Sunitinib in the Treatment of Thyroid Cancer

Author(s): Silvia Martina Ferrari, Marco Centanni, Camilla Virili, Mario Miccoli, Paola Ferrari, Ilaria Ruffilli, Francesca Ragusa, Alessandro Antonelli*, Poupak Fallahi.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 6 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Sunitinib (SU11248) is an oral multi-target tyrosine kinase inhibitor (TKI) with low molecular weight, that inhibits platelet-derived growth factor receptors (PDGF-Rs) and vascular endothelial growth factor receptors (VEGFRs), c-KIT, fms-related tyrosine kinase 3 (FLT3) and RET. The concurrent inhibition of these pathways reduces tumor vascularization and causes cancer cell apoptosis, inducing a tumor shrinkage. Sunitinib is approved for the treatment of imatinib-resistant gastrointestinal stromal tumor (GIST), renal carcinoma, and pancreatic neuroendocrine tumors.

Methods: We searched the literature on PubMed library.

Results: In vitro studies showed that sunitinib targeted the cytosolic MEK/ERK and SAPK/JNK pathways in the RET/PTC1 cell inhibiting cell proliferation and causing stimulation of sodium/iodide symporter (NIS) gene expression in RET/PTC1 cells. Furthermore sunitinib is active in vitro and in vivo against anaplastic thyroid cancer (ATC) cells. Most of the clinical studies report that sunitinib is effective as first- and second-line TKI therapy in patients with advanced dedifferentiated thyroid cancer (DeTC), or medullary thyroid cancer (MTC). Sunitinib 37.5 mg/day is well tolerated, and effective. The most common adverse events include: reduction in blood cell counts (in particular leukocytes), hand-foot skin reaction, diarrhea, fatigue, nausea, hypertension, and musculoskeletal pain.

Conclusion: Even if sunitinib is promising in the therapy of differentiated thyroid carcinoma (DTC), until now no phase III studies have been published, and additional prospective researches are necessary in order to evaluate the real efficacy of sunitinib in aggressive thyroid cancer.

Keywords: Sunitinib, thyroid, tyrosine kinase, anaplastic thyroid cancer, medullary thyroid cancer, papillary thyroid cancer, follicular thyroid cancer.

[1]
Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; Sherman, S.I.; Steward, D.L.; Tuttle, R.M. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 2009, 19(11), 1167-1214.
[2]
Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M. J. Cancer statistics, 2007. CA Cancer J. Clin., 2007, 57(1), 43-66.
[3]
Schlumberger, M.; Chevillard, S.; Ory, K.; Dupuy, C.; Le Guen, B.; de Vathaire, F. [Thyroid cancer following exposure to ionising radiation]. Cancer Radiother. 2011, 15(5), 394-399.
[4]
Fushiki, S. Radiation hazards in children - lessons from Chernobyl, Three Mile Island and Fukushima. Brain Dev., 2013, 35(3), 220-227.
[5]
Miccoli, P.; Antonelli, A.; Spinelli, C.; Ferdeghini, M.; Fallahi, P.; Baschieri, L. Completion total thyroidectomy in children with thyroid cancer secondary to the Chernobyl accident. Arch. Surg., 1998, 133(1), 89-93.
[6]
Suzuki, K.; Yamashita, S. Low-dose radiation exposure and carcinogenesis. Jpn. J. Clin. Oncol., 2012, 42(7), 563-568.
[7]
Antonelli, A.; Silvano, G.; Gambuzza, C.; Bianchi, F.; Tana, L.; Baschieri, L. Is occupationally induced exposure to radiation a risk factor of thyroid nodule formation? Arch. Environ. Health, 1996, 51(3), 177-180.
[8]
Knobel, M.; Medeiros-Neto, G. Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq. Bras. Endocrinol. Metabol, 2007, 51(5), 701-712.
[9]
Donati, L.; Antonelli, A.; Bertoni, F.; Moscogiuri, D.; Andreani, M.; Venturi, S.; Filippi, T.; Gasperini, L.; Neri, S.; Baschieri, L. Clinical picture of endemic cretinism in central Apennines (Montefeltro). Thyroid, 1992, 2(4), 283-290.
