Amino Acid Degrading Enzymes and their Application in Cancer Therapy

Author(s): Vadim S. Pokrovsky* , Olga E. Chepikova , Denis Zh. Davydov , Andrey A. Zamyatnin Jr , Alexander N. Lukashev , Elena V. Lukasheva .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 3 , 2019

  Journal Home
Translate in Chinese

Abstract:

Background: Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth.

Objective: The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer.

Methods: We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology.

Results: Most published research are on the subject of L-asparaginase properties and it’s use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo.

Conclusion: The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.

Keywords: Amino acid degrading enzymes, L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase, cancer therapy, cancer treatment.

[1]
Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 2011, 11(5), 325-337.
[2]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[3]
Macintyre, A.N.; Rathmell, J.C. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab., 2013, 1(1), 5.
[4]
Avramis, V.I. Asparaginases: Biochemical pharmacology and modes of drug resistance. Anticancer Res., 2012, 32(7), 2423-2437.
[5]
Locasale, J.W.; Grassian, A.R.; Melman, T.; Lyssiotis, C.A.; Mattaini, K.R.; Bass, A.J.; Heffron, G.; Metallo, C.M.; Muranen, T.; Sharfi, H.; Sasaki, A.T.; Anastasiou, D.; Mullarky, E.; Vokes, N.I.; Sasaki, M.; Beroukhim, R.; Stephanopoulos, G.; Ligon, A.H.; Meyerson, M.; Richardson, A.L.; Chin, L.; Wagner, G.; Asara, J.M.; Brugge, J.S.; Cantley, L.C.; Vander Heiden, M.G. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet., 2011, 43(9), 869-874.
[6]
Muñoz-Pinedo, C.; El Mjiyad, N.; Ricci, J.E. Cancer metabolism: Current perspectives and future directions. Cell Death Dis., 2012, 3, e248.
[7]
Tönjes, M.; Barbus, S.; Park, Y.J.; Wang, W.; Schlotter, M.; Lindroth, A.M.; Pleier, S.V.; Bai, A.H.C.; Karra, D.; Piro, R.M.; Felsberg, J.; Addington, A.; Lemke, D.; Weibrecht, I.; Hovestadt, V.; Rolli, C.G.; Campos, B.; Turcan, S.; Sturm, D.; Witt, H.; Chan, T.A.; Herold-Mende, C.; Kemkemer, R.; König, R.; Schmidt, K.; Hull, W.E.; Pfister, S.M.; Jugold, M.; Hutson, S.M.; Plass, C.; Okun, J.G.; Reifenberger, G.; Lichter, P.; Radlwimmer, B. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med., 2013, 19(7), 901-908.
[8]
Avruch, J.; Long, X.; Ortiz-Vega, S.; Rapley, J.; Papageorgiou, A.; Dai, N. Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E592-E602.
[9]
Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; Myer, V.E.; MacKeigan, J.P.; Porter, J.A.; Wang, Y.K.; Cantley, L.C.; Finan, P.M.; Murphy, L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 2009, 136(3), 521-534.
[10]
Willems, L.; Jacque, N.; Jacquel, A.; Neveux, N.; Maciel, T.T.; Lambert, M.; Schmitt, A.; Poulain, L.; Green, A.S.; Uzunov, M.; Kosmider, O.; Radford-Weiss, I.; Moura, I.C.; Auberger, P.; Ifrah, N.; Bardet, V.; Chapuis, N.; Lacombe, C.; Mayeux, P.; Tamburini, J.; Bouscary, D. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood, 2013, 122(20), 3521-3532.
[11]
Song, P.; Ye, L.; Fan, J.; Li, Y.; Zeng, X.; Wang, Z.; Wang, S.; Zhang, G.; Yang, P.; Cao, Z.; Ju, D. Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget, 2015, 6(6), 3861-3873.
[12]
Yu, M.; Henning, R.; Walker, A.; Kim, G.; Perroy, A.; Alessandro, R.; Virador, V.; Kohn, E.C. L-asparaginase inhibits invasive and angiogenic activity and induces autophagy in ovarian cancer. J. Cell. Mol. Med., 2012, 16(10), 2369-2378.
[13]
Karpel-Massler, G.; Ramani, D.; Shu, C.; Halatsch, M.E.; Westhoff, M.A.; Bruce, J.N.; Canoll, P.; Siegelin, M.D. Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget, 2016, 7(23), 33512-33528.
[14]
Pokrovskaya, M.V.; Zhdanov, D.D.; Eldarov, M.A.; Aleksandrova, S.S.; Veselovskiy, A.V.; Pokrovskiy, V.S.; Grishin, D.V.; Gladilina, J.A.; Sokolov, N.N. [Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase]. Biomed. Khim., 2017, 63(1), 62-74.
[15]
Zhdanov, D.D.; Pokrovsky, V.S.; Pokrovskaya, M.V.; Alexandrova, S.S.; Eldarov, M.A.; Grishin, D.V.; Basharov, M.M.; Gladilina, Y.A.; Podobed, O.V.; Sokolov, N.N. Rhodospirillum rubruml-asparaginase targets tumor growth by a dual mechanism involving telomerase inhibition. Biochem. Biophys. Res. Commun., 2017, 492(2), 282-288.
[16]
Kumar, D.S.; Sobha, K. L-Asparaginase from Microbes: A Comprehensive Review. Advances in Bioresearch, 2012, 3(4), 137-157.
[17]
Michalska, K.; Jaskolski, M. Structural aspects of L-asparaginases, their friends and relations. Acta Biochim. Pol., 2006, 53(4), 627-640.
[18]
Bonthron, D.T.; Jaskólski, M. Why a “benign” mutation kills enzyme activity. Structure-based analysis of the A176V mutant of Saccharomyces cerevisiae L-asparaginase I. Acta Biochim. Pol., 1997, 44(3), 491-504.
[19]
Yao, M.; Yasutake, Y.; Morita, H.; Tanaka, I. Structure of the type I L-asparaginase from the hyperthermophilic archaeon Pyrococcus horikoshii at 2.16 angstroms resolution. Acta Crystallogr. D Biol. Crystallogr., 2005, 61(Pt 3), 294-301.
[20]
Offman, M.N.; Krol, M.; Patel, N.; Krishnan, S.; Liu, J.; Saha, V.; Bates, P.A. Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood, 2011, 117(5), 1614-1621.
[21]
Sokolov, N.N.; Eldarov, M.A.; Pokrovskaya, M.V.; Aleksandrova, S.S.; Abakumova, O.Y.; Podobed, O.V.; Melik-Nubarov, N.S.; Kudryashova, E.V.; Grishin, D.V.; Archakov, A.I. [Bacterial recombinant L-asparaginases: properties, structure and anti-proliferative activity]. Biomed. Khim., 2015, 61(3), 312-324.
[22]
Ankel, E.G.; Zirneski, J.; Ring, B.J.; Holcenberg, J.S. Effect of asparaginase on cell membranes of sensitive and resistant mouse lymphoma cells. In Vitro, 1984, 20(5), 376-384.
