Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Rapid Detection of AGs using Microchip Capillary Electrophoresis Contactless Conductivity Detection

Author(s): Gangzhi Zhu, Chunjie Bao, Wenfang Liu, Xingxing Yan, Lili Liu, Jian Xiao and Chuanpin Chen*

Volume 15, Issue 1, 2019

Page: [9 - 16] Pages: 8

DOI: 10.2174/1573412913666170918160004

Price: $65

Abstract

Background: In order to realize current aminoglycosides supervision in food and environment, our team improved the sensitivity and separation efficiency of the portable ITO detector, based on the technology of microchip capillary electrophoresis and contactless conductivity detection.

Experiment: Parameters (the separation voltage, buffer concentration, electrodes gap, elicitation frequency, elicitation voltage) were optimized for the detection of three aminoglycosides, gentamicin, kanamycin and streptomycin and the separation of their mixture in background electrolyte consists of 2-(N-Morpholino) ethanesulfonic acid (MES) and L-Histidine (His). The enhanced method was also applied to other types of aminoglycosides.

Results: Under optimal conditions, the monitoring of three types of aminoglycosides obtained such a sensitive response that the limits of detection of gentamicin sulfate, kanamycin sulfate and streptomycin sulfate were calculated as 3.1 µg/ml, 0.89 µg/ml and 0.96 µg/ml, at signal-to-noise ratio 3, respectively. In addition they got separated completely from each other only in 40 s. The results of other varieties of aminoglycosides including tobramycin sulfate and amikacin sulfate also met the standard.

Conclusion: We successfully proposed here an unprecedentedly portable, miniaturized and rapid microchip capillary electrophoresis contactless conductivity detection system to realize current aminoglycosides supervision in food and environment.

Keywords: Microchip capillary electrophoresis, contactless conductivity detection, aminoglycosides, ITO-coated PET film, optimization, method validation.