[10]
Stein, S.A.; Wartofsky, L. Primary thyroid lymphoma: A clinical review. J. Clin. Endocrinol. Metab., 2013, 98(8), 3131-3138.
[11]
Jankovic, B.; Le, K.T.; Hershman, J.M. Clinical review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J. Clin. Endocrinol. Metab., 2013, 98(2), 474-482.
[12]
Antonelli, A.; Ferri, C.; Fallahi, P.; Nesti, C.; Zignego, A.L.; Maccheroni, M. Thyroid cancer in HCV-related mixed cryoglobulinemia patients. Clin. Exp. Rheumatol., 2002, 20(5), 693-696.
[13]
Antonelli, A.; Ferri, C.; Fallahi, P.; Pampana, A.; Ferrari, S.M.; Barani, L.; Marchi, S.; Ferrannini, E. Thyroid cancer in HCV-related chronic hepatitis patients: A case-control study. Thyroid, 2007, 17(5), 447-451.
[14]
Haugen, B.R. Radioiodine remnant ablation: current indications and dosing regimens. Endocr. Pract., 2012, 18(4), 604-610.
[15]
Antonelli, A.; Miccoli, P.; Ferdeghini, M.; Di Coscio, G.; Alberti, B.; Iacconi, P.; Baldi, V.; Fallahi, P.; Baschieri, L. Role of neck ultrasonography in the follow-up of patients operated on for thyroid cancer. Thyroid, 1995, 5(1), 25-28.
[16]
Antonelli, A.; Miccoli, P.; Fallahi, P.; Grosso, M.; Nesti, C.; Spinelli, C.; Ferrannini, E. Role of neck ultrasonography in the follow-up of children operated on for thyroid papillary cancer. Thyroid, 2003, 13(5), 479-484.
[17]
Haugen, B.R. Management of the patient with progressive radioiodine non-responsive disease. Semin. Surg. Oncol., 1999, 16(1), 34-41.
[18]
Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med., 2005, 353(2), 172-187.
[19]
Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol., 2011, 7(10), 569-580.
[20]
Lemoine, N.R.; Mayall, E.S.; Wyllie, F.S.; Williams, E.D.; Goyns, M.; Stringer, B.; Wynford-Thomas, D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene, 1989, 4(2), 159-164.
[21]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Frascerra, S.; Piaggi, S.; Gelmini, S.; Lupi, C.; Minuto, M.; Berti, P.; Benvenga, S.; Basolo, F.; Orlando, C.; Miccoli, P. Dysregulation of secretion of CXC alpha-chemokine CXCL10 in papillary thyroid cancer: modulation by peroxisome proliferator-activated receptor-gamma agonists. Endocr. Relat. Cancer, 2009, 16(4), 1299-1311.
[22]
Lorusso, P.M.; Eder, J.P. Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin. Investig. Drugs, 2008, 17(7), 1013-1028.
[23]
Antonelli, A.; Ferri, C.; Ferrari, S.M.; Sebastiani, M.; Colaci, M.; Ruffilli, I.; Fallahi, P. New targeted molecular therapies for dedifferentiated thyroid cancer. J. Oncol., 2010, 2010, 921682.
[24]
Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; Sherman, S.I.; Smit, J.W.; Chung, J.; Kappeler, C.; Peña, C.; Molnár, I.; Schlumberger, M.J. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet, 2014, 384(9940), 319-328.
[25]
Wells, S.A., Jr; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; Read, J.; Langmuir, P.; Ryan, A.J.; Schlumberger, M.J. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J. Clin. Oncol., 2012, 30(2), 134-141.
[26]
Cabanillas, M.E.; Brose, M.S.; Ramies, D.A.; Lee, Y.; Miles, D.; Sherman, S.I. Antitumor activity of cabozantinib (XL184) in a cohort of patients (pts) with differentiated thyroid cancer (DTC). Proceedings of the 48th American Society of Clinical Oncology Meeting Chicago, USAJ. une 1-5 2012.
