Remediation of Contaminated Soil and Groundwater Using Nanoscale Zero-Valent Iron (nZVI) Coupled with Anaerobic Bioremediation: A Review

Author(s): Y.T. Sheu, K.F. Chen, W.Z. Cao, J.H. Ou, C.M. Kao*.

Journal Name: Recent Patents on Engineering

Volume 12 , Issue 2 , 2018

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Nanoscale zero valent iron (nZVI) is one of the most commonly used nanomaterials for soil and groundwater remediation because of its high reactivity and effective contaminant removal rate.

Objective: This paper reviews the methods of nZVI syntheses and effect of nZVI application on contaminants removal, environmental conditions, and microbial growth when anaerobic bioremediation is used for polluted site restoration.

Application: Dispersants have been applied to minimize the aggregation of nZVI particles and enhance its migration and influence zone. nZVI has also been applied to enhance the in situ site remediation process. Although there are advantages to combine the nZVI with bioremediation systems, the possible influences caused by the nZVI application contain changes of environmental conditions including the adverse effects on microbial species and diversity. The patents related to the designs of combining nZVI and different types of organic substrates for bioremediation enhancement are summarized in this paper.

Future Study: Toxicity evaluation and risk assessment are necessities to minimize the impact of nZVI application on environments and ecosystems.

Keywords: Nanoscale zero-valent iron (nZVI), reductive dechlorination, anaerobic bioremediation, toxicity, contaminated soil, hydrophobic modifiers.

[1]
B. Karn, T. Kuiken, and M. Otto, "Nanotechnology and in situ remediation: a review of the benefits and potential risks", Environ. Health Perspect., vol. 117, pp. 1823-1831, 2009.
[2]
S. Machado, J.G. Pacheco, H.P.A. Nouws, J.T. Albergaria, and C. Delerue-Matos, "Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts", Sci. Total Environ., vol. 533, pp. 76-81, 2015.
[3]
T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, and G.V. Lowry, "Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions", Environ. Sci. Technol., vol. 41, pp. 284-290, 2007.
[4]
Y.T. Sheu, P.J. Lien, K.F. Chen, J.H. Ou, and C.M. Kao, "Application of NZVI-contained emulsified substrate to bioremediate PCE-contaminated groundwater–A pilot-scale study", Chem. Eng. J., vol. 304, pp. 714-727, 2016.
[5]
M. Zhang, and D. Zhao, "In Situ Dechlorination in Soil and Groundwater Using Stabilized Zero-Valent Iron Nanoparticles: Some Field Experience on Effectiveness and Limitations.In", Novel Solutions to Water Pollution.. S. Ahuja, and K. Hristovski, Ed. Washington, DC: American Chemical Society, vol. 1123, 2013, pp. 79-96.
[6]
S. Machado, W. Stawiński, P. Slonina, A.R. Pinto, J.P. Grosso, H.P.A. Nouws, and C. Delerue-Matos, "Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen", Sci. Total Environ., vol. 461, pp. 323-329, 2013.
[7]
A.W. Carpenter, S.N. Laughton, and M.R. Wiesner, "Enhanced biogas production from nanoscale zero valent iron-amended anaerobic bioreactors", Environ. Eng., vol. 32, pp. 647-655, 2015.
[8]
Y. Hu, X. Hao, D. Zhao, and K. Fu, "Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2", Chemosphere, vol. 140, pp. 34-39, 2015.
[9]
W.X. Zhang, "Nanoscale iron particles for environmental remediation: an overview", J. Nanopart. Res., vol. 5, pp. 323-332, 2003.
[10]
T. Tosco, M.P. Papini, C.C. Viggi, and R. Sethi, "Nanoscale zero valent iron particles for groundwater remediation: a review", J. Clean. Prod., vol. 77, pp. 10-21, 2014.
[11]
W.H. Huang, Y.T. Sheu, P.J. Lien, Y.S. Hsiao, and C.M. Kao, "Investigation and remedial approach development for a TCE spill site: A case study", Adv. Mat. Res., vol. 912, pp. 1884-1887, 2014.
[12]
R. Zboril, M. Andrle, F. Oplustil, L. Machala, J. Tucek, J. Filip, Z. Marusak, and V.K. Sharma, "Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate (VI)/(III) composite", J. Hazard. Mater., vol. 211, pp. 126-130, 2012.
[13]
K.F. Chen, T.Y. Yeh, C.M. Kao, W.P. Sung, and C.C. Lin, "Application of nanoscale zero-valent iron (nZVI) to enhance microbial reductive dechlorination of TCE: A feasibility study", Curr. Nanosci., vol. 8, pp. 55-59, 2012.
[14]
N. Saleh, H-J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, and G.V. Lowry, "Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns", Environ. Sci. Technol., vol. 42, pp. 3349-3355, 2008.
[15]
C. Tsakiroglou, and K. Terzi, "Sikinioti-Lock, A., Hajdu, K., Aggelopoulos, C. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media", Sci. Total Environ., vol. 563-564, pp. 866-878, 2016.
[16]
Y.P. Sun, X.Q. Li, W.X. Zhang, and H.P. Wang, "A method for the preparation of stable dispersion of zero-valent iron nanopoarticles", Colloids Surf. A Physicochem. Eng. Asp., vol. 308, pp. 60-66, 2007.
[17]
F. He, and D. Zhao, "Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers", Environ. Sci. Technol., vol. 41, pp. 6216-6221, 2007.
[18]
T. Raychoudhury, G. Naja, and S. Ghoshal, "Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media", J. Contam. Hydrol., vol. 118, pp. 143-151, 2010.
[19]
H. Dong, and I.M.C. Lo, "Transport of Surface-Modified Nano Zero-Valent Iron (SM-NZVI) in Saturated Porous Media: Effects of Surface Stabilizer Type, Subsurface Geochemistry, and Contaminant Loading", Water Air Soil Pollut., vol. 225, pp. 2107-2118, 2014.
[20]
H.S. Kim, J.Y. Ahn, C. Kim, S. Lee, and I. Hwang, "Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid", Chemosphere, vol. 113, pp. 93-100, 2014.
[21]
Q. Wang, J.H. Lee, S.W. Jeong, A. Jang, S. Lee, and H. Choi, "Mobilization and deposition of iron nano and sub-micrometer particles in porous media: a glass micromodel study", J. Hazard. Mater., vol. 192, pp. 1466-1475, 2011.
[22]
T. Tosco, and R. Sethi, "Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach", Environ. Sci. Technol., vol. 44, pp. 9062-9068, 2010.
[23]
J. Soukupova, R. Zboril, I. Medrik, J. Filip, K. Safarova, R. Ledl, M. Mashlan, J. Nosek, and M. Cernik, "Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: direct surface modification and site application", Chem. Eng. J., vol. 262, pp. 813-822, 2015.
[24]
