Biodegradable Black Phosphorus-based Nanomaterials in Biomedicine: Theranostic Applications

Author(s): Zhen Wang, Zhiming Liu, Chengkang Su, Biwen Yang, Xixi Fei, Yi Li, Yuqing Hou, Henan Zhao, Yanxian Guo, Zhengfei Zhuang*, Huiqing Zhong, Zhouyi Guo*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 10 , 2019

  Journal Home
Translate in Chinese

Abstract:

Ascribe to the unique two-dimensional planar nanostructure with exceptional physical and chemical properties, black phosphorous (BP) as the emerging inorganic twodimensional nanomaterial with high biocompatibility and degradability has been becoming one of the most promising materials of great potentials in biomedicine. The exfoliated BP sheets possess ultra-high surface area available for valid bio-conjugation and molecular loading for chemotherapy. Utilizing the intrinsic near-infrared optical absorbance, BPbased photothermal therapy in vivo, photodynamic therapy and biomedical imaging has been realized, achieving unprecedented anti-tumor therapeutic efficacy in animal experiments. Additionally, the BP nanosheets can strongly react with oxygen and water, and finally degrade to non-toxic phosphate and phosphonate in the aqueous solution. This manuscript aimed to summarize the preliminary progresses on theranostic application of BP and its derivatives black phosphorus quantum dots (BPQDs), and discussed the prospects and the state-of-art unsolved critical issues of using BP-based material for theranostic applications.

Keywords: Black phosphorous, biomedicine, cancer therapy, black phosphorus quantum dots, theranostic applications, photothermal therapy, photodynamic therapy.

[1]
Koenig, S.P.; Doganov, R.A.; Schmidt, H.; Castro Neto, A.H.; Ozyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett., 2014, 104, 103106-103104.
[2]
Chen, H.; Liu, Z.; Li, S.; Su, C.; Qiu, X.; Zhong, H.; Guo, Z. Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for sers real-time monitoring and chemo-photothermal therapy. Theranostics, 2016, 6(8), 1096-1104.
[3]
Liu, L.; Wei, Y.; Zhai, S.; Chen, Q.; Xing, D. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials, 2015, 62, 35-46.
[4]
Wu, C.; Zhu, A.; Li, D.; Wang, L.; Yang, H.; Zeng, H.; Liu, Y. Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent. Expert Opin. Drug Deliv., 2016, 13(1), 155-165.
[5]
Feng, L.; Li, K.; Shi, X.; Gao, M.; Liu, J.; Liu, Z. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv. Healthc. Mater., 2014, 3(8), 1261-1271.
[6]
Dubois, S.M.M.; Zanolli, Z.; Declerck, X.; Charlier, J.C. Electronic properties and quantum transport in Graphene-based nanostructures. Eur. Phys. J. B, 2009, 72, 1-24.
[7]
Grassi, R.; Gnudi, A.; Gnani, E.; Reggiani, S.; Baccarani, G. An investigation of performance limits of conventional and tunneling graphene-based transistors. J. Comput. Electron., 2009, 8, 441-450.
[8]
Güçlü, A.D.; Potasz, P.; Voznyy, O.; Korkusinski, M.; Hawrylak, P. Magnetism and correlations in fractionally filled degenerate shells of graphene quantum dots. Phys. Rev. Lett., 2009, 103(24)246805
[9]
Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81, 109-162.
[10]
Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem., 2009, 19, 2710-2714.
[11]
Chen, L.; Feng, W.; Zhou, X.; Qiu, K.; Miao, Y.; Zhang, Q.; Qin, M.; Li, L.; Zhang, Y.; He, C. Facile synthesis of novel albumin-functionalized flower-like MoS2 nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Advances, 2016, 6, 13040-13049.
[12]
Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; Bu, W.; Sun, B.; Liu, Z. PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater., 2014, 26(12), 1886-1893.
[13]
Qian, X.; Shen, S.; Liu, T.; Cheng, L.; Liu, Z. Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale, 2015, 7(14), 6380-6387.