[27]
Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; Gianoukakis, A.G.; Kiyota, N.; Taylor, M.H.; Kim, S.B.; Krzyzanowska, M.K.; Dutcus, C.E.; de las Heras, B.; Zhu, J.; Sherman, S.I. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med., 2015, 372(7), 621-630.
[28]
Gómez-Sáez, J.M. Sunitinib for the treatment of thyroid cancer. Expert Opin. Investig. Drugs, 2016, 25(11), 1345-1352.
[29]
Hao, Z.; Sadek, I. Sunitinib: The antiangiogenic effects and beyond. OncoTargets Ther., 2016, 9, 5495-5505.
[30]
Capozzi, M.; Arx, V.O.N.C.; D.E., Divitiis C.; Ottaiano, A.; Tatangelo, F.; Romano, G.M.; Tafuto, S.; (On behalf of ENETS Center of excellence multidisciplinary group for neuroendocrine tumors in naples, italy). Antiangiogenic therapy in pancreatic neuroendocrine tumors. Anticancer Res., 2016, 36(10), 5025-5030.
[31]
Imbulgoda, A.; Heng, D.Y.; Kollmannsberger, C. Sunitinib in the treatment of advanced solid tumors. Recent Results Cancer Res., 2014, 201, 165-184.
[32]
Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; Desai, J.; Fletcher, C.D.; George, S.; Bello, C.L.; Huang, X.; Baum, C.M.; Casali, P.G. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet, 2006, 368(9544), 1329-1338.
[33]
Lacerna, L.V. Prescribing information for Sutent (sunitinib malate). Pfizer, Inc, New York NY. Available at: https://www.pfizer.com/files/products/sutent_hcp_letter.pdf [Accessed: July 12, 2010].
[34]
Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; Chen, I.; Bycott, P.W.; Baum, C.M.; Figlin, R.A. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med., 2007, 356(2), 115-124.
[35]
Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; Garcia-del-Muro, X.; Sosman, J.A.; Solska, E.; Wilding, G.; Thompson, J.A.; Kim, S.T.; Chen, I.; Huang, X.; Figlin, R.A. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2009, 27(22), 3584-3590.
[36]
U.S. Food & Drug Administration. FDA approves Sutent for rare type of pancreatic cancer. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm256237.html . [Accessed: May 20, 2011]
[37]
Berardi, R.; Morgese, F.; Torniai, M.; Savini, A.; Partelli, S.; Rinaldi, S.; Caramanti, M.; Ferrini, C.; Falconi, M.; Cascinu, S.; Berardi, R.; Morgese, F.; Torniai, M.; Savini, A.; Partelli, S.; Rinaldi, S.; Caramanti, M.; Ferrini, C.; Falconi, M.; Cascinu, S. Medical treatment for gastro-entero-pancreatic neuroendocrine tumours. World J. Gastrointest. Oncol., 2016, 8(4), 389-401.
[38]
Kim, S.; Ding, W.; Zhang, L.; Tian, W.; Chen, S. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. OncoTargets Ther., 2014, 7, 719-728.
[39]
Kim, D.W.; Jo, Y.S.; Jung, H.S.; Chung, H.K.; Song, J.H.; Park, K.C.; Park, S.H.; Hwang, J.H.; Rha, S.Y.; Kweon, G.R.; Lee, S.J.; Jo, K.W.; Shong, M. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J. Clin. Endocrinol. Metab., 2006, 91(10), 4070-4076.
[40]
Fenton, M.S.; Marion, K.M.; Salem, A.K.; Hogen, R.; Naeim, F.; Hershman, J.M. Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer. Thyroid, 2010, 20(9), 965-974.
[41]
Jeong, W.J.; Mo, J.H.; Park, M.W.; Choi, I.J.; An, S.Y.; Jeon, E.H.; Ahn, S.H. Sunitinib inhibits papillary thyroid carcinoma with RET/PTC rearrangement but not BRAF mutation. Cancer Biol. Ther., 2011, 12(5), 458-465.