[23]
Liu, J.J.; Dai, X.J.; Xu, Y.; Liu, P.Q.; Zhang, Y.; Liu, X.D.; Fang, Z.G.; Lin, D.J.; Xiao, R.Z.; Huang, R.W.; Huang, H.Q. Inhibition of lymphoma cell proliferation by peroxisomal proliferator-activated receptor-γ ligands via Wnt signaling pathway. Cell Biochem. Biophys., 2012, 62(1), 19-27.
[24]
Fidler, I.J.; Montgomery, P.C. Effects of L-asparaginase on lymphocyte surface and blastogenesis. Cancer Res., 1972, 32(11), 2400-2406.
[25]
Hervas-Stubbs, S.; Perez-Gracia, J.L.; Rouzaut, A.; Sanmamed, M.F.; Le Bon, A.; Melero, I. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res., 2011, 17(9), 2619-2627.
[26]
Vadlamudi, S.; Krishna, B.; Reddy, V.V.; Goldin, A. Schedule-dependent therapeutic synergism for L-asparaginase and methotrexate in leukemic (L5178Y) mice. Cancer Res., 1973, 33(9), 2014-2019.
[27]
Egler, R.A.; Ahuja, S.P.; Matloub, Y. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J. Pharmacol. Pharmacother., 2016, 7(2), 62-71.
[28]
Jaccard, A.; Petit, B.; Girault, S.; Suarez, F.; Gressin, R.; Zini, J.M.; Coiteux, V.; Larroche, C.; Devidas, A.; Thiéblemont, C.; Gaulard, P.; Marin, B.; Gachard, N.; Bordessoule, D.; Hermine, O. L-asparaginase-based treatment of 15 western patients with extranodal NK/T-cell lymphoma and leukemia and a review of the literature. Ann. Oncol., 2009, 20(1), 110-116.
[29]
Obama, K.; Tara, M.; Niina, K. L-asparaginase induced complete remission in Epstein-Barr virus positive, multidrug resistant, cutaneous T-cell lymphoma. Int. J. Hematol., 1999, 69(4), 260-262.
[30]
Pokrovsky, V.S.; Vinnikov, D. L-Asparaginase for newly diagnosed extra-nodal NK/T-cell lymphoma: Systematic review and meta-analysis. Expert Rev. Anticancer Ther., 2017, 17(8), 759-768.
[31]
Yong, W.; Zheng, W.; Zhang, Y.; Zhu, J.; Wei, Y.; Zhu, D.; Li, J. L-asparaginase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. Int. J. Hematol., 2003, 78(2), 163-167.
[32]
Pokrovsky, V.S.; Anisimova, N.Y.; Pokrovskaya, M.V.; Aleksandrova, S.S.; Sokolov, N.N. Yersinia Pseudotuber-culosis L-asparaginase-a promising new chemotherapeutic agent. Eur. J. Cancer, 2012, 48, S219-S220.
[33]
DeBerardinis, R.J.; Cheng, T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 2010, 29(3), 313-324.
[34]
DeBerardinis, R.J.; Mancuso, A.; Daikhin, E.; Nissim, I.; Yudkoff, M.; Wehrli, S.; Thompson, C.B. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19345-19350.
[35]
Deberardinis, R.J.; Sayed, N.; Ditsworth, D.; Thompson, C.B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev., 2008, 18(1), 54-61.
[36]
Avramis, V.I.; Panosyan, E.H. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: The past, the present and recommendations for the future. Clin. Pharmacokinet., 2005, 44(4), 367-393.
[37]
Rotoli, B.M.; Uggeri, J.; Dall’Asta, V.; Visigalli, R.; Barilli, A.; Gatti, R.; Orlandini, G.; Gazzola, G.C.; Bussolati, O. Inhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells. Cell. Physiol. Biochem., 2005, 15(6), 281-292.
[38]
Tardito, S.; Uggeri, J.; Bozzetti, C.; Bianchi, M.G.; Rotoli, B.M.; Franchi-Gazzola, R.; Gazzola, G.C.; Gatti, R.; Bussolati, O. The inhibition of glutamine synthetase sensitizes human sarcoma cells to L-asparaginase. Cancer Chemother. Pharmacol., 2007, 60(5), 751-758.
[39]
Cacace, A.; Sboarina, M.; Vazeille, T.; Sonveaux, P. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism. Oncogene, 2017, 36(15), 2074-2084.
[40]
Reinert, R.B.; Oberle, L.M.; Wek, S.A.; Bunpo, P.; Wang, X.P.; Mileva, I.; Goodwin, L.O.; Aldrich, C.J.; Durden, D.L.; McNurlan, M.A.; Wek, R.C.; Anthony, T.G. Role of glutamine depletion in directing tissue-specific nutrient stress responses to L-asparaginase. J. Biol. Chem., 2006, 281(42), 31222-31233.
[41]
Woods, J.S.; Handschumacher, R.E. Hepatic homeostasis of plasma L-asparagine. Am. J. Physiol., 1971, 221(6), 1785-1790.
[42]
Villa, P.; Corada, M.; Bartosek, I. L-asparaginase effects on inhibition of protein synthesis and lowering of the glutamine content in cultured rat hepatocytes. Toxicol. Lett., 1986, 32(3), 235-241.
[43]
Ollenschläger, G.; Roth, E.; Linkesch, W.; Jansen, S.; Simmel, A.; Mödder, B. Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drug-related side-effects. Eur. J. Clin. Invest., 1988, 18(5), 512-516.
[44]
Bendich, A.; Kafkewitz, D.; Abuchowski, A.; Davis, F.F. Immunological effects of native and polyethylene glycol-modified asparaginases from Vibrio succinogenes and Escherichia coli in normal and tumour-bearing mice. Clin. Exp. Immunol., 1982, 48(1), 273-278.
[45]
Distasio, J.A.; Salazar, A.M.; Nadji, M.; Durden, D.L. Glutaminase-free asparaginase from vibrio succinogenes: An antilymphoma enzyme lacking hepatotoxicity. Int. J. Cancer, 1982, 30(3), 343-347.
[46]
Storti, E.; Quaglino, D. Dysmetabolic and neurological complications in leukemia patients treated with L-asparaginase. Recent Results Cancer Res., 1970, 33, 344-349.
[47]
Roberts, J.; Schmid, F.A.; Old, L.J.; Stockert, E. A comparative study of the antitumor effectiveness of E. coli and Erwinia asparaginases. Cancer Biochem. Biophys., 1976, 1(4), 175-178.
[48]
Warrell, R.P., Jr; Chou, T.C.; Gordon, C.; Tan, C.; Roberts, J.; Sternberg, S.S.; Philips, F.S.; Young, C.W. Phase I evaluation of succinylated Acinetobacter glutaminase-asparaginase in adults. Cancer Res., 1980, 40(12), 4546-4551.
[49]
Steiner, M.; Attarbaschi, A.; Kastner, U.; Dworzak, M.; Haas, O.A.; Gadner, H.; Mann, G. Distinct fluctuations of ammonia levels during asparaginase therapy for childhood acute leukemia. Pediatr. Blood Cancer, 2007, 49(5), 640-642.