M. Velimirovic, D. Schmid, S. Wagner, V. Micić, F. von der Kammer, and T. Hofmann, "Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation", Sci. Total Environ., vol. 563, pp. 713-723, 2016.
[25]
D. Kaifas, L. Malleret, N. Kumar, W. Fétimi, M.C. Bruno, M. Sergent, and P. Doumenq, "Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design", Sci. Total Environ., vol. 481, pp. 335-342, 2014.
[26]
H.T. Hwang, S.W. Jeen, E.A. Sudicky, and W.A. Illman, "Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model", J. Contam. Hydrol., vol. 177, pp. 43-53, 2015.
[27]
A. Weber, A.S. Ruhl, and R.T. Amos, "Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling", J. Contam. Hydrol., vol. 151, pp. 68-82, 2013.
[28]
L. Zhu, J. Jin, H. Lin, K. Gao, and X. Xu, "Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater", J. Hazard. Mater., vol. 285, pp. 157-166, 2015.
[29]
E. Lefevre, N. Bossa, M.R. Wiesner, and C.K. Gunsch, "A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities", Sci. Total Environ., vol. 565, pp. 889-901, 2016.
[30]
A.S. Adeleye, "A. A., Keller, R. J. Miller, and H. S. Lenihan, “Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products", J. Nanopart. Res., vol. 15, p. 1418, 2013.
[31]
W.W. Mohn, and J.M. Tiedje, "Microbial reductive dehalogenation", Am. Soc. Microbiol.. vol. 56, pp. 482-507, Sep 1992.
[32]
Y.C. Kuo, S.H. Liang, S.Y. Wang, S.H. Chen, and C.M. Kao, "Application of emulsified substrate biobarrier to remediate tce-contaminated groundwater: pilot-scale study", J. Hazard. Toxic Radioact. Waste, vol. 18, pp. 1-8, 2013.
[33]
Y. Wang, D. Zhou, Y. Wang, L. Wang, and L. Cang, "Automatic pH control system enhances the dechlorination of 2, 4, 4′-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe0 and Pd/Fe0", Environ. Sci. Pollut. Res. , vol. 19, pp. 448-457, 2012.
[34]
Z.M. Xiu, K.B. Gregory, G.V. Lowry, and P.J.J. Alvarez, "Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp", Environ. Sci. Technol., vol. 44, pp. 7647-7651, 2010.
[35]
Z.M. Xiu, Z.H. Jin, T.L. Li, S. Mahendra, G.V. Lowry, and P.J.J. Alvarez, "Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene", Bioresour. Technol., vol. 101, pp. 1141-1146, 2010.
[36]
K.J. Lampron, P.C. Chiu, and D.K. Cha, "Reductive dehalogenation of chlorinated ethenes with elemental iron: The role of microorganisms", Water Res., vol. 35, pp. 3077-3084, 2001.
[37]
S. Lee, J.H. Bae, and P.L. McCarty, "Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE", J. Contam. Hydrol., vol. 94, pp. 76-85, 2007.
[38]
F. Ferguson, and J.M.H. Pietari, "Anaerobic transformations and bioremediation of chlorinated solvents", Environ. Pollut., vol. 107, pp. 209-215, 2010.
[39]
H. Rosenthal, L. Adrian, and M. Steiof, "Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoids strains", Chemosphere, vol. 55, pp. 661-669, 2004.
[40]
M. Lenczewski, P. Jardine, L. McKay, and A. Layton, "Natural attenuation of trichloroethylene in fractured shale bedrock", J. Contam. Hydrol., vol. 64, pp. 151-168, 2003.
[41]
H. Shin, and D.K. Cha, "Microbial reduction of nitrate in the presence of nanoscale zero-valent iron", Chemosphere, vol. 72, pp. 257-262, 2008.
[42]
C. Jiang, X. Xu, M. Megharaj, R. Naidu, and Z. Chen, "Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron", Sci. Total Environ., vol. 530, pp. 241-246, 2015.
[43]
C. Jiang, Y. Liu, Z. Chen, M. Megharaj, and R. Naidu, "Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1", Aquat. Toxicol., vol. 142, pp. 329-335, 2013.
[44]
J. Němeček, P. Pokorný, O. Lhotský, V. Knytl, P. Najmanová, J. Steinová, M. Černík, A. Filipová, J. Filip, and T. Cajthaml, "Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents", Sci. Total Environ.. vol. 563-564, pp. 822-34, September 2016.
[45]
B.D. Yirsaw, M. Megharaj, Z. Chen, and R. Naidu, "Environmental application and ecological significance of nano-zero valent iron", J. Environ. Sci., vol. 44, pp. 88-98, 2016.
[46]
C. Lee, J.Y. Kim, W.I. Lee, K.L. Nelson, J. Yoon, and D.L. Sedlak, "Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli", Environ. Sci. Technol., vol. 42, pp. 4927-4933, 2008.
[47]
" A. Chaithawiwat Vangnai, J. M. McEvoy, B. Pruess, Krajangpan, and E. Khan, “Impact of nanoscale zero valent iron on bacteria is growth phase dependent", Chemosphere, vol. 144, pp. 352-359, 2016.
[48]
"T. L. Kirschling, K. B. Gregory, E. G. Jr. Minkley, G. V. Lowry, and R. D. Tilton, “Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials", Environ. Sci. Technol., vol. 44, pp. 3474-3480, 2010.
[49]
J. Němeček, O. Lhotský, and T. Cajthaml, "Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations", Sci. Total Environ., vol. 485, pp. 739-747, 2014.