[42]
D’Agostino, M.; Voce, P.; Celano, M.; Sponziello, M.; Moretti, S.; Maggisano, V.; Verrienti, A.; Durante, C.; Filetti, S.; Puxeddu, E.; Russo, D. Sunitinib exerts only limited effects on the proliferation and differentiation of anaplastic thyroid cancer cells. Thyroid, 2012, 22(2), 138-144.
[43]
Piscazzi, A.; Costantino, E.; Maddalena, F.; Natalicchio, M.I.; Gerardi, A.M.; Antonetti, R.; Cignarelli, M.; Landriscina, M. Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab., 2012, 97(6), E898-E906.
[44]
Di Desidero, T.; Fioravanti, A.; Orlandi, P.; Canu, B.; Giannini, R.; Borrelli, N.; Man, S.; Xu, P.; Fontanini, G.; Basolo, F.; Kerbel, R.S.; Francia, G.; Danesi, R.; Bocci, G. Antiproliferative and proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of cyclin-D1. J. Clin. Endocrinol. Metab., 2013, 98(9), E1465-E1473.
[45]
Dawson, S.J.; Conus, N.M.; Toner, G.C.; Raleigh, J.M.; Hicks, R.J.; McArthur, G.; Rischin, D. Sustained clinical responses to tyrosine kinase inhibitor sunitinib in thyroid carcinoma. Anticancer Drugs, 2008, 19(5), 547-552.
[46]
Bugalho, M.J.; Domingues, R.; Borges, A. A case of advanced medullary thyroid carcinoma successfully treated with sunitinib. Oncologist, 2009, 14(11), 1083-1087.
[47]
Cabanillas, M.E.; Waguespack, S.G.; Bronstein, Y.; Williams, M.D.; Feng, L.; Hernandez, M.; Lopez, A.; Sherman, S.I.; Busaidy, N.L. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: The M. D. Anderson experience. J. Clin. Endocrinol. Metab., 2010, 95(6), 2588-2595.
[48]
Kaldrymides, P.; Kostoglou-Athanassiou, I.; Gkountouvas, A.; Veniou, E.; Ziras, N. Partial remission of metastatic papillary thyroid carcinoma with sunitinib. Report of a case and review of the literature. Endocrine, 2010, 37(1), 6-10.
[49]
Pasqualetti, G.; Ricci, S.; Dardano, A.; Ferdeghini, M.; Del Tacca, M.; Monzani, F. The emerging role of sunitinib in the treatment of advanced epithelial thyroid cancer: our experience and review of literature. Mini Rev. Med. Chem., 2011, 11(9), 746-752.
[50]
Currás Freixes, M.; Díaz Pérez, J.Á.; Casado Herráez, A.; Ochagavía Cámara, S. Three cases of sporadic medullary thyroid carcinoma in progression treated with sunitinib. Endocrinol. Nutr., 2014, 61(1), 62-63.
[51]
Gori, S.; Foglietta, J.; Rossi, M.; Hamzaj, A.; Stocchi, L.; Galuppo, C.; Picece, V.; Puxeddu, E.; Furlani, L. Sunitinib therapy in metastatic papillary thyroid cancer. Tumori, 2013, 99(6), 285e-287e.
[52]
Díez, J.J.; Iglesias, P.; Alonso, T.; Grande, E. Activity and safety of sunitinib in patients with advanced radioactive iodine-refractory differentiated thyroid carcinoma in clinical practice. Endocrine, 2015, 48(2), 582-588.
[53]
Marotta, V.; Di Somma, C.; Rubino, M.; Sciammarella, C.; Modica, R.; Camera, L.; Del Prete, M.; Marciello, F.; Ramundo, V.; Circelli, L.; Buonomano, P.; Colao, A.; Faggiano, A. Second-line sunitinib as a feasible approach for iodine-refractory differentiated thyroid cancer after the failure of first-line sorafenib. Endocrine, 2015, 49(3), 854-858.