[50]
Watanabe, S.; Miyake, K.; Ogawa, C.; Matsumoto, H.; Yoshida, K.; Hirabayashi, S.; Hasegawa, D.; Inoue, T.; Kizu, J.; Machida, R.; Ohara, A.; Hosoya, R.; Manabe, A. The ex vivo production of ammonia predicts L-asparaginase biological activity in children with acute lymphoblastic leukemia. Int. J. Hematol., 2009, 90(3), 347-352.
[51]
Durden, D.L.; Salazar, A.M.; Distasio, J.A. Kinetic analysis of hepatotoxicity associated with antineoplastic asparaginases. Cancer Res., 1983, 43(4), 1602-1605.
[52]
Duval, M.; Suciu, S.; Ferster, A.; Rialland, X.; Nelken, B.; Lutz, P.; Benoit, Y.; Robert, A.; Manel, A.M.; Vilmer, E.; Otten, J.; Philippe, N. Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: Results of a randomized European Organisation for Research and Treatment of Cancer-Children’s Leukemia Group phase 3 trial. Blood, 2002, 99(8), 2734-2739.
[53]
Eden, O.B.; Shaw, M.P.; Lilleyman, J.S.; Richards, S. Non-randomised study comparing toxicity of Escherichia coli and Erwinia asparaginase in children with leukaemia. Med. Pediatr. Oncol., 1990, 18(6), 497-502.
[54]
Appel, I.M.; Hop, W.C.; Pieters, R. Changes in hypercoagulability by asparaginase: A randomized study between two asparaginases. Blood Coagul. Fibrinolysis, 2006, 17(2), 139-146.
[55]
Howard, J.B.; Carpenter, F.H. L-asparaginase from Erwinia carotovora. Substrate specificity and enzymatic properties. J. Biol. Chem., 1972, 247(4), 1020-1030.
[56]
Asselin, B.L.; Whitin, J.C.; Coppola, D.J.; Rupp, I.P.; Sallan, S.E.; Cohen, H.J. Comparative pharmacokinetic studies of three asparaginase preparations. J. Clin. Oncol., 1993, 11(9), 1780-1786.
[57]
Cappelletti, D.; Chiarelli, L.R.; Pasquetto, M.V.; Stivala, S.; Valentini, G.; Scotti, C. Helicobacter pyloril-asparaginase: A promising chemotherapeutic agent. Biochem. Biophys. Res. Commun., 2008, 377(4), 1222-1226.
[58]
Pokrovskaya, M.V.; Aleksandrova, S.S.; Pokrovsky, V.S.; Veselovsky, A.V.; Grishin, D.V.; Abakumova, O.Y.; Podobed, O.V.; Mishin, A.A.; Zhdanov, D.D.; Sokolov, N.N. Identification of functional regions in the Rhodospirillum rubrum L-asparaginase by site-directed mutagenesis. Mol. Biotechnol., 2015, 57(3), 251-264.
[59]
Pokrovskaya, M.V.; Pokrovskiy, V.S.; Aleksandrova, S.S.; Anisimova, N.Y.; Andrianov, R.M.; Treschalina, E.M.; Ponomarev, G.V.; Sokolov, N.N. Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biochemistry (Moscow). Supplement Series B: Biomedical Chemistry, 2012, 6(2), 123-131.
[60]
Derst, C.; Henseling, J.; Röhm, K.H. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci., 2000, 9(10), 2009-2017.
[61]
Abuchowski, A.; Kazo, G.M.; Verhoest, C.R., Jr; Van Es, T.; Kafkewitz, D.; Nucci, M.L.; Viau, A.T.; Davis, F.F. Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates. Cancer Biochem. Biophys., 1984, 7(2), 175-186.
[62]
Khan, A.; Hill, J.M. Atopic hypersensitivity to L-asparaginase. Resistance to immunosuppression. Int. Arch. Allergy Appl. Immunol., 1971, 40(3), 463-469.
[63]
Avramis, V.I.; Tiwari, P.N. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int. J. Nanomedicine, 2006, 1(3), 241-254.
[64]
Alvarez, O.A.; Zimmerman, G. Pegaspargase-induced pancreatitis. Med. Pediatr. Oncol., 2000, 34(3), 200-205.
[65]
Melik-Nubarov, N.; Grozdova, I.; Lomakina, G.Y.; Pokrovskaya, M.; Pokrovski, V.; Aleksandrova, S.; Aba-kumova, O.Y.; Podobed, O.; Grishin, D.; Sokolov, N. PEGylated recombinant L-asparaginase from Erwinia carotovora: Production, properties, and potential applications. Appl. Biochem. Microbiol., 2017, 53(2), 165-172.
[66]
Gaspar, M.M.; Perez-Soler, R.; Cruz, M.E. Biological characterization of L-asparaginase liposomal formulations. Cancer Chemother. Pharmacol., 1996, 38(4), 373-377.
[67]
Jean-François, J.; D’Urso, E.M.; Fortier, G. Immobilization of L-asparaginase into a biocompatible poly(ethylene glycol)-albumin hydrogel: Evaluation of performance in vivo. Biotechnol. Appl. Biochem., 1997, 26(3), 203-212.
[68]
Gasper, M.M.; Blanco, D.; Cruz, M.E.; Alonso, M.J. Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release, 1998, 52(1-2), 53-62.
[69]
Qian, G.; Zhou, J.; Ma, J.; Wang, D.; He, B. The chemical modification of E. coli L-asparaginase by N,O-carboxymethyl chitosan. Artif. Cells Blood Substit. Immobil. Biotechnol., 1996, 24(6), 567-577.
[70]
Uren, J.R.; Hargis, B.J.; Beardsley, P. Immunological and pharmacological characterization of poly-DL-alanyl-modified Erwinia carotovora L-asparaginase. Cancer Res., 1982, 42(10), 4068-4071.
[71]
Jorge, J.C.; Perez-Soler, R.; Morais, J.G.; Cruz, M.E. Liposomal palmitoyl-L-asparaginase: Characterization and biological activity. Cancer Chemother. Pharmacol., 1994, 34(3), 230-234.
[72]
Leal-Egaña, A.; Scheibel, T. Silk-based materials for biomedical applications. Biotechnol. Appl. Biochem., 2010, 55(3), 155-167.
[73]
Spiess, K.; Lammel, A.; Scheibel, T. Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci., 2010, 10(9), 998-1007.
[74]
Zhang, Y.Q.; Zhou, W.L.; Shen, W.D.; Chen, Y.H.; Zha, X.M.; Shirai, K.; Kiguchi, K. Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates. J. Biotechnol., 2005, 120(3), 315-326.
[75]
Kwon, Y.M.; Chung, H.S.; Moon, C.; Yockman, J.; Park, Y.J.; Gitlin, S.D.; David, A.E.; Yang, V.C. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control. Release, 2009, 139(3), 182-189.
[76]
Moola, Z.B.; Scawen, M.D.; Atkinson, T.; Nicholls, D.J. Erwinia chrysanthemi L-asparaginase: epitope mapping and production of antigenically modified enzymes. Biochem. J., 1994, 302(Pt 3), 921-927.