Graphical Abstract
[1]
Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother., 1999, 43(4), 727-737.
[2]
McGlinchey, T.A.; Rafter, P.A.; Regan, F.; McMahon, G.P. A review of analytical methods for the determination of aminoglycoside and macrolide residues in food matrices. Anal. Chim. Acta, 2008, 624(1), 1-15.
[3]
Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y-G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol., 2014, 48(16), 9079-9085.
[4]
Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ., 2016, 563-564, 366-376.
[5]
Stevens, R.C.; Rodman, J.H. Pharmacokinetics of antimicrobial therapy. Seminars Pediat. Infect. Diseases., 1998, 9(4), 273-280.
[6]
Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int., 2016, 94, 736-757.
[7]
Ji, K.; Kho, Y.; Park, C.; Paek, D.; Ryu, P.; Paek, D.; Kim, M.; Kim, P.; Choi, K. Influence of water and food consumption on inadvertent antibiotics intake among general population. Environ. Res., 2010, 110(7), 641-649.
[8]
Gao, M.; Qi, Y.; Song, W.; Zhou, Q. Biomarker analysis of combined oxytetracycline and zinc pollution in earthworms (Eisenia fetida). Chemosphere, 2015, 139, 229-234.
[9]
Tan, B.; Zhao, H.; Du, L.; Gan, X.; Quan, X. A versatile fluorescent biosensor based on target-responsive grapheneoxide hydrogel for antibiotic detection. Biosens. Bioelectron., 2016, 83, 267-273.
[10]
Wang, X.; Dong, S.; Gai, P.; Duan, R.; Li, F. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens. Bioelectron., 2016, 82, 49-54.
[11]
Lin, S.; Gao, W.; Tian, Z.; Yang, C.; Lu, L.; Mergny, J.L.; Leung, C-H.; Ma, D.L. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem. Sci., 2015, 6(7), 4284-4290.
[12]
Wang, M.; Mao, Z.; Kang, T-S.; Wong, C-Y.; Mergny, J-L.; Leung, C-H.; Ma, D-L. Conjugating a groove-binding motif to an Ir(III) complex for the enhancement of G-quadruplex probe behavior. Chem. Sci., 2016, 7(4), 2516-2523.
[13]
Liu, J-B.; Liu, L-J.; Dong, Z-Z.; Yang, G-J.; Leung, C-H.; Ma, D-L. An aldol reaction-based Iridium(III) chemosensor for the visualization of proline in living cells. Sci. Rep., 2016, 6, 36509.
[14]
Stead, D.A. Current methodologies for the analysis of aminoglycosides. J. Chromatogr. B., 2000, 747, 69-93.
[15]
Sekkat, M.; Fabre, H.; de Buochberg, M.S.; Mandrou, B. Determination of aminoglycosides in pharmaceutical formulations-I. Thin-layer chromatography. J. Pharmaceut. Biomed. Anal., 1989, 7(7), 883-892.
[16]
Jankovics, P.; Chopra, S.; El-Attug, M.N.; Cabooter, D.; Wolfs, K.; Noszál, B.; Van Schepdael, A.; Adams, E. Exploring the possibilities of capacitively coupled contactless conductivity detection in combination with liquid chromatography for the analysis of polar compounds using aminoglycosides as test case. J. Pharmaceut. Biomed. Anal., 2015, 112(2), 155-168.
[17]
Farouk, F.; Azzazy, H.M.; Niessen, W.M. Challenges in the determination of aminoglycoside antibiotics, a review. Anal. Chim. Acta, 2015, 890, 21-43.
[18]
Breaud, A.R.; Henemyre-Harris, C.L.; Schools, S.; Emezienna, N.; Clarke, W. Rapid quantification of the aminoglycoside arbekacin in serum using high performance liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta, 2013, 418, 102-106.
[19]
Cabanes, A.; Cajal, Y.; Haro, I.; Anton, J.M.G.; Reig, F.; Arboix, M. Gentamicin determination in biological fluids by hplc, using tobramycin as internal standard. J. Liq. Chromatogr., 2006, 14(10), 1989-2010.
[20]
Zhu, W.X.; Yang, J.Z.; Wei, W.; Liu, Y.F.; Zhang, S.S. Simultaneous determination of 13 aminoglycoside residues in foods of animal origin by liquid chromatography-electrospray ionization tandem mass spectrometry with two consecutive solid-phase extraction steps. J. Chromatogr. A, 2008, 1207(1–2), 29-37.
[21]
Preu, M.; Guyot, D.; Petz, M. Development of a gas chromatography-mass spectrometry method for the analysis of aminoglycoside antibiotics using experimental design for the optimisation of the derivatisation reactions. J. Chromatogr. A, 1998, 818(1), 95-108.
[22]
El-Attug, M.N.; Adams, E.; Hoogmartens, J.; Van Schepdael, A. Capacitively coupled contactless conductivity detection as an alternative detection mode in CE for the analysis of kanamycin sulphate and its related substances. J. Sep. Sci., 2011, 34(18), 2448-2454.
[23]
El-Attug, M.N.; Adams, E.; Van Schepdael, A. Development and validation of a capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C(4) D) for the analysis of amikacin and its related substances. Eletrophoresis, 2012, 33(17), 2777-2782.
[24]
El-Attug, M.N.; Hoogmartens, J.; Adams, E.; Van Schepdael, A. Optimization of capillary electrophoresis method with contactless conductivity detection for the analysis of tobramycin and its related substances. J. Pharm. Biomed. Anal., 2012, 58, 49-57.