[54]
Schoenfeld, J.D.; Odejide, O.O.; Wirth, L.J.; Chan, A.W. Survival of a patient with anaplastic thyroid cancer following intensity-modulated radiotherapy and sunitinib--a case report. Anticancer Res., 2012, 32(5), 1743-1746.
[55]
Grande, E.; Capdevila, J.; Díez, J.J.; Longo, F.; Carrato, A. A significant response to sunitinib in a patient with anaplastic thyroid carcinoma. J. Res. Med. Sci., 2013, 18(7), 623-625.
[56]
Cohen, E.E.; Needles, B.M.; Cullen, K.J.; Wong, S.J.; Wade, J.L.; Ivy, S.P.; Villaflor, V.M.; Seiwert, T.Y.; Nichols, K.; Vokes, E.E. In Phase 2 study of sunitinib in refractory thyroid cancer. Proceedings of the 44th American Society of Clinical Oncology Meeting Chicago, 2008.
[57]
Goulart, B.; Carr, L.; Martins, R.G.; Eaton, K.; Kell, E.; Wallace, S.; Capell, P.; Mankoff, D. Phase II study of sunitinib in iodine refractory, well-differentiated thyroid cancer (WDTC) and metastatic medullary thyroid carcinoma (MTC). Proceedings of the 44th American Society of Clinical Oncology Meeting Chicago, USAMay 30 - June 3, 2008
[58]
Ravaud, A.; de la Fouchardière, C.; Caron, P.; Doussau, A.; Do Cao, C.; Asselineau, J.; Rodien, P.; Pouessel, D.; Nicolli-Sire, P.; Klein, M.; Bournaud-Salinas, C.; Wemeau, J.L.; Gimbert, A.; Picat, M.Q.; Pedenon, D.; Digue, L.; Daste, A.; Catargi, B.; Delord, J.P. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: Mature data from the THYSU study. Eur. J. Cancer, 2017, 76, 110-117.
[59]
Ravaud, A.; de la Fouchardière, C.; Asselineau, J.; Delord, J.P.; Do Cao, C.; Niccoli, P.; Rodien, P.; Klein, M.; Catargi, B. Efficacy of sunitinib in advanced medullary thyroid carcinoma: Intermediate results of phase II THYSU. Oncologist, 2010, 15(2), 212-213.
[60]
Carr, L.L.; Mankoff, D.A.; Goulart, B.H.; Eaton, K.D.; Capell, P.T.; Kell, E.M.; Bauman, J.E.; Martins, R.G. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin. Cancer Res., 2010, 16(21), 5260-5268.
[61]
De Souza, J.A.; Busaidy, N.; Zimrin, A.; Seiwert, T.Y.; Villaflor, V.M.; Poluru, K.B.; Reddy, P.L.; Nam, J.; Vokes, E.E.; Cohen, E.E. The University of Chicago, IL. Proceedings of the 46th American Society of Clinical Oncology Meeting Chicago, June 4-8, 2010.
[62]
Massicotte, M.H.; Brassard, M.; Claude-Desroches, M.; Borget, I.; Bonichon, F.; Giraudet, A.L.; Do Cao, C.; Chougnet, C.N.; Leboulleux, S.; Baudin, E.; Schlumberger, M.; de la Fouchardière, C. Tyrosine kinase inhibitor treatments in patients with metastatic thyroid carcinomas: a retrospective study of the TUTHYREF network. Eur. J. Endocrinol., 2014, 170(4), 575-582.
[63]
Bikas, A.; Kundra, P.; Desale, S.; Mete, M.; O’Keefe, K.; Clark, B.G.; Wray, L.; Gandhi, R.; Barett, C.; Jelinek, J.S.; Wexler, J.A.; Wartofsky, L.; Burman, K.D. Phase 2 clinical trial of sunitinib as adjunctive treatment in patients with advanced differentiated thyroid cancer. Eur. J. Endocrinol., 2016, 174(3), 373-380.