[77]
Goldberg, A.I.; Cooney, D.A.; Glynn, J.P.; Homan, E.R.; Gaston, M.R.; Milman, H.A. The effects of immunization to L-asparaginase on antitumor and enzymatic activity. Cancer Res., 1973, 33(2), 256-261.
[78]
Vrooman, L.M.; Supko, J.G.; Neuberg, D.S.; Asselin, B.L.; Athale, U.H.; Clavell, L.; Kelly, K.M.; Laverdière, C.; Michon, B.; Schorin, M.; Cohen, H.J.; Sallan, S.E.; Silverman, L.B. Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer, 2010, 54(2), 199-205.
[79]
Zalewska-Szewczyk, B.; Gach, A.; Wyka, K.; Bodalski, J.; Młynarski, W. The cross-reactivity of anti-asparaginase antibodies against different L-asparaginase preparations. Clin. Exp. Med., 2009, 9(2), 113-116.
[80]
Distasio, J.A.; Niederman, R.A.; Kafkewitz, D.; Goodman, D. Purification and characterization of L-asparaginase with anti-lymphoma activity from Vibrio succinogenes. J. Biol. Chem., 1976, 251(22), 6929-6933.
[81]
Gladilina Iu, A.; Sokolov, N.N.; Krasotkina Iu, V. [Cloning, expression and purification of Helicobater pylori L-asparaginase]. Biomed. Khim., 2008, 54(4), 482-486.
[82]
Sannikova, E.P.; Bulushova, N.V.; Cheperegin, S.E.; Gubaydullin, I.I.; Chestukhina, G.G.; Ryabichenko, V.V.; Zalunin, I.A.; Kotlova, E.K.; Konstantinova, G.E.; Kubasova, T.S.; Shtil, A.A.; Pokrovsky, V.S.; Yarotsky, S.V.; Efremov, B.D.; Kozlov, D.G. the modified heparin-binding L-asparaginase of wolinella succinogenes. Mol. Biotechnol., 2016, 58(8-9), 528-539.
[83]
Sidoruk, K.V.; Pokrovsky, V.S.; Borisova, A.A.; Omeljanuk, N.M.; Aleksandrova, S.S.; Pokrovskaya, M.V.; Gladilina, J.A.; Bogush, V.G.; Sokolov, N.N. Creation of a producent, optimization of expression, and purification of recombinant Yersinia pseudotuberculosis L-asparaginase. Bull. Exp. Biol. Med., 2011, 152(2), 219-223.
[84]
Pokrovsky, V.S.; Kazanov, M.D.; Dyakov, I.N.; Pokrovskaya, M.V.; Aleksandrova, S.S. Comparative immunogenicity and structural analysis of epitopes of different bacterial L-asparaginases. BMC Cancer, 2016, 16, 89.
[85]
D’Iakov, I.N.; Pokrovskii, V.S.; Sannikova, E.P.; Bulusho-va, N.V.; Pokrovskaia, M.V.; Aleksandrova, S.S. [Cross-immunogenicity of various bacterial L-asparaginases]. Zh. Mikrobiol. Epidemiol. Immunobiol., 2014, (6), 100-104.
[86]
Pokrovskaya, M.V.; Aleksandrova, S.S.; Pokrovsky, V.S.; Omeljanjuk, N.M.; Borisova, A.A.; Anisimova, N.Y.; Sokolov, N.N. Cloning, expression and characterization of the recombinant Yersinia pseudotuberculosis L-asparaginase. Protein Expr. Purif., 2012, 82(1), 150-154.
[87]
Bach, S.J.; Lasnitzki, I. Some aspects of the role of arginine and arginase in mouse carcinoma 63. Enzymologia, 1947, 12(3), 198-205.
[88]
Cheng, P.N.; Lam, T.L.; Lam, W.M.; Tsui, S.M.; Cheng, A.W.; Lo, W.H.; Leung, Y.C. Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res., 2007, 67(1), 309-317.
[89]
Savoca, K.V.; Davis, F.F.; van Es, T.; McCoy, J.R.; Palczuk, N.C. Cancer therapy with chemically modified enzymes. II. The therapeutic effectiveness of arginase, and arginase modified by the covalent attachment of polyethylene glycol, on the taper liver tumor and the L5178Y murine leukemia. Cancer Biochem. Biophys., 1984, 7(3), 261-268.
[90]
Hernandez, C.P.; Morrow, K.; Lopez-Barcons, L.A.; Zabaleta, J.; Sierra, R.; Velasco, C.; Cole, J.; Rodriguez, P.C. Pegylated arginase I: A potential therapeutic approach in T-ALL. Blood, 2010, 115(25), 5214-5221.
[91]
Hsueh, E.C.; Knebel, S.M.; Lo, W.H.; Leung, Y.C.; Cheng, P.N.; Hsueh, C.T. Deprivation of arginine by recombinant human arginase in prostate cancer cells. J. Hematol. Oncol., 2012, 5, 17.
[92]
Yau, T.; Cheng, P.N.; Chan, P.; Chen, L.; Yuen, J.; Pang, R.; Fan, S.T.; Wheatley, D.N.; Poon, R.T. Preliminary efficacy, safety, pharmacokinetics, pharmacodynamics and quality of life study of pegylated recombinant human arginase 1 in patients with advanced hepatocellular carcinoma. Invest. New Drugs, 2015, 33(2), 496-504.
[93]
Shibatani, T.; Kakimoto, T.; Chibata, I. Crystallization and properties of L-arginine deiminase of Pseudomonas putida. J. Biol. Chem., 1975, 250(12), 4580-4583.
[94]
Takaku, H.; Takase, M.; Abe, S.; Hayashi, H.; Miyazaki, K. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int. J. Cancer, 1992, 51(2), 244-249.
[95]
Park, I.S.; Kang, S.W.; Shin, Y.J.; Chae, K.Y.; Park, M.O.; Kim, M.Y.; Wheatley, D.N.; Min, B.H. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br. J. Cancer, 2003, 89(5), 907-914.
[96]
Ni, Y.; Li, Z.; Sun, Z.; Zheng, P.; Liu, Y.; Zhu, L.; Schwaneberg, U. Expression of arginine deiminase from Pseudomonas plecoglossicida CGMCC2039 in Escherichia coli and its anti-tumor activity. Curr. Microbiol., 2009, 58(6), 593-598.
[97]
Ensor, C.M.; Holtsberg, F.W.; Bomalaski, J.S.; Clark, M.A. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res., 2002, 62(19), 5443-5450.
[98]
Gong, H.; Zölzer, F.; von Recklinghausen, G.; Havers, W.; Schweigerer, L. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia, 2000, 14(5), 826-829.
[99]
Ott, P.A.; Carvajal, R.D.; Pandit-Taskar, N.; Jungbluth, A.A.; Hoffman, E.W.; Wu, B.W.; Bomalaski, J.S.; Venhaus, R.; Pan, L.; Old, L.J.; Pavlick, A.C.; Wolchok, J.D. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest. New Drugs, 2013, 31(2), 425-434.