[25]
Moreno-Gonzalez, D.; Lara, F.J.; Jurgovska, N.; Gamiz-Gracia, L.; Garcia-Campana, A.M. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Anal. Chim. Acta, 2015, 891, 321-328.
[26]
Ge, S.; Tang, W.; Han, R.; Zhu, Y.; Wang, Q.; He, P.; Fang, Y. Sensitive analysis of aminoglycoside antibiotics via hyphenation of transient moving substitution boundary with field-enhanced sample injection in capillary electrophoresis. J. Chromatogr. A, 2013, 1295, 128-135.
[27]
Kok, M.G.; Ruijken, M.M.; Swann, J.R.; Wilson, I.D.; Somsen, G.W.; de Jong, G.J. Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem., 2013, 405(8), 2585-2594.
[28]
Breadmore, M.C. Capillary and microchip electrophoresis: challenging the common conceptions. J. Chromatogr. A, 2012, 1221, 42-55.
[29]
Chen, C.; Hahn, J.H. Enhanced aminophenols monitoring using in-channel amperometric detection with dual-channel microchip capillary electrophoresis. Environ. Chem. Lett., 2011, 9(4), 491-497.
[30]
Chen, C.; Teng, W.; Hahn, J.H. Nanoband electrode for high-performance in-channel amperometric detection in dual-channel microchip capillary electrophoresis. Eletrophoresis, 2011, 32(8), 838-843.
[31]
Vandaveer, W.R.; Pasas-Farmer, S.A.; Fischer, D.J.; Frankenfeld, C.N.; Lunte, S.M. Recent developments in electrochemical detection for microchip capillary electrophoresis. Eletrophoresis, 2004, 25(21-22), 3528-3549.
[32]
Kubáň, P.; Hauser, P.C. Fundamentals of electrochemical detection techniques for CE and MCE. Eletrophoresis, 2009, 30(19), 3305-3314.
[33]
Mark, J.J.; Scholz, R.; Matysik, F.M. Electrochemical methods in conjunction with capillary and microchip electrophoresis. J. Chromatogr. A, 2012, 1267, 45-64.
[34]
Zhu, G.; Song, Q.; Liu, W.; Yan, X.; Xiao, J.; Chen, C. Gold nanoparticles-modified indium tin oxide microelectrode for in-channel amperometric detection in dual-channel microchip capillary electrophoresis. Anal. Methods, 2017, 9, 4319-4326.
[35]
Kubáň, P.; Hauser, P.C. Capacitively coupled contactless conductivity detection for microseparation techniques–recent developments. Eletrophoresis, 2011, 32(1), 30-42.
[36]
Coltro, W.K.T.; Lima, R.S.; Segato, T.P.; Carrilho, E.; de Jesus, D.P.; do Lago, C.L.; da Silva, J.A.F. Capacitively coupled contactless conductivity detection on microfluidic systems—ten years of development. Anal. Methods, 2012, 4(1), 25-33.
[37]
Kubáň, P.; Hauser, P.C. Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012. Eletrophoresis, 2013, 34(1), 55-69.
[38]
Liu, J.; Wang, J.; Chen, Z.; Yu, Y.; Yang, X.; Zhang, X.; Xu, Z.; Liu, C. A three-layer PMMA electrophoresis microchip with Pt microelectrodes insulated by a thin film for contactless conductivity detection. Lab Chip, 2011, 11(5), 969-973.
[39]
Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science, 1993, 261(5123), 895-897.
[40]
Lacher, N.A.; Garrison, K.E.; Martin, R.S.; Lunte, S.M. Microchip capillary electrophoresis/ electrochemistry. Electrophoresis, 2001, 22(12), 2526-2536.
[41]
Dolník, V.; Liu, S.; Jovanovich, S. Capillary electrophoresis on microchip. Eletrophoresis, 2000, 21, 41-54.
[42]
Guijt, R.M.; Baltussen, E.; Steen, G.v.d.; Frank, H.; Billiet, H.; Schalkhamme, T.; Laugere, F.; Vellekoop, M.; Berthold, A.; Sarro, L.; Dedem, G.W.K.V. Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Eletrophoresis, 2001, 22, 5.
[43]
Coltro, W.K.; da Silva, J.A.; Carrilho, E. Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips. Eletrophoresis, 2008, 29(11), 2260-2265.
[44]
Tsai, Y.C.; Jen, H.P.; Lin, K.W.; Hsieh, Y.Z. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis. J. Chromatogr. A, 2006, 1111(2), 267-271.
[45]
Wang, L.; Liu, W.; Li, S.; Liu, T.; Yan, X.; Shi, Y.; Cheng, Z.; Chen, C. Fast fabrication of microfluidic devices using a low-cost prototyping method. Microsyst. Tech., 2015, 22(4), 677-686.
[46]
Ansari, K.; Ying, J.Y.; Hauser, P.C.; de Rooij, N.F.; Rodriguez, I. A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge. Eletrophoresis, 2013, 34(9-10), 1390-1399.
[47]
Chong, K.C.; Thang, L.Y.; Quirino, J.P.; See, H.H. Monitoring of vancomycin in human plasma via portable microchip electrophoresis with contactless conductivity detector and multi-stacking strategy. J. Chromatogr. A, 2017, 1485, 142-146.
[48]
Yan, X.; Liu, W.; Yuan, Y.; Chen, C. Indium tin oxide coated PET film contactless conductivity detector for microchip capillary electrophoresis. Anal. Methods, 2015, 7(12), 5295-5302.
[49]
Pan, C.T. Polymeric magnetic microactuator with efficient permalloy loop design. Microsyst. Tech., 2005, 11(1), 1-10.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy