Current Trends in Cancer Biomarker Discovery Using Urinary Metabolomics: Achievements and New Challenges

Author(s): Casey Burton, Yinfa Ma*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 1 , 2019

  Journal Home
Translate in Chinese


Background: The development of effective screening methods for early cancer detection is one of the foremost challenges facing modern cancer research. Urinary metabolomics has recently emerged as a potentially transformative approach to cancer biomarker discovery owing to its noninvasive sampling characteristics and robust analytical feasibility.

Objective: To provide an overview of new developments in urinary metabolomics, cover the most promising aspects of hyphenated techniques in untargeted and targeted metabolomics, and to discuss technical and clinical limitations in addition to the emerging challenges in the field of urinary metabolomics and its application to cancer biomarker discovery.

Methods: A systematic review of research conducted in the past five years on the application of urinary metabolomics to cancer biomarker discovery was performed. Given the breadth of this topic, our review focused on the five most widely studied cancers employing urinary metabolomics approaches, including lung, breast, bladder, prostate, and ovarian cancers.

Results: As an extension of conventional metabolomics, urinary metabolomics has benefitted from recent technological developments in nuclear magnetic resonance, mass spectrometry, gas and liquid chromatography, and capillary electrophoresis that have improved urine metabolome coverage and analytical reproducibility. Extensive metabolic profiling in urine has revealed a significant number of altered metabolic pathways and putative biomarkers, including pteridines, modified nucleosides, and acylcarnitines, that have been associated with cancer development and progression.

Conclusion: Urinary metabolomics presents a transformative new approach toward cancer biomarker discovery with high translational capacity to early cancer screening.

Keywords: Cancer biomarkers, hyphenated techniques, biomarker development, metabolomics, urinary biomarkers, urinary metabolites.

Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; Hamadeh, R.R.; Moore, A.; Werdecker, A.; Gessner, B.D.; Te Ao, B.; McMahon, B.; Karimkhani, C.; Yu, C.; Cooke, G.S.; Schwebel, D.C.; Carpenter, D.O.; Pereira, D.M.; Nash, D.; Kazi, D.S.; De Leo, D.; Plass, D.; Ukwaja, K.N.; Thurston, G.D.; Yun, Jin K.; Simard, E.P.; Mills, E.; Park, E.K.; Catalá-López, F.; deVeber, G.; Gotay, C.; Khan, G.; Hosgood, H.D., III; Santos, I.S.; Leasher, J.L.; Singh, J.; Leigh, J.; Jonas, J.B.; Sanabria, J.; Beardsley, J.; Jacobsen, K.H.; Takahashi, K.; Franklin, R.C.; Ronfani, L.; Montico, M.; Naldi, L.; Tonelli, M.; Geleijnse, J.; Petzold, M.; Shrime, M.G.; Younis, M.; Yonemoto, N.; Breitborde, N.; Yip, P.; Pourmalek, F.; Lotufo, P.A.; Esteghamati, A.; Hankey, G.J.; Ali, R.; Lunevicius, R.; Malekzadeh, R.; Dellavalle, R.; Weintraub, R.; Lucas, R.; Hay, R.; Rojas-Rueda, D.; Westerman, R.; Sepanlou, S.G.; Nolte, S.; Patten, S.; Weichenthal, S.; Abera, S.F.; Fereshtehnejad, S.M.; Shiue, I.; Driscoll, T.; Vasankari, T.; Alsharif, U.; Rahimi-Movaghar, V.; Vlassov, V.V.; Marcenes, W.S.; Mekonnen, W.; Melaku, Y.A.; Yano, Y.; Artaman, A.; Campos, I.; MacLachlan, J.; Mueller, U.; Kim, D.; Trillini, M.; Eshrati, B.; Williams, H.C.; Shibuya, K.; Dandona, R.; Murthy, K.; Cowie, B.; Amare, A.T.; Antonio, C.A.; Castañeda-Orjuela, C.; van Gool, C.H.; Violante, F.; Oh, I.H.; Deribe, K.; Soreide, K.; Knibbs, L.; Kereselidze, M.; Green, M.; Cardenas, R.; Roy, N.; Tillmann, T.; Li, Y.; Krueger, H.; Monasta, L.; Dey, S.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Kumar, G.A.; Sreeramareddy, C.T.; Dandona, L.; Wang, H.; Vollset, S.E.; Mokdad, A.; Salomon, J.A.; Lozano, R.; Vos, T.; Forouzanfar, M.; Lopez, A.; Murray, C.; Naghavi, M. The global burden of cancer 2013. JAMA Oncol., 2015, 1(4), 505-527.
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2015.
Screening, I.U.P.B.C. The benefits and harms of breast cancer screening: an independent review. Lancet, 2012, 380(9855), 1778-1786.
Loeb, S.; Bjurlin, M.A.; Nicholson, J.; Tammela, T.L.; Penson, D.F.; Carter, H.B.; Carroll, P.; Etzioni, R. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol., 2014, 65(6), 1046-1055.
Vickers, A.J.; Roobol, M.J.; Lilja, H. Screening for prostate cancer: early detection or overdetection? Annu. Rev. Med., 2012, 63, 161-170.