[100]
Delage, B.; Luong, P.; Maharaj, L.; O’Riain, C.; Syed, N.; Crook, T.; Hatzimichael, E.; Papoudou-Bai, A.; Mitchell, T.J.; Whittaker, S.J.; Cerio, R.; Gribben, J.; Lemoine, N.; Bomalaski, J.; Li, C.F.; Joel, S.; Fitzgibbon, J.; Chen, L.T.; Szlosarek, P.W. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis., 2012, 3, e342.
[101]
Tomlinson, B.K.; Thomson, J.A.; Bomalaski, J.S.; Diaz, M.; Akande, T.; Mahaffey, N.; Li, T.; Dutia, M.P.; Kelly, K.; Gong, I.Y.; Semrad, T.; Gandara, D.R.; Pan, C.X.; Lara, P.N. Jr Phase I trial of arginine deprivation therapy with ADI-PEG 20 plus docetaxel in patients with advanced ma-lignant solid tumors. Clin. Cancer Res., 2015, 21(11), 2480-2486.
[102]
Ascierto, P.A.; Scala, S.; Castello, G.; Daponte, A.; Simeone, E.; Ottaiano, A.; Beneduce, G.; De Rosa, V.; Izzo, F.; Melucci, M.T.; Ensor, C.M.; Prestayko, A.W.; Holtsberg, F.W.; Bomalaski, J.S.; Clark, M.A.; Savaraj, N.; Feun, L.G.; Logan, T.F. Pegylated arginine deiminase treatment of patients with metastatic melanoma: Results from phase I and II studies. J. Clin. Oncol., 2005, 23(30), 7660-7668.
[103]
Glazer, E.S.; Piccirillo, M.; Albino, V.; Di Giacomo, R.; Palaia, R.; Mastro, A.A.; Beneduce, G.; Castello, G.; De Rosa, V.; Petrillo, A.; Ascierto, P.A.; Curley, S.A.; Izzo, F. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol., 2010, 28(13), 2220-2226.
[104]
Izzo, F.; Marra, P.; Beneduce, G.; Castello, G.; Vallone, P.; De Rosa, V.; Cremona, F.; Ensor, C.M.; Holtsberg, F.W.; Bomalaski, J.S.; Clark, M.A.; Ng, C.; Curley, S.A. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: Results from phase I/II studies. J. Clin. Oncol., 2004, 22(10), 1815-1822.
[105]
Yang, T.S.; Lu, S.N.; Chao, Y.; Sheen, I.S.; Lin, C.C.; Wang, T.E.; Chen, S.C.; Wang, J.H.; Liao, L.Y.; Thomson, J.A.; Wang-Peng, J.; Chen, P.J.; Chen, L.T. A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. Br. J. Cancer, 2010, 103(7), 954-960.
[106]
Polaris Group Reports Phase III Study Results of ADI-PEG 20 plus Best Supportive Care in Advanced Hepatocellular Carcinoma; Press release. 2016, PRNewswire
[107]
Feun, L.G.; Marini, A.; Walker, G.; Elgart, G.; Moffat, F.; Rodgers, S.E.; Wu, C.J.; You, M.; Wangpaichitr, M.; Kuo, M.T.; Sisson, W.; Jungbluth, A.A.; Bomalaski, J.; Savaraj, N. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br. J. Cancer, 2012, 106(9), 1481-1485.
[108]
Kelly, M.P.; Jungbluth, A.A.; Wu, B.W.; Bomalaski, J.; Old, L.J.; Ritter, G. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br. J. Cancer, 2012, 106(2), 324-332.
[109]
Manca, A.; Sini, M.C.; Izzo, F.; Ascierto, P.A.; Tatangelo, F.; Botti, G.; Gentilcore, G.; Capone, M.; Mozzillo, N.; Rozzo, C.; Cossu, A.; Tanda, F.; Palmieri, G. Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells. Oncol. Rep., 2011, 25(6), 1495-1502.
[110]
Szlosarek, P.W.; Luong, P.; Phillips, M.M.; Baccarini, M.; Stephen, E.; Szyszko, T.; Sheaff, M.T.; Avril, N. Metabolic response to pegylated arginine deiminase in mesothelioma with promoter methylation of argininosuccinate synthetase. J. Clin. Oncol., 2013, 31(7), e111-e113.
[111]
Wu, L.; Li, L.; Meng, S.; Qi, R.; Mao, Z.; Lin, M. Expression of argininosuccinate synthetase in patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol., 2013, 28(2), 365-368.
[112]
Bowles, T.L.; Kim, R.; Galante, J.; Parsons, C.M.; Virudachalam, S.; Kung, H.J.; Bold, R.J. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase Int. J. Cancer, 2008, 123(8), 1950-1955.
[113]
Kim, J.H.; Kim, J.H.; Yu, Y.S.; Kim, D.H.; Min, B.H.; Kim, K.W. Anti-tumor activity of arginine deiminase via arginine deprivation in retinoblastoma. Oncol. Rep., 2007, 18(6), 1373-1377.
[114]
Kim, R.H.; Coates, J.M.; Bowles, T.L.; McNerney, G.P.; Sutcliffe, J.; Jung, J.U.; Gandour-Edwards, R.; Chuang, F.Y.; Bold, R.J.; Kung, H.J. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res., 2009, 69(2), 700-708.
[115]
Sugimura, K.; Ohno, T.; Kusuyama, T.; Azuma, I. High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro. Melanoma Res., 1992, 2(3), 191-196.
[116]
Szlosarek, P.W.; Klabatsa, A.; Pallaska, A.; Sheaff, M.; Smith, P.; Crook, T.; Grimshaw, M.J.; Steele, J.P.; Rudd, R.M.; Balkwill, F.R.; Fennell, D.A. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin. Cancer Res., 2006, 12(23), 7126-7131.
[117]
Yoon, C.Y.; Shim, Y.J.; Kim, E.H.; Lee, J.H.; Won, N.H.; Kim, J.H.; Park, I.S.; Yoon, D.K.; Min, B.H. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int. J. Cancer, 2007, 120(4), 897-905.
[118]
Szlosarek, P.W.; Steele, J.P.; Nolan, L.; Gilligan, D.; Taylor, P.; Spicer, J.; Lind, M.; Mitra, S.; Shamash, J.; Phillips, M.M.; Luong, P.; Payne, S.; Hillman, P.; Ellis, S.; Szyszko, T.; Dancey, G.; Butcher, L.; Beck, S.; Avril, N.E.; Thomson, J.; Johnston, A.; Tomsa, M.; Lawrence, C.; Schmid, P.; Crook, T.; Wu, B.W.; Bomalaski, J.S.; Lemoine, N.; Sheaff, M.T.; Rudd, R.M.; Fennell, D.; Hackshaw, A. Arginine deprivation with pegylated prginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleu-ral mesothelioma: a randomized clinical trial. JAMA Oncol., 2017, 3(1), 58-66.
[119]
Synakiewicz, A.; Stachowicz-Stencel, T.; Adamkiewicz-Drozynska, E. The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials. Expert Opin. Investig. Drugs, 2014, 23(11), 1517-1529.
[120]
Ni, Y.; Liu, Y.; Schwaneberg, U.; Zhu, L.; Li, N.; Li, L.; Sun, Z. Rapid evolution of arginine deiminase for improved anti-tumor activity. Appl. Microbiol. Biotechnol., 2011, 90(1), 193-201.