[64]
Atallah, V.; Hocquelet, A.; Do Cao, C.; Zerdoud, S.; De La Fouchardiere, C.; Bardet, S.; Italiano, A.; Dierick-Galet, A.; Leduc, N.; Bonichon, F.; Leboulleux, S.; Godbert, Y. Activity and safety of sunitinib in patients with advanced radioiodine refractory thyroid carcinoma: A retrospective analysis of 57 patients. Thyroid, 2016, 26(8), 1085-1092.
[65]
National Cancer Institute. Phase II Trial of Sunitinib (SU11248) in Iodine-131 Refractory, Unresectable Differentiated Thyroid Cancers and Medullary Thyroid Cancers. [ClinicalTrials.gov Identifier: NCT00381641]. Last updated: March 20, 2017. Available from: https://clinicaltrials.gov/ct2/show/study/NCT00381641
[66]
Harvey, R.D.; Owonikoko, T.K.; Lewis, C.M.; Akintayo, A.; Chen, Z.; Tighiouart, M.; Ramalingam, S.S.; Fanucchi, M.P.; Nadella, P.; Rogatko, A.; Shin, D.M.; El-Rayes, B.; Khuri, F.R.; Kauh, J.S. A phase 1 Bayesian dose selection study of bortezomib and sunitinib in patients with refractory solid tumor malignancies. Br. J. Cancer, 2013, 108(4), 762-765.
[67]
Fallahi, P.; Ferrari, S.M.; Vita, R.; Di Domenicantonio, A.; Corrado, A.; Benvenga, S.; Antonelli, A. Thyroid dysfunctions induced by tyrosine kinase inhibitors. Expert Opin. Drug Saf., 2014, 13(6), 723-733.
[68]
Gild, M.L.; Bullock, M.; Robinson, B.G.; Clifton-Bligh, R. Multikinase inhibitors: A new option for the treatment of thyroid cancer. Nat. Rev. Endocrinol., 2011, 7(10), 617-624.
[69]
Liu, R.; Liu, D.; Xing, M. The Akt inhibitor MK2206 synergizes, but perifosine antagonizes, the BRAF(V600E) inhibitor PLX4032 and the MEK1/2 inhibitor AZD6244 in the inhibition of thyroid cancer cells. J. Clin. Endocrinol. Metab., 2012, 97(2), E173-E182.
[70]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Berti, P.; Materazzi, G.; Minuto, M.; Giannini, R.; Marchetti, I.; Barani, L.; Basolo, F.; Ferrannini, E.; Miccoli, P. Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clin. Endocrinol. (Oxf.), 2009, 70(6), 946-953.
[71]
Antonelli, A.; Bocci, G.; La Motta, C.; Ferrari, S.M.; Fallahi, P.; Ruffilli, I.; Di Domenicantonio, A.; Fioravanti, A.; Sartini, S.; Minuto, M.; Piaggi, S.; Corti, A.; Alì, G.; Di Desidero, T.; Berti, P.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. CLM94, a novel cyclic amide with anti-VEGFR-2 and antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J. Clin. Endocrinol. Metab., 2012, 97(4), E528-E536.
[72]
Newell, D.R. Flasks, fibres and flanks--pre-clinical tumour models for predicting clinical antitumour activity. Br. J. Cancer, 2001, 84(10), 1289-1290.
[73]
Schroyens, W.; Tueni, E.; Dodion, P.; Bodecker, R.; Stoessel, F.; Klastersky, J. Validation of clinical predictive value of in vitro colorimetric chemosensitivity assay in head and neck cancer. Eur. J. Cancer, 1990, 26(7), 834-838.
[74]
Antonelli, A. Molecular profiling and ways towards personalized medicine in advanced differentiated thyroid cancer. Curr. Genomics, 2014, 15(3), 161.
[75]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Berti, P.; Materazzi, G.; Marchetti, I.; Ugolini, C.; Basolo, F.; Miccoli, P.; Ferrannini, E. Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur. J. Endocrinol., 2008, 159(3), 283-291.
[76]
Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Berti, P.; Materazzi, G.; Barani, L.; Marchetti, I.; Ferrannini, E.; Miccoli, P. Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clin. Endocrinol. (Oxf.), 2008, 69(1), 148-152.
