Stem Cell Differentiation Stage Factors and their Role in Triggering Symmetry Breaking Processes during Cancer Development: A Quantum Field Theory Model for Reprogramming Cancer Cells to Healthy Phenotypes

Author(s): P.M. Biava*, F. Burigana, R. Germano, P. Kurian*, C. Verzegnassi, G. Vitiello.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 6 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation—which we call stem cell differentiation stage factors (SCDSFs)—are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated redifferentiation often signifies the phenotypic reversion back to health and nonproliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer description of reality.

Keywords: Stem cells, cancer stem cells, embryo, cell differentiation, cancer cell reprogramming, genetic and epigenetic landscape, phenotypic reversion, quantum field theory, spontaneous symmetry breaking, electrodynamics, electromagnetic, microenvironment, aromatic networks, water dipole field, coherent water, exclusion zones, fractallike self-similarity.

[1]
Biava, P.M.; Canaider, S.; Facchin, F.; Bianconi, E.; Ljungberg, L.; Rotilio, D.; Burigana, F.; Ventura, C. Stem cell differentiation stage factors from zebrafish embryo: A novel strategy to modulate the fate of normal and pathological human (stem) cells. Curr. Pharm. Biotechnol., 2015, 16(9), 782-792.
[2]
Biava, P.M.; Bonsignorio, D.; Hoxa, M. Life-protecting factor (LPF): An anti-cancer low molecular weight fraction isolated from pregnant uterine mucosa during embryo organogenesis. J. Tumor Marker Oncol., 2000, 15, 223-233.
[3]
Livraghi, T.; Meloni, F.; Frosi, A.; Lazzaroni, S.; Bizzarri, T.M.; Frati, L.; Biava, P.M. Treatment with stem cell differentiation stage factors of intermediate-advanced hepatocellular carcinoma: an open randomized clinical trial. Oncol. Res., 2005, 15(7-8), 399-408.
[4]
Livraghi, T.; Ceriani, R.; Palmisano, A.; Pedicini, V.; Pich, M.G.; Tommasini, M.A.; Torzilli, G. Complete response in 5 out of 38 patients with advanced hepatocellular carcinoma treated with stem cell differentiation stage factors: case reports from a single centre. Curr. Pharm. Biotechnol., 2011, 12(2), 254-260.
[5]
Biava, P.M.; Bonsignorio, D. Cancer and cell differentiation: a model to explain malignancy. J. Tumor Marker Oncol., 2002, 17, 47-54.
[6]
Pierce, G.B. The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am. J. Pathol., 1983, 113(1), 117-124.
[7]
Biava, P.M.; Nicolini, A.; Ferrari, P.; Carpi, A.; Sell, S. A systemic approach to cancer treatment: Tumor cell reprogramming focused on endocrine-related cancers. Curr. Med. Chem., 2014, 21(9), 1072-1081.
[8]
Mosoyan, G.; Nagi, C.; Marukian, S.; Teixeira, A.; Simonian, A.; Resnick-Silverman, L.; DiFeo, A.; Johnston, D.; Reynolds, S.R.; Roses, D.F.; Mosoian, A. Multiple breast cancer cell-lines derived from a single tumor differ in their molecular characteristics and tumorigenic potential. PLoS One, 2013, 8(1), e55145.
[9]
Botchkina, I.L.; Rowehl, R.A.; Rivadeneira, D.E.; Karpeh, M.S., Jr; Crawford, H.; Dufour, A.; Ju, J.; Wang, Y.; Leyfman, Y.; Botchkina, G.I. Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics, 2009, 6(1), 19-29.
[10]
Pérez-Caro, M.; Cobaleda, C.; González-Herrero, I.; Vicente-Dueñas, C.; Bermejo-Rodríguez, C.; Sánchez-Beato, M.; Orfao, A.; Pintado, B.; Flores, T.; Sánchez-Martín, M.; Jiménez, R.; Piris, M.A.; Sánchez-García, I. Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J., 2009, 28(1), 8-20.
[11]
Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 2015, 16(3), 225-238.
[12]
Itzykson, C.; Zuber, J. Quantum field theory; McGraw-Hill: New York, 1980.
[13]
Umezawa, H. Advanced field theory: micro, macro and thermal concepts., 1993.
[14]
Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo field dynamics and condensed states., 1982.