[121]
Holtsberg, F.W.; Ensor, C.M.; Steiner, M.R.; Bomalaski, J.S.; Clark, M.A. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J. Control. Release, 2002, 80(1-3), 259-271.
[122]
Yau, T.; Cheng, P.N.; Chan, P.; Chan, W.; Chen, L.; Yuen, J.; Pang, R.; Fan, S.T.; Poon, R.T. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest. New Drugs, 2013, 31(1), 99-107.
[123]
Lukasheva, E.V. efremova, A.A.; Treshchalina, E.M.; Arinbasarova, A.Iu.; Medentsev, A.G.; Berezov, T.T. [Lamino acid oxidases: properties and molecular mechanisms of action] Biomed. Khim., 2012, 58(4), 372-384.
[124]
Murthy, S.N.; Janardanasarma, M.K. Identification of L-amino acid/L-lysine alpha-amino oxidase in mouse brain. Mol. Cell. Biochem., 1999, 197(1-2), 13-23.
[125]
Nakano, M.; Danowski, T.S. Crystalline mammalian L-amino acid oxidase from rat kidney mitochondria. J. Biol. Chem., 1966, 241(9), 2075-2083.
[126]
Shinwari, M.A.; Falconer, I.R. Naturally occurring inhibition and activation of avian liver L-amino acid oxidase. Biochem. J., 1967, 104(3), 53P-54P.
[127]
Sun, Y.; Nonobe, E.; Kobayashi, Y.; Kuraishi, T.; Aoki, F.; Yamamoto, K.; Sakai, S. Characterization and expression of L-amino acid oxidase of mouse milk. J. Biol. Chem., 2002, 277(21), 19080-19086.
[128]
Eckstein, M.R.; Baehner, R.L.; Nathan, D.G. Amino acid oxidase of leukocytes in relation to H 2 O 2 -mediated bacterial killing. J. Clin. Invest., 1971, 50(9), 1985-1991.
[129]
Boulland, M.L.; Marquet, J.; Molinier-Frenkel, V.; Möller, P.; Guiter, C.; Lasoudris, F.; Copie-Bergman, C.; Baia, M.; Gaulard, P.; Leroy, K.; Castellano, F. Human IL4I1 is a secreted L-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood, 2007, 110(1), 220-227.
[130]
Mason, J.M.; Naidu, M.D.; Barcia, M.; Porti, D.; Chavan, S.S.; Chu, C.C. IL-4-induced gene-1 is a leukocyte L-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J. Immunol., 2004, 173(7), 4561-4567.
[131]
Hegde, M.; Rao, P.; Chianeh, Y.R.; Fernandes, D.J.; Shetty, J. Serum levels of L-amino acid oxidase in ovarian cancer patients. Br. Biomed. Bull., 2015, 3(1), 105-112.
[132]
Kusakabe, H.; Kodama, K.; Kuninaka, A.; Yoshino, H.; Misono, H.; Soda, K. A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J. Biol. Chem., 1980, 255(3), 976-981.
[133]
Alves, R.M.; Antonucci, G.A.; Paiva, H.H.; Cintra, A.C.; Franco, J.J.; Mendonça-Franqueiro, E.P.; Dorta, D.J.; Giglio, J.R.; Rosa, J.C.; Fuly, A.L.; Dias-Baruffi, M.; Soares, A.M.; Sampaio, S.V. Evidence of caspase-mediated apoptosis induced by l-amino acid oxidase isolated from Bothrops atrox snake venom. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2008, 151(4), 542-550.
[134]
Lee, L.M.; Chung, I.; Yee Fung, S.; Kanthimathi, M.S.; Hong Tan, N. Antiproliferative activity of king cobra (Ophi-ophagus hannah) venom L-amino acid oxidase. Basic Clin. Pharmacol. Toxicol., 2014, 114(4), 336-343.
[135]
Geyer, A.; Fitzpatrick, T.B.; Pawelek, P.D.; Kitzing, K.; Vrielink, A.; Ghisla, S.; Macheroux, P. Structure and characterization of the glycan moiety of L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Eur. J. Biochem., 2001, 268(14), 4044-4053.
[136]
Moustafa, I.M.; Foster, S.; Lyubimov, A.Y.; Vrielink, A. Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: Insights into structure and mechanism. J. Mol. Biol., 2006, 364(5), 991-1002.
[137]
Ande, S.R.; Kommoju, P.R.; Draxl, S.; Murkovic, M.; Macheroux, P.; Ghisla, S.; Ferrando-May, E. Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom. Apoptosis, 2006, 11(8), 1439-1451.
[138]
Costa, T.R.; Burin, S.M.; Menaldo, D.L.; de Castro, F.A.; Sampaio, S.V. Snake venom L-amino acid oxidases: An overview on their antitumor effects. J. Venom. Anim. Toxins Incl. Trop. Dis., 2014, 20(1), 23.
[139]
Izidoro, L.F.; Ribeiro, M.C.; Souza, G.R.; Sant’Ana, C.D.; Hamaguchi, A.; Homsi-Brandeburgo, M.I.; Goulart, L.R.; Beleboni, R.O.; Nomizo, A.; Sampaio, S.V.; Soares, A.M.; Rodrigues, V.M. Biochemical and functional characterization of an L-amino acid oxidase isolated from Bothrops pirajai snake venom. Bioorg. Med. Chem., 2006, 14(20), 7034-7043.
[140]
Zhang, Y.J.; Wang, J.H.; Lee, W.H.; Wang, Q.; Liu, H.; Zheng, Y.T.; Zhang, Y. Molecular characterization of Trimeresurus stejnegeri venom L-amino acid oxidase with potential anti-HIV activity. Biochem. Biophys. Res. Commun., 2003, 309(3), 598-604.
[141]
Souza, D.H.; Eugenio, L.M.; Fletcher, J.E.; Jiang, M.S.; Garratt, R.C.; Oliva, G.; Selistre-de-Araujo, H.S. Isolation and structural characterization of a cytotoxic L-amino acid oxidase from Agkistrodon contortrix laticinctus snake venom: Preliminary crystallographic data. Arch. Biochem. Biophys., 1999, 368(2), 285-290.
[142]
Samel, M.; Vija, H.; Rönnholm, G.; Siigur, J.; Kalkkinen, N.; Siigur, E. Isolation and characterization of an apoptotic and platelet aggregation inhibiting L-amino acid oxidase from Vipera berus berus (common viper) venom. Biochim. Biophys. Acta, 2006, 1764(4), 707-714.
[143]
Sun, L.K.; Yoshii, Y.; Hyodo, A.; Tsurushima, H.; Saito, A.; Harakuni, T.; Li, Y.P.; Kariya, K.; Nozaki, M.; Morine, N. Apoptotic effect in the glioma cells induced by specific protein extracted from Okinawa Habu (Trimeresurus flavoviridis) venom in relation to oxidative stress. Toxicol. In Vitro, 2003, 17(2), 169-177.
[144]
Pawelek, P.D.; Cheah, J.; Coulombe, R.; Macheroux, P.; Ghisla, S.; Vrielink, A. The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J., 2000, 19(16), 4204-4215.