[14]
Kalantar-zadeh, K.; Ou, J.Z.; Daeneke, T.; Strano, M.S.; Pumera, M.; Gras, S.L. Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater., 2015, 25, 5086-5099.
[15]
Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z. Black phosphorus nanosheets: synthesis, characterization and applications. Small, 2016, 12(26), 3480-3502.
[16]
Fang, W.; Tang, S.; Liu, P.; Fang, X.; Gong, J.; Zheng, N. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small, 2012, 8(24), 3816-3822.
[17]
Kim, J.; Kim, H.; Kim, W.J. Single-layered MoS2-PEI-PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small, 2016, 12(9), 1184-1192.
[18]
Ren, Q.; Li, B.; Peng, Z.; He, G.; Zhang, W.; Guan, G.; Huang, X.; Xiao, Z.; Liao, L.; Pan, Y.; Yang, X.; Zou, R.; Hu, J. SnS nanosheets for efficient photothermal therapy. New J. Chem., 2016, 40, 4464-4467.
[19]
Sofer, Z.; Bouša, D.; Luxa, J.; Mazanek, V.; Pumera, M. Few-layer black phosphorus nanoparticles. Chem. Commun. (Camb.), 2016, 52(8), 1563-1566.
[20]
Kou, L.; Chen, C.; Smith, S.C. Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett., 2015, 6(14), 2794-2805.
[21]
Doganov, R.A.; O’Farrell, E.C.; Koenig, S.P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Watanabe, K.; Taniguchi, T.; Castro Neto, A.H.; Özyilmaz, B. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun., 2015, 6, 6647.
[22]
Qiao, J.; Kong, X.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 2014, 5, 4475-4475.
[23]
Takao, Y.; Morita, A. Electronic structure of black phosphorus: tight binding approach. Physica B+C, 1981, 105, 93-98.
[24]
Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 2014, 5, 4458.
[25]
Rodin, A.S.; Carvalho, A.; Neto, A.H.C. Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B, 2014, 28, 982-991.
[26]
Batmunkh, M.; Bat-Erdene, M.; Shapter, J.G. Phosphorene and phosphorene-based materials - prospects for future applications. Adv. Mater., 2016, 28(39), 8586-8617.
[27]
Li, J.; Luo, H.; Zhai, B.; Lu, R.; Guo, Z.; Zhang, H.; Liu, Y. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 2016, 6, 30361.
[28]
Viti, L.; Hu, J.; Coquillat, D.; Knap, W.; Tredicucci, A.; Politano, A.; Vitiello, M.S. Black phosphorus terahertz photodetectors. Adv. Mater., 2015, 27(37), 5567-5572.
[29]
Lu, S.B.; Miao, L.L.; Guo, Z.N.; Qi, X.; Zhao, C.J.; Zhang, H.; Wen, S.C.; Tang, D.Y.; Fan, D.Y. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 2015, 23(9), 11183-11194.
[30]
Wang, Z.; Xu, Y.; Dhanabalan, S.C.; Sophia, J.; Zhao, C.; Xu, C.; Xiang, Y.; Li, J.; Zhang, H. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J., 2016, 8(5), 1-10.
[31]
Kiew, S.F.; Kiew, L.V.; Lee, H.B.; Imae, T.; Chung, L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review J. Relig. Soc., 2016, 226, 217-228.
[32]
Seo, S.; Lee, H.U.; Lee, S.C.; Kim, Y.; Kim, H.; Bang, J.; Won, J.; Kim, Y.; Park, B.; Lee, J. Triangular black phosphorus atomic layers by liquid exfoliation. Sci. Rep., 2016, 6, 23736.
[33]
Paredes, J.I.; Villar-Rodil, S. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. Nanoscale, 2016, 8(34), 15389-15413.
[34]
Yang, X.; Tang, S.; Ding, G.; Xie, X.; Jiang, M.; Huang, F. Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology, 2012, 23(2)025704
[35]
Liu, Y.; Nan, H.; Wu, X.; Pan, W.; Wang, W.; Bai, J.; Zhao, W.; Sun, L.; Wang, X.; Ni, Z. Layer-by-layer thinning of MoS2 by plasma. ACS Nano, 2013, 7(5), 4202-4209.
[36]
Lu, W.; Nan, H.; Hong, J.; Chen, Y.; Zhu, C.; Liang, Z.; Ma, X.; Ni, Z.; Jin, C.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res., 2014, 7, 853-859.
[37]
Dhanabalan, S.C.; Ponraj, J.S.; Guo, Z.; Li, S.; Bao, Q.; Zhang, H. emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. (Weinh.), 2017, 4(6)1600305
[38]
Bourlinos, A.B.; Georgakilas, V.; Zboril, R.; Steriotis, T.A.; Stubos, A.K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small, 2009, 5(16), 1841-1845.
[39]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M. Gun’Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568.
[40]
Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7), 864-871.
[41]
Khan, U.; Porwal, H.; O’Neill, A.; Nawaz, K.; May, P.; Coleman, J.N. Solvent-exfoliated graphene at extremely high concentration. Langmuir, 2011, 27(15), 9077-9082.
[42]
Cunningham, G.; Lotya, M.; Cucinotta, C.S.; Sanvito, S.; Bergin, S.D.; Menzel, R.; Shaffer, M.S.P.; Coleman, J.N. Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano, 2012, 6(4), 3468-3480.
[43]
Lee, K.; Kim, H.Y.; Lotya, M.; Coleman, J.N.; Kim, G.T.; Duesberg, G.S. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater., 2011, 23(36), 4178-4182.
[44]
Zhao, X.; Ma, X.; Sun, J.; Li, D.; Yang, X. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano, 2016, 10(2), 2159-2166.
[45]
Brent, J.R.; Savjani, N.; Lewis, E.A.; Haigh, S.J.; Lewis, D.J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. (Camb.), 2014, 50(87), 13338-13341.
[46]
Wang, H.; Yang, X.; Shao, W.; Chen, S.; Xie, J.; Zhang, X.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc., 2015, 137(35), 11376-11382.
[47]
Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J.E.; Klie, R.F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater., 2015, 27(11), 1887-1892.
[48]
Kang, J.; Wood, J.D.; Wells, S.A.; Lee, J.H.; Liu, X.; Chen, K.S.; Hersam, M.C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9(4), 3596-3604.
[49]
Xu, J.Y.; Gao, L.F.; Hu, C.X.; Zhu, Z.Y.; Zhao, M.; Wang, Q.; Zhang, H.L. Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. (Camb.), 2016, 52(52), 8107-8110.
[50]
Yan, S.; Wang, B.; Wang, Z.; Hu, D.; Xu, X.; Wang, J.; Shi, Y. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens. Bioelectron., 2016, 80, 34-38.
[51]
Zhao, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces, 2015, 7(50), 27608-27612.
[52]
Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1), 30-35.
[53]
Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.; Chang, C.S.; Li, L.J.; Lin, T.W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24(17), 2320-2325.
[54]
Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett., 2009, 9(5), 1752-1758.
[55]
Liu, H.; Ansah Antwi, K.K.; Ying, J.; Chua, S.; Chi, D. Towards large area and continuous MoS2 atomic layers via vapor-phase growth: thermal vapor sulfurization. Nanotechnology, 2014, 25(40)405702
[56]
Smith, J.B.; Hagaman, D.; Ji, H.F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27(21)215602
[57]
Kang, H.; Gravier, J.; Bao, K.; Wada, H.; Lee, J.H.; Baek, Y.; El Fakhri, G.; Gioux, S.; Rubin, B.P.; Coll, J.L.; Choi, H.S. Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv. Mater., 2016, 28(37), 8162-8168.
[58]
Ehlerding, E.B.; Chen, F.; Cai, W. Biodegradable and renal clearable inorganic nanoparticles. Adv. Sci. (Weinh.), 2016, 3(2)1500223
[59]
Wang, J.; Tan, X.; Pang, X.; Liu, L.; Tan, F.; Li, N. MoS2 quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl. Mater. Interfaces, 2016, 8(37), 24331-24338.
[60]
Bai, J.M.; Zhang, L.; Liang, R.P.; Qiu, J.D. Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chemistry, 2013, 19(12), 3822-3826.
[61]
Sun, Z.; Xie, H.; Tang, S.; Yu, X.F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P.K. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. Engl., 2015, 54(39), 11526-11530.
[62]
Zhang, X.; Xie, H.; Liu, Z.; Tan, C.; Luo, Z.; Li, H.; Lin, J.; Sun, L.; Chen, W.; Xu, Z.; Xie, L.; Huang, W.; Zhang, H. Black phosphorus quantum dots. Angew. Chem. Int. Ed. Engl., 2015, 54(12), 3653-3657.
[63]
Gao, L.F.; Xu, J.Y.; Zhu, Z.Y.; Hu, C.X.; Zhang, L.; Wang, Q.; Zhang, H.L. Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response. Nanoscale, 2016, 8(33), 15132-15136.
[64]
Feng, W.; Nie, W.; Cheng, Y.; Zhou, X.; Chen, L.; Qiu, K.; Chen, Z.; Zhu, M.; He, C. In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications. Nanomedicine (Lond.), 2015, 11(4), 901-912.
[65]
Alkilany, A.M.; Nagaria, P.K.; Hexel, C.R.; Shaw, T.J.; Murphy, C.J.; Wyatt, M.D. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small, 2009, 5(6), 701-708.
[66]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[67]
Favi, P.M.; Gao, M.; Johana Sepúlveda Arango, L.; Ospina, S.P.; Morales, M.; Pavon, J.J.; Webster, T.J. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars. J. Biomed. Mater. Res. A, 2015, 103(11), 3449-3462.
[68]
Li, N.; Zhao, P.; Astruc, D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1756-1789.
[69]
Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007, 3(11), 1941-1949.
[70]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[71]
Bianco, A. Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Ed. Engl., 2013, 52(19), 4986-4997.
[72]
Liu, Y.; Zhao, Y.; Sun, B.; Chen, C. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res., 2013, 46(3), 702-713.
[73]
Comber, S.; Gardner, M.; Georges, K.; Blackwood, D.; Gilmour, D. Domestic source of phosphorus to sewage treatment works. Environ. Technol., 2013, 34(9-12), 1349-1358.
[74]
Childers, D.L.; Corman, J.; Edwards, M.; Elser, J.J. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience, 2011, 61, 117-124.
[75]
Latiff, N.M.; Teo, W.Z.; Sofer, Z.; Fisher, A.C.; Pumera, M. The cytotoxicity of layered black phosphorus. Chemistry, 2015, 21(40), 13991-13995.
[76]
Pravst, I. Risking public health by approving some health claims? – The case of phosphorus. Food Policy, 2011, 36, 725-727.
[77]
Rana, S.; Kalaichelvan, P.T. Ecotoxicity of nanoparticles. ISRN Toxicol., 2013, 2013574648
[78]
Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 2011, 49, 986-995.
[79]
Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.F.; Zhao, Y.; Zhang, H.; Wang, H.; Chu, P.K. Biodegradable black phosphorus-based nanospheres for In vivo photothermal cancer therapy. Nat. Commun., 2016, 7, 12967.
[80]
Chen, W.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J.; Liu, Z.; Han, Y.; Wang, L.; Li, J.; Deng, L.; Liu, Y.N.; Guo, S. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/ chemotherapy of cancer. Adv. Mater., 2017, 29(5)
[http://dx.doi.org/10.1002/adma.201603864]
[81]
Lee, H.U.; Park, S.Y.; Lee, S.C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K.S.; Park, H.G.; Kim, H.S.; An, H.R.; Jeong, K.H.; Lee, Y.C.; Lee, J. Black phosphorus (BP) nanodots for potential biomedical applications. Small, 2016, 12(2), 214-219.
[82]
Chang, Y.; Yang, S.T.; Liu, J.H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett., 2011, 200(3), 201-210.
[83]
Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol., 2014, 27(2), 159-168.
[84]
Johns, J.E.; Hersam, M.C. Atomic covalent functionalization of graphene. Acc. Chem. Res., 2013, 46(1), 77-86.
[85]
Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem., 2009, 19, 7098-7105.
[86]
Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci., 2012, 57, 1061-1105.
[87]
Ryder, C.R.; Wood, J.D.; Wells, S.A.; Yang, Y.; Jariwala, D.; Marks, T.J.; Schatz, G.C.; Hersam, M.C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem., 2016, 8(6), 597-602.
[88]
Huang, P.; Jing, L.; Zhu, H.; Gao, X. Diazonium functionalized graphene: microstructure, electric, and magnetic properties. Acc. Chem. Res., 2013, 46(1), 43-52.
[89]
Salice, P.; Fabris, E.; Sartorio, C.; Fenaroli, D.; Figà, V.; Casaletto, M.P.; Cataldo, S.; Pignataro, B.; Menna, E. An insight into the functionalisation of carbon nanotubes by diazonium chemistry: Towards a controlled decoration. Carbon, 2014, 74, 73-82.
[90]
Brockerhoff, P. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc., 1997, 119, 138-142.
[91]
Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG - a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release, 2014, 192, 67-81.
[92]
Samarasena, J.B.; Kwak, N.H.; Chang, K.J.; Lee, J.G. The PEG-Pedi-PEG technique: a novel method for percutaneous endoscopic gastrojejunostomy tube placement (with video). Gastrointest. Endosc., 2016, 84(6), 1030-1033.
[93]
Bai, J.; Liu, Y.; Jiang, X. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials, 2014, 35(22), 5805-5813.
[94]
Zhao, Y.; Wang, H.; Huang, H.; Xiao, Q.; Xu, Y.; Guo, Z.; Xie, H.; Shao, J.; Sun, Z.; Han, W.; Yu, X.F.; Li, P.; Chu, P.K. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. Engl., 2016, 55(16), 5003-5007.
[95]
Sun, Z.; Zhao, Y.; Li, Z.; Cui, H.; Zhou, Y.; Li, W.; Tao, W.; Zhang, H.; Wang, H.; Chu, P.K.; Yu, X.F. TiL4 -Coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small, 2017, 13(11)
[96]
Pourabbas, B.; Jamshidi, B. Preparation of MoS 2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS 2 /TiO 2 hybrids in photo-oxidation of phenol. Chem. Eng. J., 2008, 138, 55-62.
[97]
Williams, G.; Seger, B.; Kamat, P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7), 1487-1491.
[98]
Lee, H.U.; Lee, S.C.; Won, J.; Son, B.C.; Choi, S.; Kim, Y.; Park, S.Y.; Kim, H.S.; Lee, Y.C.; Lee, J. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci. Rep., 2015, 5, 8691.
[99]
Xing, C.; Jing, G.; Liang, X.; Qiu, M.; Li, Z.; Cao, R.; Li, X.; Fan, D.; Zhang, H. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale, 2017, 9(24), 8096-8101.
[100]
Zheng, J.; Yang, Z.; Si, C.; Liang, Z.; Chen, X.; Cao, R.; Guo, Z.; Wang, K.; Zhang, Y.; Ji, J.; Zhang, M.; Fan, D.; Zhang, H. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics, 2017, 4(6), 1466-1476.
[101]
Yang, G.; Liu, Z.; Li, Y.; Hou, Y.; Fei, X.; Su, C.; Wang, S.; Zhuang, Z.; Guo, Z. Facile synthesis of black phosphorus-Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis. Biomater. Sci., 2017, 5(10), 2048-2055.
[102]
Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials, 2011, 32(33), 8555-8561.
[103]
Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano, 2014, 8(7), 6922-6933.
[104]
Bai, J.; Liu, Y.; Jiang, X. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials, 2014, 35(22), 5805-5813.
[105]
Yao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; Mei, L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater., 2017, 29(1)
[http://dx.doi.org/10.1002/ adma.201603276]
[106]
Chen, Y.W.; Su, Y.L.; Hu, S.H.; Chen, S.Y. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev, 2016, 105(Pt B), 190-204.
[107]
Su, S.; Wang, J.; Vargas, E.; Wei, J.; Martinezzaguilan, R.; Sennoune, S.R.; Pantoya, M.L.; Wang, S.; Chaudhuri, J.; Qiu, J. Porphyrin immobilized nano-graphene oxide for enhanced and targeted photothermal therapy of brain cancer. ACS Biomater. Sci. Eng., 2016, 2, 1357-1366.
[108]
Yang, W.; Guo, W.; Le, W.; Lv, G.; Zhang, F.; Shi, L.; Wang, X.; Wang, J.; Wang, S.; Chang, J.; Zhang, B. Albumin-bioinspired Gd:CuS nanotheranostic agent for In vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano, 2016, 10(11), 10245-10257.
[109]
Schade, L.; Franzka, S.; Thomas, M.; Hagemann, U.; Hartmann, N. Resonant laser processing of nanoparticulate Au/TiO 2 films on glass supports: Photothermal modification of a photocatalytic nanomaterial. Surf. Sci., 2016, 650, 57-63.
[110]
Cano-Mejia, J.; Burga, R.A.; Sweeney, E.E.; Fisher, J.P.; Bollard, C.M.; Sandler, A.D.; Cruz, C.R.Y.; Fernandes, R. Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomedicine (Lond.), 2017, 13(2), 771-781.
[111]
Sun, C.; Wen, L.; Zeng, J.; Wang, Y.; Sun, Q.; Deng, L.; Zhao, C.; Li, Z. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials, 2016, 91, 81-89.
[112]
Yamamoto, H.; Okunaka, T.; Furukawa, K.; Hiyoshi, T.; Konaka, C.; Kato, H. Photodynamic therapy for cancers. Curr. Sci., 1999, 77, 894-903.
[113]
Piskorz, J.; Lijewski, S.; Gierszewski, M.; Gorniak, K.; Sobotta, L.; Wicher, B.; Tykarska, E.; Düzgüneş, N.; Konopka, K.; Sikorski, M. Sulfanyl porphyrazines: Molecular barrel-like self-assembly in crystals, optical properties and invitro photodynamic activity towards cancer cells. Dyes Pigments, 2017, 136, 898-908.
[114]
Sternberg, E.D.; Dolphin, D.; Brückner, C.; Sternberg, E.D.; Dolphin, D.; Brückner, C. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron, 1998, 54, 4151-4202.
[115]
Lv, R.; Yang, D.; Yang, P.; Xu, J.; He, F.; Gai, S.; Li, C.; Dai, Y.; Yang, G.; Lin, J. Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem. Mater., 2016, 28(13), 4724-4734.
[116]
Li, Y.; Liu, Z.; Hou, Y.; Yang, G.; Fei, X.; Zhao, H.; Guo, Y.; Su, C.; Wang, Z.; Zhong, H.; Zhuang, Z.; Guo, Z. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(30), 25098-25106.
[117]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater., 2012, 24(14), 1868-1872.
[118]
Song, X.; Gong, H.; Yin, S.; Liang, C.; Wang, C.; Li, Z.; Li, Y.; Wang, X.; Liu, G.; Liu, Z. Cancer theranostics: ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater., 2014, 24, 1194-1201.
[119]
Mayorga-Martinez, C.C.; Mohamad Latiff, N.; Eng, A.Y.S.; Sofer, Z.; Pumera, M. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal. Chem., 2016, 88(20), 10074-10079.
[120]
Zhang, H.; Zhang, H.; Aldalbahi, A.; Zuo, X.; Fan, C.; Mi, X. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron., 2017, 89(Pt 1), 96-106.
[121]
Zhu, C.; Du, D.; Lin, Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens. Bioelectron., 2017, 89(Pt 1), 43-55.
[122]
Rawat, K.A.; Bhamore, J.R.; Singhal, R.K.; Kailasa, S.K. Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples. Biosens. Bioelectron., 2017, 88, 71-77.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 10
Year: 2019
Page: [1788 - 1805]
Pages: 18
DOI: 10.2174/0929867324666170920152529
Price: $65

Article Metrics

PDF: 31
HTML: 4