[15]
Blasone, M.; Jizba, P.; Vitiello, G. Quantum field theory and its macroscopic manifestations., 2011.
[16]
Vitiello, G. My Double Unveiled; John Benjamins Publishing Company: Amsterdam, 2001.
[17]
Del Giudice, E.; Manka, R.; Milani, M.; Vitiello, G. Non-constant order parameter and vacuum evolution. Phys. Lett. B, 1988, 206, 661-664.
[18]
Preparata, G.; Vitiello, G.; Vitiello, G. Water as a free electric dipole laser. Phys. Rev. Lett., 1988, 61(9), 1085-1088.
[19]
Del Giudice, E.; Vitiello, G. The role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions. Phys. Rev. A, 2006, 74, 022105.
[20]
Alfinito, E.; Vitiello, G. Domain formation in non-instantaneous symmetry-breaking phase transitions. Phys. Rev. B, 2002, 65, 054105.
[21]
Vitiello, G. Coherent states, fractals and brain waves. New Mathematics and Natural Computation, 2009, 5, 245-264.
[22]
Vitiello, G. Fractals, coherent states and self-similarity induced noncommutative geometry. Phys. Lett. A, 2012, 376, 2527-2532.
[23]
Vitiello, G. On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems, 2014, 2, 203-216.
[24]
Goldstone, J. Field theories with superconductor solutions. Nuovo Cim., 1961, 19, 154-164.
[25]
Matsumoto, H.; Umezawa, H.; Vitiello, G.; Wyly, J.K. Spontaneous breakdown of a non-Abelian symmetry. Phys. Rev. D Part. Fields, 1974, 9, 2806-2813.
[26]
Shah, M.N.; Umezawa, H.; Vitiello, G. Relation among spin operators and magnons. Phys. Rev. B, 1974, 10, 4724-4736.
[27]
Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Spontaneous symmetry breakdown and boson condensation in biology. Phys. Lett. A, 1983, 95, 508-510.
[28]
Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. A quantum field theoretical approach to the collective behavior of biological systems., Nucl. Phys. B.,. 1985. 251(FS 13),375-400
[29]
Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breaking in biological matter., . Nucl. Phys. B. 1986. 275(FS 17), 185-199
[30]
Celeghini, E.; Rasetti, M.; Vitiello, G. Quantum Dissipation. Ann. Phys., 1992, 215, 156-170.
[31]
Peitgen, H.O.; Jürgens, H.; Saupe, D. Chaos and fractals.new frontiers of science; Springer-Verlag: Berlin, 1986.
[32]
Iliopoulos, D.; Hirsch, H.A.; Wang, G.; Struhl, K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1397-1402.
[33]
Cheng, L.; Ramesh, A.V.; Flesken-Nikitin, A.; Choi, J.; Nikitin, A.Y. Mouse models for cancer stem cell research. Toxicol. Pathol., 2010, 38(1), 62-71.
[34]
Welte, Y.; Adjaye, J.; Lehrach, H.R.; Regenbrecht, C.R.A. Cancer stem cells in solid tumors: Elusive or illusive? Cell Commun. Signal., 2010, 8(1), 6.
[35]
Dontu, G.; Liu, S.; Wicha, M.S. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev., 2005, 1(3), 207-213.
[36]
Cobaleda, C.; Sánchez-García, I. B-cell acute lymphoblastic leukaemia: Towards understanding its cellular origin. BioEssays, 2009, 31(6), 600-609.
[37]
Nagl, W.; Popp, F.A. A physical (electromagnetic) model of differentiation. 1. Basic considerations. Cytobios, 1983, 37(145), 45-62.
[38]
Szent-Györgyi, A. The living state and cancer. Physiol. Chem. Phys., 1980, 12(2), 99-110.
[39]
Preto, J.; Nardecchia, I.; Jaeger, S.; Ferrier, P.; Pettini, M. Investigating encounter dynamics of biomolecular reactions:Long-range resonant interactions versus Brownian collisions. Fields of the Cell., 2015, 215-228.
[40]
Kurian, P.; Dunston, G.; Lindesay, J. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J. Theor. Biol., 2016, 391, 102-112.
[41]
Kurian, P.; Capolupo, A.; Craddock, T.J.A.; Vitiello, G. Water-mediated correlations in DNA-enzyme interactions. Phys. Lett. A, 2018, 382(1), 33-43.