[77]
Ferrari, S.M.; Fallahi, P.; La Motta, C.; Bocci, G.; Corrado, A.; Materazzi, G.; Galleri, D.; Piaggi, S.; Danesi, R.; Da Settimo, F.; Miccoli, P.; Antonelli, A. Antineoplastic activity of the multitarget tyrosine kinase inhibitors CLM3 and CLM94 in medullary thyroid cancer in vitro. Surgery, 2014, 156(5), 1167-1176.
[78]
Antonelli, A.; Bocci, G.; La Motta, C.; Ferrari, S.M.; Fallahi, P.; Corrado, A.; Fioravanti, A.; Sartini, S.; Orlandi, P.; Piaggi, S.; Corti, A.; Materazzi, G.; Galleri, D.; Ulisse, S.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. CLM29, a multi-target pyrazolopyrimidine derivative, has anti-neoplastic activity in medullary thyroid cancer in vitro and in vivo. Mol. Cell. Endocrinol., 2014, 393(1-2), 56-64.
[79]
Antonelli, A.; Bocci, G.; Fallahi, P.; La Motta, C.; Ferrari, S.M.; Mancusi, C.; Fioravanti, A.; Di Desidero, T.; Sartini, S.; Corti, A.; Piaggi, S.; Materazzi, G.; Spinelli, C.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. CLM3, a multitarget tyrosine kinase inhibitor with antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J. Clin. Endocrinol. Metab., 2014, 99(4), E572-E581.
[80]
Antonelli, A.; Bocci, G.; La Motta, C.; Ferrari, S.M.; Fallahi, P.; Fioravanti, A.; Sartini, S.; Minuto, M.; Piaggi, S.; Corti, A.; Alì, G.; Berti, P.; Fontanini, G.; Danesi, R.; Da Settimo, F.; Miccoli, P. Novel pyrazolopyrimidine derivatives as tyrosine kinase inhibitors with antitumoral activity in vitro and in vivo in papillary dedifferentiated thyroid cancer. J. Clin. Endocrinol. Metab., 2011, 96(2), E288-E296.
[81]
Aiello, A.; Pandini, G.; Frasca, F.; Conte, E.; Murabito, A.; Sacco, A.; Genua, M.; Vigneri, R.; Belfiore, A. Peroxisomal proliferator-activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology, 2006, 147(9), 4463-4475.
[82]
Marlow, L.A.; Reynolds, L.A.; Cleland, A.S.; Cooper, S.J.; Gumz, M.L.; Kurakata, S.; Fujiwara, K.; Zhang, Y.; Sebo, T.; Grant, C.; McIver, B.; Wadsworth, J.T.; Radisky, D.C.; Smallridge, R.C.; Copland, J.A. Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth. Cancer Res., 2009, 69(4), 1536-1544.
[83]
Bravo, S.B.; García-Rendueles, M.E.; Seoane, R.; Dosil, V.; Cameselle-Teijeiro, J.; López-Lázaro, L.; Zalvide, J.; Barreiro, F.; Pombo, C.M.; Alvarez, C.V. Plitidepsin has a cytostatic effect in human undifferentiated (anaplastic) thyroid carcinoma. Clin. Cancer Res., 2005, 11(21), 7664-7673.
[84]
Karwowski, J.K.; Nowels, K.W.; McDougall, I.R.; Weigel, R.J. Needle track seeding of papillary thyroid carcinoma from fine needle aspiration biopsy. A case report. Acta Cytol., 2002, 46(3), 591-595.
[85]
Uchida, N.; Suda, T.; Inoue, T.; Fujiwara, Y.; Ishiguro, K. Needle track dissemination of follicular thyroid carcinoma following fine-needle aspiration biopsy: Report of a case. Surg. Today, 2007, 37(1), 34-37.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 6
Year: 2019
Page: [963 - 972]
Pages: 10
DOI: 10.2174/0929867324666171006165942
Price: $58

Article Metrics

PDF: 26
HTML: 3
EPUB: 1
PRC: 1