[50]
L.G.C. Luijten, J. de Weert, H. Smidt, H.T.S. Boschker, W.M. de Vos, G. Schraa, and A.J.M. Stams, "Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. Nov", Int. J. Syst. Evol. Microbiol., vol. 53, pp. 87-793, 2003.
[51]
Y. Sung, K.E. Fletcher, K.M. Ritalahti, R.P. Apkarian, N. Ramos-Hernández, R.A. Sanford, and F.E. Löffler, "Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium", Appl. Environ. Microbiol., vol. 72, pp. 2775-2782, 2006.
[52]
W.M. Moe, J. Yan, M.F. Nobre, M.S. da Costa, and F.A. Rainey, "Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater", Int. J. Syst. Evol. Microbiol., vol. 59, pp. 2692-2697, 2009.
[53]
C.M. Kocur, L. Lomheim, O. Molenda, K.P. Weber, L.M. Austrins, B.E. Sleep, H.K. Boparai, E.A. Edwards, and D.M. O’Carroll, "Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection", Environ. Sci. Technol., vol. 50, pp. 7658-7670, 2015.
[54]
F.E. Löffler, and E.A. Edwards, "Harnessing microbial activities for environmental cleanup", Curr. Opin. Biotechnol., vol. 17, pp. 274-284, 2006.
[55]
S. Wang, S. Chen, Y. Wang, A. Low, Q. Lu, and R. Qiu, "Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants", Biotechnol. Adv.. vol. 34, pp.1384-1395, Dec 2016.
[56]
F. He, D. Zhao, and C. Paul, "Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones", Water Res., vol. 44, pp. 2360-2370, 2010.
[57]
L. Zhu, H. Lin, J. Qi, X. Xu, and H. Qi, "Effect of H2 on reductive transformation of p-ClNB in a combined ZVI-anaerobic sludge system", Water Res., vol. 46, pp. 6291-6299, 2013.
[58]
Y. Liu, S. Li, Z. Chen, M. Megharaj, and R. Naidu, "Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp", Chemosphere, vol. 108, pp. 426-432, 2014.
[59]
J.R. Jeon, K. Murugesan, I.H. Nam, and Y.S. Chang, "Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal", Biotechnol. Adv., vol. 31, pp. 246-256, 2013.
[60]
P. Bennett, F. He, D. Zhao, and B. Aiken, "Feldman, L. In Situ Testing of Metallic Iron Nanoparticle Mobility and Reactivity in a Shallow Granular Aquifer", J. Contam. Hydrol., vol. 116, pp. 35-46, 2010.
[61]
Y.T. Wei, S.C. Wu, C.M. Chou, C.H. Che, S.M. Tsai, and H.L. Lien, "Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study", Water Res., vol. 44, no. 1, pp. 131-140, 2010.
[62]
R. Köber, H. Hollert, G. Hornbruch, M. Jekel, A. Kamptner, N. Klaas, and J. Braun, "Nanoscale zero-valent iron flakes for groundwater treatment", Environ. Earth Sci., vol. 72, pp. 3339-3352, 2014.
[63]
S. S. Koenigsberg, W. A. Farone, and T. Palmer, Polylactate release compounds and methods of using same. WO Patent 1,999,024,367A1, 1999.
[64]
C.M. Kao, S.H. Liang, Y.C. Kuo, and R.Y. Suampalli, Gel material for treating chloric pollution and the application thereof. TW Patent 201,130,749, 2013.
[65]
S.C. Chang, S.J. Lin, T.W. Chen, Y.H. Yu, and Y.T. Lin, A novel emulsion as a remedy for soil, groundwater, sediments, and other environmental matrices. TW Patent 201,136,843, 2015.
[66]
H.L. Hsu, C.Y. Liao, and S.Y. Tzeng, Treatment system and method for degrading chlorinated DNAPL. U.S. Patent 8,764,988B2, 2014.
[67]
C.M. Kao, Y.T. Sheu, K.F. Chen, Y.C. Kuo, R.Y. Suampalli, C.Y. Chen, and P.M. Chen, Sustained-release composition for adsorbing and degrading organic contaminants. TW Patent 201,500,108, 2015.
[68]
D. Zhao, and Y. Xu, In situ remediation of inorganic contaminants using stabilized zero-valent iron nanoparticles. U.S. Patent 7,635,236B2, 2009.
[69]
E.C. Hince, Method for the enhanced anaerobic bioremediation of contaminants in aqueous sediments and other difficult environments. U.S. Patent 6,403,364B1, 2002.
[70]
T.E. Mallouk, B. Schrick, and J.L. Blough, Delivery vehicles for environmental remediants. WO Patent 2,003,013,252 A1, 2003.
[71]
P.O. Larsson, S. Berg, H. Vidarsson, L. Bastiaens, and M. Velimirovic, New powder, powder composition, method for use thereof and use of the powder and powder composition. WO Patent 2,014,044,692 A1, 2014.
[72]
R.S. Ghosh, D. Fulmer, K. Kitzman, and J. Smith, Systems and methods for treating water using iron. U.S. Patent 20,110,120,929A1, 2011
[73]
D. Zhao, and F. He, Preparation and application of stabilized iron nanoparticles for dechlorination of chlorinated hydrocarbons in soils, sediments, and ground water. U.S. Patent 7,887,880B2, 2011.
[74]
D. Smith, G. Isenhouer, and M.R. Sieczkowski, Composition and method for remediation of contaminated water. U.S. Patent 20,170,057,850, 2017


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 2
Year: 2018
Page: [84 - 91]
Pages: 8
DOI: 10.2174/1872212111666171002125631
Price: $58

Article Metrics

PDF: 21
HTML: 4