[42]
Chernet, B.; Levin, M. Endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer. J. Clin. Exp. Oncol., 2013(Suppl. 1), S1-S002.
[43]
Chang, F.; Minc, N. Electrochemical control of cell and tissue polarity. Annu. Rev. Cell Dev. Biol., 2014, 30, 317-336.
[44]
Rossen, N.S.; Tarp, J.M.; Mathiesen, J.; Jensen, M.H.; Oddershede, L.B. Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun., 2014, 5, 5720.
[45]
Tanner, K.; Mori, H.; Mroue, R.; Bruni-Cardoso, A.; Bissell, M.J. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc. Natl. Acad. Sci. USA, 2012, 109(6), 1973-1978.
[46]
Lineweaver, C.H.; Davies, P.C.W.; Vincent, M.D. Targeting cancer’s weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model. BioEssays, 2014, 36(9), 827-835.
[47]
Arani, R.; Bono, I.; Del Giudice, E.; Preparata, G. QED coherence and the thermodynamics of water. Int. J. Mod. Phys. B, 1995, 139, 1813-1841.
[48]
Landau, L.D. The theory of superfluidity of helium II. J. Phys. (USSR), 1941, 5, 71.
[49]
Germano, R.; Del Giudice, E.; De Ninno, A.; Elia, V.; Hison, C.; Napoli, E.; Tontodonato, V.; Tuccinardi, F.P.; Vitiello, G. Oxhydroelectric effect in bi-distilled water. Key Eng. Mater., 2013, 543, 455-459.
[50]
Germano, R.; Tontodonato, V.; Hison, C.; Cirillo, D.; Tuccinardi, F.P. Oxhydroelectric effect: electricity from water by twin electrodes. Key Eng. Mater., 2012, 495, 100-103.
[51]
Verzegnassi, C. Int. J. Mod. Phys, 2016, 1, 14.
[52]
Kurian, P.; Verzegnassi, C. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron. Phys. Lett. A, 2016, 380(3), 380-, 394-396.
[53]
Blokzijl, F.; de Ligt, J.; Jager, M.; Sasselli, V.; Roerink, S.; Sasaki, N.; Huch, M.; Boymans, S.; Kuijk, E.; Prins, P.; Nijman, I.J.; Martincorena, I.; Mokry, M.; Wiegerinck, C.L.; Middendorp, S.; Sato, T.; Schwank, G.; Nieuwenhuis, E.E.S.; Verstegen, M.M.; van der Laan, L.J.W.; de Jonge, J.; IJzermans, J.N.M.; Vries, R.G.; van de Wetering, M.; Stratton, M.R.; Clevers, H.; Cuppen, E.; van Boxtel, R. Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016, 538(7624), 260-264.
[54]
Shackleton, M.; Quintana, E.; Fearon, E.R.; Morrison, S.J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 2009, 138(5), 822-829.
[55]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell, 2012, 10(6), 717-728.
[56]
Biava, P.M.; Monguzzi, A.; Bonsignorio, D.; Frosi, A.; Sell, S.; Klavins, J.V. Xenopus laevis embryos share antigens with zebrafish embryos and with human malignant neoplasms J. Tumor Marker Oncol, 2001, 16, 203-206.
[57]
Chen, J.; Chen, Z.L. Technology update for the sorting and identification of breast cancer stem cells. Chin. J. Cancer, 2010, 29(3), 265-269.
[58]
Roesler, R.; Cornelio, D.B.; Abujamra, A.L.; Schwartsmann, G. HER2 as a cancer stem-cell target. Lancet Oncol., 2010, 11(3), 225-226.
[59]
Wu, W. Patents related to cancer stem cell research. Recent Pat. DNA Gene Seq., 2010, 4(1), 40-45.
[60]
Park, S.Y.; Lee, H.E.; Li, H.; Shipitsin, M.; Gelman, R.; Polyak, K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin. Cancer Res., 2010, 16(3), 876-887.
[61]
Lawson, J.C.; Blatch, G.L.; Edkins, A.L. Cancer stem cells in breast cancer and metastasis. Breast Cancer Res. Treat., 2009, 118(2), 241-254.
