zurkiya, O.; Hu, X.; Bao, G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem., 2004, 9(6), 706-712. [http://dx.doi.org/10.1007/s00775-004-0560-1]. [PMID: 15232722].
[187]
Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Müller, R.H.; Rosenecker, J. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21(9), 1662-1669. [http://dx.doi.org/10.1023/B:PHAM.0000041463.56768.ec]. [PMID: 15497694].
[188]
Kanazawa, T.; Taki, H.; Tanaka, K.; Takashima, Y.; Okada, H. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm. Res., 2011, 28(9), 2130-2139. [http://dx.doi.org/10.1007/s11095-011-0440-7]. [PMID: 21499835].
[189]
Glowka, E.; Sapin-Minet, A.; Leroy, P.; Lulek, J.; Maincent, P. Preparation and in vitro-in vivo evaluation of salmon calcitonin-loaded polymeric nanoparticles. J. Microencapsul., 2010, 27(1), 25-36. [http://dx.doi.org/10.3109/02652040902751125]. [PMID: 19229671].
[190]
Rhee, Y.S.; Sohn, M.; Woo, B.H.; Thanoo, B.C.; DeLuca, P.P.; Mansour, H.M. Sustained-release delivery of octreotide from biodegradable polymeric microspheres. AAPS PharmSciTech, 2011, 12(4), 1293-1301. [http://dx.doi.org/10.1208/s12249-011-9693-z]. [PMID: 21948321].
[191]
Ghassemi, A.H.; van Steenbergen, M.J.; Barendregt, A.; Talsma, H.; Kok, R.J.; van Nostrum, C.F.; Crommelin, D.J.; Hennink, W.E. Controlled release of octreotide and assessment of peptide acylation from poly(D,L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres. Pharm. Res., 2012, 29(1), 110-120. [http://dx.doi.org/10.1007/s11095-011-0517-3]. [PMID: 21744173].
[192]
He, H.T.; Gürsoy, R.N.; Kupczyk-Subotkowska, L.; Tian, J.; Williams, T.; Siahaan, T.J. Synthesis and chemical stability of a disulfide bond in a model cyclic pentapeptide: cyclo(1,4)-Cys-Gly-Phe-Cys-Gly-OH. J. Pharm. Sci., 2006, 95(10), 2222-2234. [http://dx.doi.org/10.1002/jps.20701]. [PMID: 16883561].
[193]
Houston, M.E., Jr; Campbell, A.P.; Lix, B.; Kay, C.M.; Sykes, B.D.; Hodges, R.S. Lactam bridge stabilization of alpha-helices: the role of hydrophobicity in controlling dimeric versus monomeric alpha-helices. Biochemistry, 1996, 35(31), 10041-10050. [http://dx.doi.org/10.1021/bi952757m]. [PMID: 8756466].
[194]
Jagasia, R.; Holub, J.M.; Bollinger, M.; Kirshenbaum, K.; Finn, M.G. Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition. J. Org. Chem., 2009, 74(8), 2964-2974. [http://dx.doi.org/10.1021/jo802097m]. [PMID: 19309103].
[195]
Aimetti, A.A.; Shoemaker, R.K.; Lin, C.C.; Anseth, K.S. On-resin peptide macrocyclization using thiol-ene click chemistry. Chem. Commun. (Camb.), 2010, 46(23), 4061-4063. [http://dx.doi.org/10.1039/c001375g]. [PMID: 20379591].
[196]
Meldal, M. ‘One bead two compound libraries’ for detecting chemical and biochemical conversions. Curr. Opin. Chem. Biol., 2004, 8(3), 238-244. [http://dx.doi.org/10.1016/j.cbpa.2004.04.007]. [PMID: 15183321].
[197]
Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul), 2012, 20(1), 19-26. [http://dx.doi.org/10.4062/biomolther.2012.20.1.019]. [PMID: 24116270].
[198]
Gründemann, C.; Thell, K.; Lengen, K.; Garcia-Käufer, M.; Huang, Y.H.; Huber, R.; Craik, D.J.; Schabbauer, G.; Gruber, C.W. Cyclotides suppress human T-lymphocyte proliferation by an interleukin 2-dependent mechanism. PLoS One, 2013, 8(6)e68016 [http://dx.doi.org/10.1371/journal.pone.0068016]. [PMID: 23840803].
[199]
Thell, K.; Hellinger, R.; Sahin, E.; Michenthaler, P.; Gold-Binder, M.; Haider, T.; Kuttke, M.; Liutkevičiūtė, Z.; Göransson, U.; Gründemann, C.; Schabbauer, G.; Gruber, C.W. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 3960-3965. [http://dx.doi.org/10.1073/pnas.1519960113]. [PMID: 27035952].
[200]
Wang, S.; Blois, A.; El Rayes, T.; Liu, J.F.; Hirsch, M.S.; Gravdal, K.; Palakurthi, S.; Bielenberg, D.R.; Akslen, L.A.; Drapkin, R.; Mittal, V.; Watnick, R.S. Development of a prosaposin-derived therapeutic cyclic peptide that targets ovarian cancer via the tumor microenvironment. Sci. Transl. Med., 2016, 8(329)329ra34 [http://dx.doi.org/10.1126/scitranslmed.aad5653]. [PMID: 26962158].
[201]
Gao, L.; Yu, Z.; Meng, D.; Zheng, F.; Ong, Y.S.; Miao, P.; Lee, S.S.; Wen, L. Analogue of melanotan II (MTII): A novel melanotropin with superpotent action on frog skin. Protein Pept. Lett., 2015, 22(8), 762-766. [http://dx.doi.org/10.2174/0929866522666150622101944]. [PMID: 26095376].
[202]
Park, S.; Kwon, Y.U. Facile solid-phase parallel synthesis of linear and cyclic peptoids for comparative studies of biological activity. ACS Comb. Sci., 2015, 17(3), 196-201. [http://dx.doi.org/10.1021/co5001647]. [PMID: 25602927].
[203]
Khan, S.N.; Kim, A.; Grubbs, R.H.; Kwon, Y.U. Ring-closing metathesis approaches for the solid-phase synthesis of cyclic peptoids. Org. Lett., 2011, 13(7), 1582-1585. [http://dx.doi.org/10.1021/ol200226z]. [PMID: 21384884].
[204]
Chirayil, S.; Luebke, K.J. Cyclization of peptoids by formation of boronate esters. Tetrahedron Lett., 2012, 53(7), 726-729. [http://dx.doi.org/10.1016/j.tetlet.2011.12.002]. [PMID: 22611292].
[205]
Lee, K.J.; Lim, H.S. Facile method to sequence cyclic peptides/peptoids via one-pot ring-opening/cleavage reaction. Org. Lett., 2014, 16(21), 5710-5713. [http://dx.doi.org/10.1021/ol502788e]. [PMID: 25310875].
[206]
Lee, J.H.; Meyer, A.M.; Lim, H.S. A simple strategy for the construction of combinatorial cyclic peptoid libraries. Chem. Commun. (Camb.), 2010, 46(45), 8615-8617. [http://dx.doi.org/10.1039/c0cc03272g]. [PMID: 20890503].
[207]
Olsen, C.A.; Montero, A.; Leman, L.J.; Ghadiri, M.R. Macrocyclic peptoid-peptide hybrids as inhibitors of class I histone deacetylases. ACS Med. Chem. Lett., 2012, 3(9), 749-753. [http://dx.doi.org/10.1021/ml300162r]. [PMID: 24900543].
[208]
Oh, M.; Lee, J.H.; Moon, H.; Hyun, Y.J.; Lim, H.S. A chemical inhibitor of the Skp2/p300 interaction that promotes p53-mediated apoptosis. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 602-606. [http://dx.doi.org/10.1002/anie.201508716]. [PMID: 26593157].
[209]
Laursen, J.S.; Harris, P.; Fristrup, P.; Olsen, C.A. Triangular prism-shaped β-peptoid helices as unique biomimetic scaffolds. Nat. Commun., 2015, 6, 7013. [http://dx.doi.org/10.1038/ncomms8013]. [PMID: 25943784].
[210]
Lee, K.J.; Lee, W.S.; Yun, H.; Hyun, Y.J.; Seo, C.D.; Lee, C.W.; Lim, H.S. Oligomers of N-substituted β(2)-homoalanines: Peptoids with backbone chirality. Org. Lett., 2016, 18(15), 3678-3681. [http://dx.doi.org/10.1021/acs.orglett.6b01726]. [PMID: 27404658].
[211]
Arkin, M.R.; Tang, Y.; Wells, J.A. Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chem. Biol., 2014, 21(9), 1102-1114. [http://dx.doi.org/10.1016/j.chembiol.2014.09.001]. [PMID: 25237857].
[212]
Kariolis, M.S.; Kapur, S.; Cochran, J.R. Beyond antibodies: Using biological principles to guide the development of next-generation protein therapeutics. Curr. Opin. Biotechnol., 2013, 24(6), 1072-1077. [http://dx.doi.org/10.1016/j.copbio.2013.03.017]. [PMID: 23587963].
[213]
Herce, H.D.; Deng, W.; Helma, J.; Leonhardt, H.; Cardoso, M.C. Visualization and targeted disruption of protein interactions in living cells. Nat. Commun., 2013, 4, 2660-2667. [http://dx.doi.org/10.1038/ncomms3660]. [PMID: 24154492].
[214]
Kaffy, J.; Brinet, D.; Soulier, J.L.; Correia, I.; Tonali, N.; Fera, K.F.; Iacone, Y.; Hoffmann, A.R.; Khemtémourian, L.; Crousse, B.; Taylor, M.; Allsop, D.; Taverna, M.; Lequin, O.; Ongeri, S. Designed glycopeptidomimetics disrupt protein-protein interactions mediating amyloid β-peptide aggregation and restore neuroblastoma cell viability. J. Med. Chem., 2016, 59(5), 2025-2040. [http://dx.doi.org/10.1021/acs.jmedchem.5b01629]. [PMID: 26789783].
[215]
Checco, J.W.; Kreitler, D.F.; Thomas, N.C.; Belair, D.G.; Rettko, N.J.; Murphy, W.L.; Forest, K.T.; Gellman, S.H. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl. Acad. Sci. USA, 2015, 112(15), 4552-4557. [http://dx.doi.org/10.1073/pnas.1420380112]. [PMID: 25825775].
[216]
Otvos, L., Jr; Surmacz, E. Targeting the leptin receptor:A potential new mode of treatment for breast cancer. Expert Rev. Anticancer Ther., 2011, 11(8), 1147-1150. [http://dx.doi.org/10.1586/era.11.109]. [PMID: 21916566].
[217]
Meydan, C.; Otu, H.H.; Sezerman, O.U. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinformatics, 2013, 14(Suppl. 2), S13. [http://dx.doi.org/10.1186/1471-2105-14-S2-S13]. [PMID: 23368521].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 13
Year: 2019
Page: [2330 - 2355]
Pages: 26
DOI: 10.2174/0929867324666171012103559
Price: $65

Article Metrics

PDF: 65
HTML: 2