Ong, M-S.; Mandl, K.D. National expenditure for false-positive mammograms and breast cancer overdiagnoses estimated at $4 billion a year. Health Aff. (Millwood), 2015, 34(4), 576-583.
Ong, M-S.; Mandl, K.D. New Guidelines For Breast Cancer Screening. Health Aff. (Millwood), 2016, 35(1), 180-180.
Bennett, B.D.; Kimball, E.H.; Gao, M.; Osterhout, R.; Van Dien, S.J.; Rabinowitz, J.D. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol., 2009, 5(8), 593-599.
Amantonico, A.; Urban, P.L.; Zenobi, R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem., 2010, 398(6), 2493-2504.
Blow, N. Metabolomics: Biochemistry’s new look. Nature, 2008, 455(7213), 697-700.
Griffin, J.L.; Shockcor, J.P. Metabolic profiles of cancer cells. Nat. Rev. Cancer, 2004, 4(7), 551-561.
Costello, L.C.; Franklin, R.B. ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol. Cell. Biochem., 2005, 280(1-2), 1-8.
Glunde, K.; Serkova, N.J. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism, 2006.
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J. Pharm. Biomed. Anal., 2014, 87, 1-11.
Patel, S.; Ahmed, S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J. Pharm. Biomed. Anal., 2015, 107, 63-74.
Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal., 2014, 87, 12-25.
Amann, A. Costello, Bde.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile Organic Compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res., 2014, 8(3), 034001.
Zhang, T.; Watson, D.G.; Wang, L.; Abbas, M.; Murdoch, L.; Bashford, L.; Ahmad, I.; Lam, N-Y.; Ng, A.C.; Leung, H.Y. Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery. PLoS One, 2013, 8(6), e65880.
Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst (Lond.), 2012, 137(2), 293-300.
Boyland, E.; Williams, D. The estimation of tryptophan metabolites in the urine of patients with cancer of the bladder. Biochem. J., 1955, 60, p. 60(Annual General Meeting), v.
Haverback, B.J.; Sjoerdsma, A.; Terry, L.L. Urinary excretion of the serotonin metabolite, 5-hydroxyindoleacetic acid, in various clinical conditions. N. Engl. J. Med., 1956, 255(6), 270-272.
Monteiro, M.; Carvalho, M.; Henrique, R.; Jerónimo, C.; Moreira, N.; de Lourdes Bastos, M.; de Pinho, P.G. Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography-mass spectrometry for biomarker discovery: application in a pilot study to discriminate patients with renal cell carcinoma. Eur. J. Cancer, 2014, 50(11), 1993-2002.
Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z.T.; Poelzer, J.; Huynh, J.; Yallou, F.S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D.S. The human urine metabolome. PLoS One, 2013, 8(9), e73076.
Emwas, A-H.; Luchinat, C.; Turano, P.; Tenori, L.; Roy, R.; Salek, R.M.; Ryan, D.; Merzaban, J.S.; Kaddurah-Daouk, R.; Zeri, A.C.; Nagana Gowda, G.A.; Raftery, D.; Wang, Y.; Brennan, L.; Wishart, D.S. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics, 2015, 11(4), 872-894.
Chan, E.C.Y.; Pasikanti, K.K.; Nicholson, J.K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc., 2011, 6(10), 1483-1499.
Dudley, E.; Tuytten, R.; Lemiere, F.; Esmans, E.E.; Newton, R.P. The bioanalysis of urinary modified nucleosides by mass spectrometry: their study as potential metabolomic biomarkers of cancer development. Collect. Czech. Chem. Commun., 2015, 10, 229-233.
Contrepois, K.; Jiang, L.; Snyder, M. Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry. Mol. Cell. Proteomics, 2015, 14(6), 1684-1695.
Beckonert, O.; Keun, H.C.; Ebbels, T.M.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc., 2007, 2(11), 2692-2703.
Miao, Z.; Jin, M.; Liu, X.; Guo, W.; Jin, X.; Liu, H.; Wang, Y. The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices. Anal. Bioanal. Chem., 2015, 407(12), 3405-3416.
Vinther, J.M.; Wubshet, S.G.; Staerk, D. NMR-based Metabolomics and Hyphenated NMR Techniques: A Perfect Match in Natural Products Research. Ethnopharmacology, 2015, 2500, 63.
Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res., 2013, gks1065.
Ellinger, J.J.; Chylla, R.A.; Ulrich, E.L.; Markley, J.L. Databases and software for NMR-based metabolomics. Curr. Metabolomics, 2013, 1(1)
Ludwig, C.; Easton, J.M.; Lodi, A.; Tiziani, S.; Manzoor, S.E.; Southam, A.D.; Byrne, J.J.; Bishop, L.M.; He, S.; Arvanitis, T.N. Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics, 2012, 8(1), 8-18.
Zhang, A.H.; Sun, H.; Qiu, S.; Wang, X.J. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magn. Reson. Chem., 2013, 51(9), 549-556.
Chan, A.W.; Mercier, P.; Schiller, D.; Bailey, R.; Robbins, S.; Eurich, D.T.; Sawyer, M.B.; Broadhurst, D. 1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br. J. Cancer, 2015.
Gil, A.M.; de Pinho, P.G.; Monteiro, M.S.; Duarte, I.F. NMR metabolomics of renal cancer: an overview. Bioanalysis, 2015, 7(18), 2361-2374.
Rodrigues, D.; Jerónimo, C.; Henrique, R.; Belo, L.; de Lourdes Bastos, M.; de Pinho, P.G.; Carvalho, M. Biomarkers in bladder cancer: A metabolomic approach using in vitro and ex vivo model systems. Int. J. Cancer, 2016, 139(2), 256-268.
Roux, A.; Thévenot, E.A.; Seguin, F.; Olivier, M-F.; Junot, C. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy. Metabolomics, 2015, 11(5), 1095-1105.
Qi, Y.; Geib, T.; Schorr, P.; Meier, F.; Volmer, D.A. On the isobaric space of 25-hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues. Rapid Commun. Mass Spectrom., 2015, 29(1), 1-9.
Vogeser, M.; Seger, C. Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory. Clin. Chem., 2010, 56(8), 1234-1244.
Theodoridis, G.A.; Gika, H.G.; Want, E.J.; Wilson, I.D. Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal. Chim. Acta, 2012, 711, 7-16.
Vogeser, M.; Kirchhoff, F. Progress in automation of LC-MS in laboratory medicine. Clin. Biochem., 2011, 44(1), 4-13.
Burton, C.; Shi, H.; Ma, Y. Simultaneous detection of six urinary pteridines and creatinine by high-performance liquid chromatography-tandem mass spectrometry for clinical breast cancer detection. Anal. Chem., 2013, 85(22), 11137-11145.
Jablonski, K.L.; Klawitter, J.; Chonchol, M.; Bassett, C.J.; Racine, M.L.; Seals, D.R. Effect of dietary sodium restriction on human urinary metabolomic profiles. Clin. J. Am. Soc. Nephrol., 2015, 10(7), 1227-1234.
Dunn, W.B.; Erban, A.; Weber, R.J.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9(1), 44-66.
Kaever, A.; Landesfeind, M.; Feussner, K.; Mosblech, A.; Heilmann, I.; Morgenstern, B.; Feussner, I.; Meinicke, P. MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics, 2015, 11(3), 764-777.
Tautenhahn, R.; Cho, K.; Uritboonthai, W.; Zhu, Z.; Patti, G.J.; Siuzdak, G. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol., 2012, 30(9), 826-828.
Ernest, B.; Gooding, J.R.; Campagna, S.R.; Saxton, A.M.; Voy, B.H.; Metab, R. MetabR: an R script for linear model analysis of quantitative metabolomic data. BMC Res. Notes, 2012, 5(1), 596.
Warrack, B.M.; Hnatyshyn, S.; Ott, K-H.; Reily, M.D.; Sanders, M.; Zhang, H.; Drexler, D.M. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(5-6), 547-552.
Wu, Y.; Li, L. Sample normalization methods in quantitative metabolomics. J. Chromatogr. A, 2016, 1430, 80-95.
Burton, C.; Shi, H.; Ma, Y. Normalization of urinary pteridines by urine specific gravity for early cancer detection. Clin. Chim. Acta, 2014, 435, 42-47.
Purohit, P.V.; Rocke, D.M.; Viant, M.R.; Woodruff, D.L. Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS, 2004, 8(2), 118-130.
van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 2006, 7(1), 142.
Saccenti, E.; Hoefsloot, H.C.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 2014, 10(3), 361-374.
Hendriks, M.M.; van Eeuwijk, F.A.; Jellema, R.H.; Westerhuis, J.A.; Reijmers, T.H.; Hoefsloot, H.C.; Smilde, A.K. Data-processing strategies for metabolomics studies. TrAC Trends in Analytical Chemistry, 2011, 30(10), 1685-1698.
Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.P. Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed. Engl., 2010, 49(32), 5426-5445.
Antoniewicz, M.R. Methods and advances in metabolic flux analysis: a mini-review. J. Ind. Microbiol. Biotechnol., 2015, 42(3), 317-325.
Lu, H.; Yu, J.; Wang, J.; Wu, L.; Xiao, H.; Gao, R. Simultaneous quantification of neuroactive dopamine serotonin and kynurenine pathway metabolites in gender-specific youth urine by ultra performance liquid chromatography tandem high resolution mass spectrometry. J. Pharm. Biomed. Anal., 2016, 122, 42-51.
Moreno, I.; Barroso, M.; Martinho, A.; Cruz, A.; Gallardo, E. Determination of ketamine and its major metabolite, norketamine, in urine and plasma samples using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1004, 67-78.
Michopoulos, F.; Gika, H.; Palachanis, D.; Theodoridis, G.; Wilson, I.D. Solid phase extraction methodology for UPLC-MS based metabolic profiling of urine samples. Electrophoresis, 2015, 36(18), 2170-2178.
Peng, J.; Chen, Y-T.; Chen, C-L.; Li, L. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal. Chem., 2014, 86(13), 6540-6547.
Khamis, M.M.; Adamko, D.J.; El‐Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev., 2015.
Wallemacq, P. Mass spectrometry in laboratory medicine: When “high-tech” meets routine needs. Clin. Biochem., 2011, 44(1), 2-3.