[145]
Iijima, R.; Kisugi, J.; Yamazaki, M. L-amino acid oxidase activity of an antineoplastic factor of a marine mollusk and its relationship to cytotoxicity. Dev. Comp. Immunol., 2003, 27(6-7), 505-512.
[146]
Naumann, G.B.; Silva, L.F.; Silva, L.; Faria, G.; Richardson, M.; Evangelista, K.; Kohlhoff, M.; Gontijo, C.M.; Navdaev, A.; de Rezende, F.F.; Eble, J.A.; Sanchez, E.F. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim. Biophys. Acta, 2011, 1810(7), 683-694.
[147]
Bregge-Silva, C.; Nonato, M.C.; de Albuquerque, S.; Ho, P.L.; Junqueira de Azevedo, I.L.; Vasconcelos Diniz, M.R.; Lomonte, B.; Rucavado, A.; Díaz, C.; Gutiérrez, J.M.; Arantes, E.C. Isolation and biochemical, functional and structural characterization of a novel L-amino acid oxidase from Lachesis muta snake venom. Toxicon, 2012, 60(7), 1263-1276.
[148]
Smirnova, I.P.; Khaduev, S.Kh. [L-lysine-alpha-oxidase activity of some Trichoderma species]. Mikrobiologiia, 1984, 53(1), 163-165.
[149]
Amano, M.; Mizuguchi, H.; Sano, T.; Kondo, H.; Shinyashiki, K.; Inagaki, J.; Tamura, T.; Kawaguchi, T.; Kusakabe, H.; Imada, K.; Inagaki, K. Recombinant expression, molecular characterization and crystal structure of antitumor enzyme, L-lysine α-oxidase from Trichoderma viride. J. Biochem., 2015, 157(6), 549-559.
[150]
Lukasheva, E.V.; Ribakova, J.S.; Fedorova, T.N.; Makletsova, M.G.; Arinbasarova, A.Y.; Medentzev, A.G.T.T. B.; [Effect of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai ВКМF-4268D on pheochromocytoma PC12 cell line] Biomed. Khim., 2014, 61(1), 99-104.
[151]
Treshalina, H.M.; Lukasheva, E.V.; Sedakova, L.A.; Firsova, G.A.; Guerassimova, G.K.; Gogichaeva, N.V.; Be-rezov, T.T. Anticancer enzyme L-lysine α-oxidase. Appl. Biochem. Biotechnol., 2000, 88(1-3), 267-273.
[152]
Pokrovsky, V.S.; Treshalina, H.M.; Lukasheva, E.V.; Sedakova, L.A.; Medentzev, A.G.; Arinbasarova, A.Y.; Berezov, T.T. Enzymatic properties and anticancer activity of L-lysine α-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anticancer Drugs, 2013, 24(8), 846-851.
[153]
Gogichaeva, N.V.; Lukasheva, E.V.; Gavrilova, E.M.; Smirnova, I.P.; Egorov, A.M.; Berezov, T.T. [Synthesis of conjugates of L-lysine alpha-oxidase with antibodies]. Vopr. Med. Khim., 2000, 46(4), 410-418.
[154]
Lukasheva, E.V.; Berezov, T.T. L-Lysine alpha-oxidase: Physicochemical and biological properties. Biochemistry (Mosc.), 2002, 67(10), 1152-1158.
[155]
El-Sayed, A.S. Microbial L-methioninase: Production, molecular characterization, and therapeutic applications. Appl. Microbiol. Biotechnol., 2010, 86(2), 445-467.
[156]
El-Sayed, A.S. Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. J. Microbiol., 2011, 49(1), 130-140.
[157]
Cavuoto, P.; Fenech, M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev., 2012, 38(6), 726-736.
[158]
Cellarier, E.; Durando, X.; Vasson, M.P.; Farges, M.C.; Demiden, A.; Maurizis, J.C.; Madelmont, J.C.; Chollet, P. Methionine dependency and cancer treatment. Cancer Treat. Rev., 2003, 29(6), 489-499.
[159]
Manukhov, I.V.; Mamaeva, D.V.; Morozova, E.A.; Rastorguev, S.M.; Faleev, N.G.; Demidkina, T.V.; Zavilgelsky, G.B. L-methionine gamma-lyase from Citrobacter freundii: Cloning of the gene and kinetic parameters of the enzyme. Biochemistry (Mosc.), 2006, 71(4), 361-369.
[160]
Tan, Y.; Xu, M.; Hoffman, R.M. Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro. Anticancer Res., 2010, 30(4), 1041-1046.
[161]
Morozova, E.A.; Kulikova, V.V.; Yashin, D.V.; Anufrieva, N.V.; Anisimova, N.Y.; Revtovich, S.V.; Kotlov, M.I.; Belyi, Y.F.; Pokrovsky, V.S.; Demidkina, T.V. Kinetic parameters and cytotoxic activity of recombinant methionine γ- from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii. Acta Naturae, 2013, 5(3), 92-98.
[162]
Hoffman, R.M. Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: A 40-year odyssey. Expert Opin. Biol. Ther., 2015, 15(1), 21-31.
[163]
Morozova, E.A.; Anufrieva, N.V.; Davydov, D.Z.; Komarova, M.V.; Dyakov, I.N.; Rodionov, A.N.; Demidkina, T.V.; Pokrovsky, V.S. Plasma methionine depletion and pharmacokinetic properties in mice of methionine γ-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes. Biomed. Pharmacother., 2017, 88, 978-984.
[164]
Hoshiya, Y.; Kubota, T.; Matsuzaki, S.W.; Kitajima, M.; Hoffman, R.M. Methionine starvation modulates the efficacy of cisplatin on human breast cancer in nude mice. Anticancer Res., 1996, 16(6B), 3515-3517.
[165]
Tan, Y.; Sun, X.; Xu, M.; Tan, X.; Sasson, A.; Rashidi, B.; Han, Q.; Tan, X.; Wang, X.; An, Z.; Sun, F.X.; Hoffman, R.M. Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin. Cancer Res., 1999, 5(8), 2157-2163.
[166]
Yoshioka, T.; Wada, T.; Uchida, N.; Maki, H.; Yoshida, H.; Ide, N.; Kasai, H.; Hojo, K.; Shono, K.; Maekawa, R.; Yagi, S.; Hoffman, R.M.; Sugita, K. Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res., 1998, 58(12), 2583-2587.
[167]
Hu, J.; Cheung, N.K. Methionine depletion with recombinant methioninase: in vitro and in vivo efficacy against neuroblastoma and its synergism with chemotherapeutic drugs. Int. J. Cancer, 2009, 124(7), 1700-1706.
[168]
Kokkinakis, D.M.; Hoffman, R.M.; Frenkel, E.P.; Wick, J.B.; Han, Q.; Xu, M.; Tan, Y.; Schold, S.C. Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res., 2001, 61(10), 4017-4023.
[169]
Tan, Y.; Zavala, J., Sr; Xu, M.; Zavala, J., Jr; Hoffman, R.M. Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients. Anticancer Res., 1996, 16(6C), 3937-3942.
[170]
Sun, X.; Yang, Z.; Li, S.; Tan, Y.; Zhang, N.; Wang, X.; Yagi, S.; Yoshioka, T.; Takimoto, A.; Mitsushima, K.; Suginaka, A.; Frenkel, E.P.; Hoffman, R.M. In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5′-phosphate supplementation. Cancer Res., 2003, 63(23), 8377-8383.
[171]
Xin, L.; Cao, J.; Cheng, H.; Zeng, F.; Hu, X. Stealth cationic liposomes modified with anti-CAGE single-chain fragment variable deliver recombinant methioninase for gastric carcinoma therapy. J. Nanosci. Nanotechnol., 2013, 13(1), 178-183.
[172]
Rösler, J.; Krekel, F.; Amrhein, N.; Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol., 1997, 113(1), 175-179.
[173]
D’Cunha, G.B.; Satyanarayan, V.; Nair, P.M. Stabilization of phenylalanine ammonia lyase containing Rhodotorula glu-tinis cells for the continuous synthesis of L-phenylalanine methyl ester/96. Enzyme Microb. Technol., 1996, 19(6), 421-427.
[174]
Kalghatgi, K.K.; Subba Rao, P.V. Microbial L-phenylalanine ammonia-lyase. Purification, subunit structure and kinetic properties of the enzyme from Rhizoctonia solani. Biochem. J., 1975, 149(1), 65-72.
[175]
Kim, S.H.; Kronstad, J.W.; Ellis, B.E. Purification and characterization of phenylalanine ammonia-lyase from Ustilago maydis. Phytochemistry, 1996, 43(2), 351-357.
[176]
Moffitt, M.C.; Louie, G.V.; Bowman, M.E.; Pence, J.; Noel, J.P.; Moore, B.S. Discovery of two cyanobacterial phenylalanine ammonia lyases: Kinetic and structural characterization. Biochemistry, 2007, 46(4), 1004-1012.
[177]
Hsieh, L.S.; Ma, G.J.; Yang, C.C.; Lee, P.D. Cloning, expression, site-directed mutagenesis and immunolo-calization of phenylalanine ammonia-lyase in Bambusa oldhamii. Phytochemistry, 2010, 71(17-18), 1999-2009.
[178]
Koukol, J.; Conn, E.E. The metabolism of aromatic com-pounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem., 1961, 236, 2692-2698.
[179]
Fritz, R.R.; Hodgins, D.S.; Abell, C.W. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. J. Biol. Chem., 1976, 251(15), 4646-4650.
[180]
Camm, E.L.; Towers, G.N. Phenylalanine ammonia lyase. Phytochemistry, 1973, 12(5), 961-973.
[181]
Kawasaki Watanabe, S.; Hernandez-Velazco, G.; Iturbe-Chiñas, F.; Lopez-Munguia, A. Phenylalanine ammonia lyase from Sporidiobolus pararoseus and Rhodosporidium toruloides: Application for phenylalanine and tyrosine deamination. World J. Microbiol. Biotechnol., 1992, 8(4), 406-410.
[182]
Emes, A.V.; Vining, L.C. Partial purification and properties of L-phenylalanine ammonia-lyase from Streptomyces verticillatus. Can. J. Biochem., 1970, 48(5), 613-622.
[183]
Pridham, J.B.; Woodhead, S. Multimolecular forms of phenylalanine-ammonia lyase in Alternaria. 1974, 2(5) 1070-1072.
[184]
Bourget, L.; Chang, T.M. Artificial cell-microencapsulated phenylalanine ammonia-lyase. Appl. Biochem. Biotechnol., 1984, 10, 57-59.
[185]
Sarkissian, C.N.; Gámez, A. Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol. Genet. Metab., 2005, 86(Suppl. 1), S22-S26.
[186]
Abell, C.W.; Hodgins, D.S.; Stith, W.J. An in vitro evaluation of the chemotherapeutic potency of phenylalanine ammonia-lyase. Cancer Res., 1973, 33(10), 2529-2532.
[187]
Stith, W.J.; Hodgins, D.S.; Abell, C.W. Effects of phenylalanine amonia-lyase and phenylalanine deprivation on murine leukemic lymphoblasts in vitro. Cancer Res., 1973, 33(5), 966-971.
[188]
Ambrus, C.M.; Anthone, S.; Horvath, C.; Kalghatgi, K.; Lele, A.S.; Eapen, G.; Ambrus, J.L.; Ryan, A.J.; Li, P. Extracorporeal enzyme reactors for depletion of phenylalanine in phenylketonuria. Ann. Intern. Med., 1987, 106(4), 531-537.
[189]
Babich, O.O.; Pokrovsky, V.S.; Anisimova, N.Y.; Sokolov, N.N.; Prosekov, A.Y. Recombinant l-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent. Biotechnol. Appl. Biochem., 2013, 60(3), 316-322.
[190]
Yamada, H.; Kumagai, H. Synthesis of L-tyrosine-related amino acids by beta-tyrosinase. Adv. Appl. Microbiol., 1975, 19, 249-288.
[191]
Demidkina, T.V.; Myagkikh, I.V.; Antson, A.A.; Harutyunyan, E.H. Crystallization and crystal data on tyrosine phenol-lyase. FEBS Lett., 1988, 232(2), 381-382.
[192]
Duffey, S.S.; Aldrich, J.R.; Blum, M.S. Biosynthesis of phenol and guaiacol by the hemipteran Leptoglossus phyllopus. Comp. Biochem. Physiol. B, 1977, 56(2), 101-102.
[193]
Enei, H.; Matsui, H.; Yamashita, H.; Okumura, S.; Yamada, H. Distribution of tyrosine phenol-lyase in microorganisms. Agric. Biol. Chem., 1972, 36, 1861-1868.
[194]
Lee, S-G.; Hong, S-P.; Sung, M-H. Removal and biocon-version of phenol in wastewater by a thermostable β-tyrosinase. Enzyme Microb. Technol., 1996, 19(5), 374-377.
[195]
Leuchtenberger, W.; Huthmacher, K.; Drauz, K. Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biotechnol., 2005, 69(1), 1-8.
[196]
Meadows, G.G.; DiGiovanni, J.; Minor, L.; Elmer, G.W. Some biological properties and an in vivo evaluation of tyrosine phenol-lyase on growth of B-16 melanoma. Cancer Res., 1976, 36(1), 167-171.
[197]
Phillips, M.M.; Sheaff, M.T.; Szlosarek, P.W. Targeting arginine-dependent cancers with arginine-degrading enzymes: Opportunities and challenges. Cancer Res. Treat., 2013, 45(4), 251-262.
[198]
Zhukova, O.S.; Khaduev, S.Kh.; Dobrynin, IaV.; Smirnova, M.P.; Lukasheva, E.V. [Effect of L-lysine-alpha-oxidase on the cell cycle kinetics of cultured Burkitt’s lymphoma cells] Eksp. Onkol., 1985, 7(6), 42-44.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 3
Year: 2019
Page: [446 - 464]
Pages: 19
DOI: 10.2174/0929867324666171006132729
Price: $58

Article Metrics

PDF: 33
HTML: 5
PRC: 1