[62]
Luo, J.; Yin, X.; Ma, T.; Lu, J. Stem cells in normal mammary gland and breast cancer. Am. J. Med. Sci., 2010, 339(4), 366-370.
[63]
Spiro, S.G.; Tanner, N.T.; Silvestri, G.A.; Janes, S.M.; Lim, E.; Vansteenkiste, J.F.; Pirker, R. Lung cancer: progress in diagnosis, staging and therapy. Respirology, 2010, 15(1), 44-50.
[64]
Gorelik, E.; Lokshin, A.; Levina, V. Lung cancer stem cells as a target for therapy. Anticancer. Agents Med. Chem., 2010, 10(2), 164-171.
[65]
Sullivan, J.P.; Minna, J.D.; Shay, J.W. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev., 2010, 29(1), 61-72.
[66]
Westhoff, B.; Colaluca, I.N.; D’Ario, G.; Donzelli, M.; Tosoni, D.; Volorio, G.; Pelosi, G.; Spaggiari, L.; Mazzarol, G.; Viale, G.; Pece, S.; Di Fiore, P.P. Alteration of the notch pathway in lung cancer. Proc. Natl. Acad. Sci. USA, 2010, 87, 457-466.
[67]
Lawson, D.A.; Zong, Y.; Memarzadeh, S.; Xin, L.; Huang, J.; Witte, O.N. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2610-2615.
[68]
Lang, S.H.; Anderson, E.; Fordham, R.; Collins, A.T. Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev., 2010, 19(4), 537-546.
[69]
Joung, J.Y.; Cho, K.S.; Kim, J.E.; Seo, H.K.; Chung, J.; Park, W.S.; Choi, M.K.; Lee, K.H. Prostate stem cell antigen mRNA in peripheral blood as a potential predictor of biochemical recurrence in high-risk prostate cancer. J. Surg. Oncol., 2010, 101(2), 145-148.
[70]
Liu, T.; Cheng, W.; Lai, D.; Huang, Y.; Guo, L. Characterization of primary ovarian cancer cells in different culture systems. Oncol. Rep., 2010, 23(5), 1277-1284.
[71]
Fong, M.Y.; Kakar, S.S. The role of cancer stem cells and the side population in epithelial ovarian cancer. Histol. Histopathol., 2010, 25(1), 113-120.
[72]
Murphy, S.K. Targeting ovarian cancer-initiating cells. Anticancer. Agents Med. Chem., 2010, 10(2), 157-163.
[73]
Peng, S.; Maihle, N.J.; Huang, Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene, 2010, 29(14), 2153-2159.
[74]
Tomuleasa, C.; Soritau, O.; Rus-Ciuca, D.; Pop, T.; Todea, D.; Mosteanu, O.; Pintea, B.; Foris, V.; Susman, S.; Kacsó, G.; Irimie, A. Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J. Gastrointestin. Liver Dis., 2010, 19(1), 61-67.
[75]
Zou, G.M. Liver cancer stem cells as an important target in liver cancer therapies. Anticancer. Agents Med. Chem., 2010, 10(2), 172-175.
[76]
Lee, T.K.; Castilho, A.; Ma, S.; Ng, I.O. Liver cancer stem cells: Implications for a new therapeutic target. Liver Int., 2009, 29(7), 955-965.
[77]
Marquardt, J.U.; Thorgeirsson, S.S. Stem cells in hepatocarcinogenesis: Evidence from genomic data. Semin. Liver Dis., 2010, 30(1), 26-34.
[78]
Kung, J.W.; Currie, I.S.; Forbes, S.J.; Ross, J.A. Liver development, regeneration, and carcinogenesis. J. Biomed. Biotechnol., 2010, 2010, 984248.
[79]
Gai, H.; Nguyen, D.M.; Moon, Y.J.; Aguila, J.R.; Fink, L.M.; Ward, D.C.; Ma, Y. Generation of murine hepatic lineage cells from induced pluripotent stem cells. Differentiation, 2010, 79(3), 171-181.
[80]
Correia, M.; Machado, J.C.; Ristimäki, A. Basic aspects of gastric cancer. Helicobacter, 2009, 14(Suppl. 1), 36-40.
[81]
Takaishi, S.; Okumura, T.; Tu, S.; Wang, S.S.; Shibata, W.; Vigneshwaran, R.; Gordon, S.A.; Shimada, Y.; Wang, T.C. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells, 2009, 27(5), 1006-1020.