Cook, J.A.; Chandramouli, G.V.; Anver, M.R.; Sowers, A.L.; Thetford, A.; Krausz, K.W.; Gonzalez, F.J.; Mitchell, J.B.; Patterson, A.D. Mass spectrometry-based metabolomics identifies longitudinal urinary metabolite profiles predictive of radiation-induced cancer. Cancer Res., 2016, 76(6), 1569-1577.
Struck-Lewicka, W.; Kordalewska, M.; Bujak, R.; Yumba Mpanga, A.; Markuszewski, M.; Jacyna, J.; Matuszewski, M.; Kaliszan, R.; Markuszewski, M.J. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. J. Pharm. Biomed. Anal., 2015, 111, 351-361.
Zhang, S.; Raftery, D. Headspace SPME-GC-MS metabolomics analysis of urinary Volatile Organic Compounds (VOCs) Mass Spectrometry in Metabolomics: Methods and Protocols, 2014, 265-272.
Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C.S.; Ratcliffe, N. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer. PLoS One, 2015, 10(11), e0143283.
Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile organic compounds as new biomarkers for colorectal cancer: a review. Colorectal Dis., 2016, 18(7), 654-663.
Aggio, R.B.; Mayor, A.; Coyle, S.; Reade, S.; Khalid, T.; Ratcliffe, N.M.; Probert, C.S. Freeze-drying: an alternative method for the analysis of volatile organic compounds in the headspace of urine samples using solid phase micro-extraction coupled to gas chromatography - mass spectrometry. Chem. Cent. J., 2016, 10(1), 9.
Abbiss, H.; Rawlinson, C.; Maker, G.L.; Trengove, R. Assessment of automated trimethylsilyl derivatization protocols for GC–MS-based untargeted metabolomic analysis of urine. Metabolomics, 2015, 11(6), 1908-1921.
Christou, C.; Gika, H.G.; Raikos, N.; Theodoridis, G. GC-MS analysis of organic acids in human urine in clinical settings: a study of derivatization and other analytical parameters. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 964, 195-201.
Tsikas, D.; Rothmann, S.; Schneider, J.Y.; Suchy, M-T.; Trettin, A.; Modun, D.; Stuke, N.; Maassen, N.; Frölich, J.C. Development, validation and biomedical applications of stable-isotope dilution GC–MS and GC–MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15 (S)-8-iso-prostaglandin F 2α and nitric oxide (NO). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015.
Kayacelebi, A.A.; Knöfel, A-K.; Beckmann, B.; Hanff, E.; Warnecke, G.; Tsikas, D. Measurement of unlabeled and stable isotope-labeled homoarginine, arginine and their metabolites in biological samples by GC-MS and GC-MS/MS. Amino Acids, 2015, 47(9), 2023-2034.
Lamani, X.; Horst, S.; Zimmermann, T.; Schmidt, T.C. Determination of aromatic amines in human urine using comprehensive multi-dimensional gas chromatography mass spectrometry (GCxGC-qMS). Anal. Bioanal. Chem., 2015, 407(1), 241-252.
Zhao, G.; Chen, Y.; Wang, S.; Yu, J.; Wang, X.; Xie, F.; Liu, H.; Xie, J. Simultaneous determination of 11 monohydroxylated PAHs in human urine by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry. Talanta, 2013, 116, 822-826.
Burton, C.; Shi, H.; Ma, Y. Development of a high-performance liquid chromatography - Tandem mass spectrometry urinary pterinomics workflow. Anal. Chim. Acta, 2016, 927, 72-81.
Gamagedara, S.; Shi, H.; Ma, Y. Quantitative determination of taurine and related biomarkers in urine by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2012, 402(2), 763-770.
Burton, C.; Gamagedara, S.; Ma, Y. Partial enzymatic elimination and quantification of sarcosine from alanine using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2013, 405(10), 3153-3158.
Chen, S.; Burton, C.; Kaczmarek, A.; Shi, H.; Ma, Y. Simultaneous determination of urinary quinolinate, gentisate, 4-hydroxybenzoate, and α-ketoglutarate by high-perfor-mance liquid chromatography-tandem mass spectrometry. Anal. Methods, 2015, 7(16), 6572-6578.
Zhang, T.; Creek, D.J.; Barrett, M.P.; Blackburn, G.; Watson, D.G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Anal. Chem., 2012, 84(4), 1994-2001.
Pesek, J.J.; Matyksa, M.T.; Modereger, B.; Hasbun, A.; Phan, V.T.; Mehr, Z.; Guzman, M.; Watanable, S. The separation and analysis of symmetric and asymmetric dimethylarginine and other hydrophilic isobaric compounds using aqueous normal phase chromatography. J. Chromatogr. A, 2016, 1441, 52-59.
Hellmuth, C.; Koletzko, B.; Peissner, W. Aqueous normal phase chromatography improves quantification and qualification of homocysteine, cysteine and methionine by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(1), 83-89.
Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal. Bioanal. Chem., 2012, 402(1), 231-247.
Spagou, K.; Tsoukali, H.; Raikos, N.; Gika, H.; Wilson, I.D.; Theodoridis, G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci., 2010, 33(6-7), 716-727.
Konieczna, L.; Roszkowska, A.; Niedźwiecki, M.; Bączek, T. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J. Chromatogr. A, 2016, 1431, 111-121.
Xiong, X.; Liu, Y. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry. Talanta, 2016, 150, 493-502.
Pluym, N.; Gilch, G.; Scherer, G.; Scherer, M. Analysis of 18 urinary mercapturic acids by two high-throughput multiplex-LC-MS/MS methods. Anal. Bioanal. Chem., 2015, 407(18), 5463-5476.
Gray, N.; Lewis, M.R.; Plumb, R.S.; Wilson, I.D.; Nicholson, J.K. High-Throughput Microbore UPLC-MS Metabolic Phenotyping of Urine for Large-Scale Epidemiology Studies. J. Proteome Res., 2015, 14(6), 2714-2721.
R.; Miyoshi, Y.; Sato, Y.; Mita, M.; Konno, R.; Lindner, W.; Hamase, K. Enantioselective Determination of Phenylalanine, tyrosine and 3, 4-dihydroxyphenylalanine in the urine of D-amino acid oxidase deficient mice using two-dimensional high-performance liquid chromatography. Chromatography (Basel), 2016, 37(1), 15-22.
Stoll, D.R. Recent advances in 2D-LC for bioanalysis. Bioanalysis, 2015, 7(24), 3125-3142.
Wan, E.C.H.; Yu, J.Z. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. J. Chromatogr. A, 2006, 1107(1-2), 175-181.
Gaudin, M.; Imbert, L.; Libong, D.; Chaminade, P.; Brunelle, A.; Touboul, D.; Laprévote, O. Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies. J. Am. Soc. Mass Spectrom., 2012, 23(5), 869-879.
Brouwers, J.F. Liquid chromatographic-mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim. Biophys. Acta, 2011, 1811(11), 763-775.
Tang, K.; Page, J.S.; Smith, R.D. Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2004, 15(10), 1416-1423.
Gangl, E.T.; Annan, M.M.; Spooner, N.; Vouros, P. Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal. Chem., 2001, 73(23), 5635-5644.
Heemskerk, A.A.; Busnel, J-M.; Schoenmaker, B.; Derks, R.J.; Klychnikov, O.; Hensbergen, P.J.; Deelder, A.M.; Mayboroda, O.A. Ultra-low flow electrospray ionization-mass spectrometry for improved ionization efficiency in phosphoproteomics. Anal. Chem., 2012, 84(10), 4552-4559.
Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev., 2011, 40(1), 387-426.
Guo, K.; Li, L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal. Chem., 2009, 81(10), 3919-3932.
Ramautar, R. CE-MS in metabolomics: status quo and the way forward. Bioanalysis, 2016, 8(5), 371-374.
Ramautar, R.; Somsen, G.W.; de Jong, G.J. CE-MS for metabolomics: developments and applications in the period 2012-2014. Electrophoresis, 2015, 36(1), 212-224.
Wang, C.; Lee, C.S.; Smith, R.D.; Tang, K. Ultrasensitive sample quantitation via selected reaction monitoring using CITP/CZE-ESI-triple quadrupole MS. Anal. Chem., 2012, 84(23), 10395-10403.
Knox, J.; Grant, I. Electrochromatography in packed tubes using 1.5 to 50 μm silica gels and ODS bonded silica gels. Chromatographia, 1991, 32(7-8), 317-328.
Wu, Q.; Yu, X.; Wang, Y.; Gu, X.; Ma, X.; Lv, W.; Chen, Z.; Yan, C. Pressurized CEC coupled with QTOF-MS for urinary metabolomics. Electrophoresis, 2014, 35(17), 2470-2478.
Chen, Z.; Zhang, L.; Lu, Q.; Ye, Q.; Zhang, L. On-line concentration and pressurized capillary electrochromatography analysis of five β-agonists in human urine using a methacrylate monolithic column. Electrophoresis, 2015, 36(21-22), 2720-2726.
Hao, L.; Zhong, X.; Greer, T.; Ye, H.; Li, L. Relative quantification of amine-containing metabolites using isobaric N,N-dimethyl leucine (DiLeu) reagents via LC-ESI-MS/MS and CE-ESI-MS/MS. Analyst (Lond.), 2015, 140(2), 467-475.
Hodáková, J.; Preisler, J.; Foret, F.; Kubáň, P. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection. J. Chromatogr. A, 2015, 1391, 102-108.
Liang, Q.; Chen, H.; Li, F.; Du, X. Simultaneous Sensitive MEKC–LIF Determination of Homocysteine, Homoarginine, and Six Arginine Metabolic Derivatives in Fluids from Type 2 Diabetics with Peptic Ulcer Bleeding. Chromatographia, 2015, 78(15-16), 1049-1056.
Gibbons, S.E.; Stayton, I.; Ma, Y. Optimization of urinary pteridine analysis conditions by CE-LIF for clinical use in early cancer detection. Electrophoresis, 2009, 30(20), 3591-3597.
Mounicou, S.; Szpunar, J.; Lobinski, R. Metallomics: the concept and methodology. Chem. Soc. Rev., 2009, 38(4), 1119-1138.
Ogra, Y. Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies. Anal. Sci., 2009, 25(10), 1189-1195.
Suzuki, K.T. Metabolomics of selenium: Se metabolites based on speciation studies. J. Health Sci., 2005, 51(2), 107-114.
Watanabe, T.; Hirano, S. Metabolism of arsenic and its toxicological relevance. Arch. Toxicol., 2013, 87(6), 969-979.
Heitland, P.; Köster, H.D. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin. Chim. Acta, 2006, 365(1-2), 310-318.
Goullé, J-P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Bouige, D.; Lacroix, C. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci. Int., 2005, 153(1), 39-44.
Burton, C.; Dan, Y.; Donovan, A.; Liu, K.; Shi, H.; Ma, Y.; Bosnak, C.P. Urinary metallomics as a novel biomarker discovery platform: Breast cancer as a case study. Clin. Chim. Acta, 2016, 452, 142-148.
Wei, X-L.; He, J-R.; Cen, Y-L.; Su, Y.; Chen, L-J.; Lin, Y.; Wu, B-H.; Su, F-X.; Tang, L-Y.; Ren, Z-F. Modified effect of urinary cadmium on breast cancer risk by selenium. Clin. Chim. Acta, 2015, 438, 80-85.
Mathé, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; Kazandjian, D.G.; Hatzakis, E.; Gonzalez, F.J.; Harris, C.C. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res., 2014, 74(12), 3259-3270.
Wu, Q.; Wang, Y.; Gu, X.; Zhou, J.; Zhang, H.; Lv, W.; Chen, Z.; Yan, C. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Sep. Sci., 2014, 37(14), 1728-1735.
Mazzone, P.J.; Wang, X-F.; Lim, S.; Choi, H.; Jett, J.; Vachani, A.; Zhang, Q.; Beukemann, M.; Seeley, M.; Martino, R.; Rhodes, P. Accuracy of volatile urine biomarkers for the detection and characterization of lung cancer. BMC Cancer, 2015, 15(1), 1001.
Yuan, J-M.; Gao, Y-T.; Wang, R.; Chen, M.; Carmella, S.G.; Hecht, S.S. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis, 2012, 33(4), 804-809.
Yuan, J-M.; Butler, L.M.; Gao, Y-T.; Murphy, S.E.; Carmella, S.G.; Wang, R.; Nelson, H.H.; Hecht, S.S. Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis, 2014, 35(2), 339-345.
Yuan, J-M.; Butler, L.M.; Stepanov, I.; Hecht, S.S. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer. Cancer Res., 2014, 74(2), 401-411.
Silva, C.L.; Passos, M.; Câmara, J.S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers--a powerful strategy for breast cancer diagnosis. Talanta, 2012, 89, 360-368.
Lee, J.; Woo, H.M.; Kong, G.; Nam, S.J.; Chung, B.C. Discovery of Urinary Biomarkers in Patients with Breast Cancer Based on Metabolomics. Mass Spectrometry Letters, 2013, 4(4), 59-66.
Burton, C.; Shi, H.; Ma, Y. Daily variation and effect of dietary folate on urinary pteridines. Metabolomics, 2016, 12(5), 1-10.
Gamagedara, S.; Gibbons, S.; Ma, Y. Investigation of urinary pteridine levels as potential biomarkers for noninvasive diagnosis of cancer. Clin. Chim. Acta, 2011, 412(1-2), 120-128.
Struck-Lewicka, W.; Kaliszan, R.; Markuszewski, M.J. Analysis of urinary nucleosides as potential cancer markers determined using LC-MS technique. J. Pharm. Biomed. Anal., 2014, 101, 50-57.
Cho, S-H.; Choi, M.H.; Lee, W-Y.; Chung, B.C. Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal. Clin. Biochem., 2009, 42(6), 540-543.
Hsu, W-Y.; Lin, W-D.; Tsai, Y.; Lin, C-T.; Wang, H-C.; Jeng, L-B.; Lee, C-C.; Lin, Y-C.; Lai, C-C.; Tsai, F-J. Analysis of urinary nucleosides as potential tumor markers in human breast cancer by high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Clin. Chim. Acta, 2011, 412(19-20), 1861-1866.
Hsu, W-Y.; Chen, C-J.; Huang, Y-C.; Tsai, F-J.; Jeng, L-B.; Lai, C-C. Urinary nucleosides as biomarkers of breast, colon, lung, and gastric cancer in Taiwanese. PLoS One, 2013, 8(12), e81701.
Seidel, A.; Seidel, P.; Manuwald, O.; Herbarth, O. Modified nucleosides as biomarkers for early cancer diagnose in exposed populations. Environ. Toxicol., 2015, 30(8), 956-967.
Woo, H.M.; Kim, K.M.; Choi, M.H.; Jung, B.H.; Lee, J.; Kong, G.; Nam, S.J.; Kim, S.; Bai, S.W.; Chung, B.C. Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin. Chim. Acta, 2009, 400(1-2), 63-69.
Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; Nyati, M.K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G.S.; Ghosh, D.; Pennathur, S.; Alexander, D.C.; Berger, A.; Shuster, J.R.; Wei, J.T.; Varambally, S.; Beecher, C.; Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231), 910-914.
Jentzmik, F.; Stephan, C.; Miller, K.; Schrader, M.; Erbersdobler, A.; Kristiansen, G.; Lein, M.; Jung, K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol., 2010, 58(1), 12-18.
Struys, E.A.; Heijboer, A.C.; van Moorselaar, J.; Jakobs, C.; Blankenstein, M.A. Serum sarcosine is not a marker for prostate cancer. Ann. Clin. Biochem., 2010, 47(Pt 3), 282-282.
Burton, C.; Gamagedara, S.; Ma, Y. A novel enzymatic technique for determination of sarcosine in urine samples. Anal. Methods, 2012, 4(1), 141-146.
Cernei, N.; Heger, Z.; Gumulec, J.; Zitka, O.; Masarik, M.; Babula, P.; Eckschlager, T.; Stiborova, M.; Kizek, R.; Adam, V. Sarcosine as a potential prostate cancer biomarker--a review. Int. J. Mol. Sci., 2013, 14(7), 13893-13908.
Lan, J.; Xu, W.; Wan, Q.; Zhang, X.; Lin, J.; Chen, J.; Chen, J. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal. Chim. Acta, 2014, 825, 63-68.
Truong, M.; Yang, B.; Jarrard, D.F. Toward the detection of prostate cancer in urine: a critical analysis. J. Urol., 2013, 189(2), 422-429.
Gamagedara, S.; Kaczmarek, A.T.; Jiang, Y.; Cheng, X.; Rupasinghe, M.; Ma, Y. Validation study of urinary metabolites as potential biomarkers for prostate cancer detection. Bioanalysis, 2012, 4(10), 1175-1183.
Rosser, C.J.; Urquidi, V.; Goodison, S. Urinary biomarkers of bladder cancer: an update and future perspectives. Biomarkers Med., 2013, 7(5), 779-790.
Huang, Z.; Lin, L.; Gao, Y.; Chen, Y.; Yan, X.; Xing, J.; Hang, W. Bladder cancer determination via two urinary metabolites: A biomarker pattern approach. Molecular & Cellular Proteomics Proteomics, 2011, 10(10), M111-M007922.
Jin, X.; Yun, S.J.; Jeong, P.; Kim, I.Y.; Kim, W-J.; Park, S. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget, 2014, 5(6), 1635-1645.
Shen, C.; Sun, Z.; Chen, D.; Su, X.; Jiang, J.; Li, G.; Lin, B.; Yan, J. Developing urinary metabolomic signatures as early bladder cancer diagnostic markers. OMICS, 2015, 19(1), 1-11.
Kośliński, P.; Daghir-Wojtkowiak, E.; Szatkowska-Wandas, P.; Markuszewski, M.; Markuszewski, M.J. The metabolic profiles of pterin compounds as potential biomarkers of bladder cancer-Integration of analytical-based approach with biostatistical methodology. J. Pharm. Biomed. Anal., 2016, 127, 256-262.
Wittmann, B.M.; Stirdivant, S.M.; Mitchell, M.W.; Wulff, J.E.; McDunn, J.E.; Li, Z.; Dennis-Barrie, A.; Neri, B.P.; Milburn, M.V.; Lotan, Y.; Wolfert, R.L. Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLoS One, 2014, 9(12), e115870.
Pasikanti, K.K.; Esuvaranathan, K.; Hong, Y.; Ho, P.C.; Mahendran, R.; Raman Nee Mani, L.; Chiong, E.; Chan, E.C.Y. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Proteome Res., 2013, 12(9), 3865-3873.
Alberice, J.V.; Amaral, A.F.; Armitage, E.G.; Lorente, J.A.; Algaba, F.; Carrilho, E.; Márquez, M.; García, A.; Malats, N.; Barbas, C. Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J. Chromatogr. A, 2013, 1318, 163-170.
Holschneider, C.H.; Berek, J.S. In Seminars in surgical oncology. Wiley Online Library, 2000, 19, 3-10.
Turkoglu, O.; Zeb, A.; Graham, S.; Szyperski, T.; Szender, J.B.; Odunsi, K.; Bahado-Singh, R. Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics, 2016, 12(4), 1-16.
Jiang, T.; Lin, Y.; Yin, H.; Wang, S.; Sun, Q.; Zhang, P.; Bi, W. Correlation analysis of urine metabolites and clinical staging in patients with ovarian cancer. Int. J. Clin. Exp. Med., 2015, 8(10), 18165-18171.
Zhang, T.; Wu, X.; Ke, C.; Yin, M.; Li, Z.; Fan, L.; Zhang, W.; Zhang, H.; Zhao, F.; Zhou, X.; Lou, G.; Li, K. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J. Proteome Res., 2013, 12(1), 505-512.
Chen, J.; Zhou, L.; Zhang, X.; Lu, X.; Cao, R.; Xu, C.; Xu, G. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer. Electrophoresis, 2012, 33(22), 3361-3369.
Folin, O. Laws governing the chemical composition of urine, Am. J. Physiol.-. Legacy Content, 1905, 13(1), 66-115.
Boeniger, M.F.; Lowry, L.K.; Rosenberg, J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am. Ind. Hyg. Assoc. J., 1993, 54(10), 615-627.
Alessio, L.; Berlin, A.; Dell’Orto, A.; Toffoletto, F.; Ghezzi, I. Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators. Int. Arch. Occup. Environ. Health, 1985, 55(2), 99-106.
Vestergaard, P.; Leverett, R. Constancy of urinary creatinine excretion. J. Lab. Clin. Med., 1958, 51(2), 211-218.