[82]
Nishii, T.; Yashiro, M.; Shinto, O.; Sawada, T.; Ohira, M.; Hirakawa, K. Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci., 2009, 100(8), 1397-1402.
[83]
Chen, Z.; Xu, W.R.; Qian, H.; Zhu, W.; Bu, X.F.; Wang, S.; Yan, Y.M.; Mao, F.; Gu, H.B.; Cao, H.L.; Xu, X.J. Oct4, a novel marker for human gastric cancer. J. Surg. Oncol., 2009, 99(7), 414-419.
[84]
Kang, D.H.; Han, M.E.; Song, M.H.; Lee, Y.S.; Kim, E.H.; Kim, H.J.; Kim, G.H.; Kim, D.H.; Yoon, S.; Baek, S.Y.; Kim, B.S.; Kim, J.B.; Oh, S.O. The role of hedgehog signaling during gastric regeneration. J. Gastroenterol., 2009, 44(5), 372-379.
[85]
Yeung, T.M.; Gandhi, S.C.; Wilding, J.L.; Muschel, R.; Bodmer, W.F. Cancer stem cells from colorectal cancer-derived cell lines. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3722-3727.
[86]
Gulino, A.; Ferretti, E.; De Smaele, E. Hedgehog signalling in colon cancer and stem cells. EMBO Mol. Med., 2009, 1(6-7), 300-302.
[87]
Thenappan, A.; Li, Y.; Shetty, K.; Johnson, L.; Reddy, E.P.; Mishra, L. New therapeutics targeting colon cancer stem cells. Curr. Colorectal Cancer Rep., 2009, 5(4), 209.
[88]
Rasheed, Z.A.; Yang, J.; Wang, Q.; Kowalski, J.; Freed, I.; Murter, C.; Hong, S.M.; Koorstra, J.B.; Rajeshkumar, N.V.; He, X.; Goggins, M.; Iacobuzio-Donahue, C.; Berman, D.M.; Laheru, D.; Jimeno, A.; Hidalgo, M.; Maitra, A.; Matsui, W. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J. Natl. Cancer Inst., 2010, 102(5), 340-351.
[89]
Puri, S.; Hebrok, M. Cellular plasticity within the pancreas--lessons learned from development. Dev. Cell, 2010, 18(3), 342-356.
[90]
Quante, M.; Wang, T.C. Stem cells in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(12), 724-737.
[91]
Sato, A.; Sakurada, K.; Kumabe, T.; Sasajima, T.; Beppu, T.; Asano, K.; Ohkuma, H.; Ogawa, A.; Mizoi, K.; Tominaga, T.; Kitanaka, C.; Kayama, T. Association of stem cell marker CD133 expression with dissemination of glioblastomas. Neurosurg. Rev., 2010, 33(2), 175-183.
[92]
Di Tomaso, T.; Mazzoleni, S.; Wang, E.; Sovena, G.; Clavenna, D.; Franzin, A.; Mortini, P.; Ferrone, S.; Doglioni, C.; Marincola, F.M.; Galli, R.; Parmiani, G.; Maccalli, C. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin. Cancer Res., 2010, 16(3), 800-813.
[93]
Ji, J.; Black, K.L.; Yu, J.S. Glioma stem cell research for the development of immunotherapy. Neurosurg. Clin. N. Am., 2010, 21(1), 159-166.
[94]
Ailles, L.; Prince, M. Cancer stem cells in head and neck squamous cell carcinoma. Methods Mol. Biol., 2009, 568, 175-193.
[95]
Zhang, P.; Zhang, Y.; Mao, L.; Zhang, Z.; Chen, W. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett., 2009, 277(2), 227-234.
[96]
Brunner, M.; Thurnher, D.; Heiduschka, G.; Grasl, M.Ch.; Brostjan, C.; Erovic, B.M. Elevated levels of circulating endothelial progenitor cells in head and neck cancer patients. J. Surg. Oncol., 2008, 98(7), 545-550.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 6
Year: 2019
Page: [988 - 1001]
Pages: 14
DOI: 10.2174/0929867324666170920142609
Price: $58

Article Metrics

PDF: 21
HTML: 2
EPUB: 1
PRC: 1