Camara, A.A.; Arn, K.D.; Reimer, A.; Newburgh, L.H. The twenty-four hourly endogenous creatinine clearance as a clinical measure of the functional state of the kidneys. J. Lab. Clin. Med., 1951, 37(5), 743-763.
Davison, J.M.; Noble, M.C. Serial changes in 24 hour creatinine clearance during normal menstrual cycles and the first trimester of pregnancy. Br. J. Obstet. Gynaecol., 1981, 88(1), 10-17.
Launay-Vacher, V.; Gligorov, J.; Le Tourneau, C.; Janus, N.; Spano, J-P.; Ray-Coquard, I.; Oudard, S.; Pourrat, X.; Morere, J-F.; Deray, G.; Beuzeboc, P. Prevalence of renal insufficiency in breast cancer patients and related pharmacological issues. Breast Cancer Res. Treat., 2010, 124(3), 745-753.
James, G.D.; Sealey, J.E.; Alderman, M.; Ljungman, S.; Mueller, F.B.; Pecker, M.S.; Laragh, J.H. A longitudinal study of urinary creatinine and creatinine clearance in normal subjects. Race, sex, and age differences. Am. J. Hypertens., 1988, 1(2), 124-131.
Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ. Health Perspect., 2005, 113(2), 192-200.
Verhave, J.C.; Fesler, P.; Ribstein, J.; du Cailar, G.; Mimran, A. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am. J. Kidney Dis., 2005, 46(2), 233-241.
Heymsfield, S.B.; Arteaga, C.; McManus, C.; Smith, J.; Moffitt, S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr., 1983, 37(3), 478-494.
Lykken, G.I.; Jacob, R.A.; Munoz, J.M.; Sandstead, H.H. A mathematical model of creatine metabolism in normal males--comparison between theory and experiment. Am. J. Clin. Nutr., 1980, 33(12), 2674-2685.
Ix, J.H.; Wassel, C.L.; Stevens, L.A.; Beck, G.J.; Froissart, M.; Navis, G.; Rodby, R.; Torres, V.E.; Zhang, Y.L.; Greene, T.; Levey, A.S. Equations to estimate creatinine excretion rate: the CKD epidemiology collaboration. Clin. J. Am. Soc. Nephrol., 2011, 6(1), 184-191.
Walser, M. Creatinine excretion as a measure of protein nutrition in adults of varying age. JPEN J. Parenter. Enteral Nutr., 1987, 11(5)(Suppl.), 73S-78S.
Jacob, C.C.; Dervilly-Pinel, G.; Biancotto, G.; Le Bizec, B. Evaluation of specific gravity as normalization strategy for cattle urinary metabolome analysis. Metabolomics, 2014, 10(4), 627-637.
Miller, R.C.; Brindle, E.; Holman, D.J.; Shofer, J.; Klein, N.A.; Soules, M.R.; O’Connor, K.A. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin. Chem., 2004, 50(5), 924-932.
Joung, J.Y.; Park, S.; Yoon, H.; Kwon, W-A.; Cho, I-C.; Seo, H.K.; Chung, J.; Hwang, S-H.; Lee, C.W.; Lee, K.H. Overestimation of nuclear matrix protein 22 in concentrated urine. Urology, 2013, 82(5), 1059-1064.
Parikh, C.R.; Gyamlani, G.G.; Carvounis, C.P. Screening for microalbuminuria simplified by urine specific gravity. Am. J. Nephrol., 2002, 22(4), 315-319.
Voinescu, G.C.; Shoemaker, M.; Moore, H.; Khanna, R.; Nolph, K.D. The relationship between urine osmolality and specific gravity. Am. J. Med. Sci., 2002, 323(1), 39-42.
Ayoub, J.A.; Beaufrere, H.; Acierno, M.J. Association between urine osmolality and specific gravity in dogs and the effect of commonly measured urine solutes on that association. Am. J. Vet. Res., 2013, 74(12), 1542-1545.
George, J.W. The usefulness and limitations of hand-held refractometers in veterinary laboratory medicine: an historical and technical review. Vet. Clin. Pathol., 2001, 30(4), 201-210.
Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J.K.; Lindon, J.C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem., 2006, 78(7), 2262-2267.
Chen, G.Y.; Liao, H.W.; Tseng, Y.J.; Tsai, I.L.; Kuo, C.H. A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry. Anal. Chim. Acta, 2015, 864, 21-29.
Chadha, V.; Garg, U.; Alon, U.S. Measurement of urinary concentration: a critical appraisal of methodologies. Pediatr. Nephrol., 2001, 16(4), 374-382.
Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.; Shah, S.; Greiner, R.; Sykes, B.D.; Marrie, T.J. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem., 2007, 79(18), 6995-7004.
Giskeødegård, G.F.; Davies, S.K.; Revell, V.L.; Keun, H.; Skene, D.J. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci. Rep., 2015, 5, 14843.
Kim, K.; Mall, C.; Taylor, S.L.; Hitchcock, S.; Zhang, C.; Wettersten, H.I.; Jones, A.D.; Chapman, A.; Weiss, R.H. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS One, 2014, 9(1), e86223.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [5 - 28]
Pages: 24
DOI: 10.2174/0929867324666170914102236
Price: $58

Article Metrics

PDF: 57