Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value Bioproducts

Author(s): Congqiang Zhang* , Heng-Phon Too* .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 14 , 2019

  Journal Home
Translate in Chinese

Abstract:

Lignocellulose is the most abundant renewable natural resource on earth and has been successfully used for the production of biofuels. A significant challenge is to develop cost-effective, environmentally friendly and efficient processes for the conversion of lignocellulose materials into suitable substrates for biotransformation. A number of approaches have been explored to convert lignocellulose into sugars, e.g. combining chemical pretreatment and enzymatic hydrolysis. In nature, there are organisms that can transform the complex lignocellulose efficiently, such as wood-degrading fungi (brown rot and white rot fungi), bacteria (e.g. Clostridium thermocellum), arthropods (e.g. termite) and certain animals (e.g. ruminant). Here, we highlight recent case studies of the natural degraders and the mechanisms involved, providing new utilities in biotechnology. The sugars produced from such biotransformations can be used in metabolic engineering and synthetic biology for the complete biosynthesis of natural medicine. The unique opportunities in using lignocellulose directly to produce natural drug molecules with either using mushroom and/or ‘industrial workhorse’ organisms (Escherichia coli and Saccharomyces cerevisiae) will be discussed.

Keywords: Lignocellulose, natural products, metabolic engineering, synthetic biology, secondary metabolites, drugs.

[1]
Pauly, M.; Keegstra, K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J., 2008, 54(4), 559-568. [http://dx.doi.org/10.1111/j.1365-313X.2008.03463.x]. [PMID: 18476863].
[2]
Sanderson, K. Lignocellulose: A chewy problem. Nature, 2011, 474(7352), S12-S14. [http://dx.doi.org/10.1038/474S012a]. [PMID: 21697834].
[3]
Purchase, D. Fungal applications in sustainable environmental biotechnology, 2016. [http://dx.doi.org/10.1007/978-3-319-42852-9].
[4]
Zhang, C.; Qi, W.; Wang, F.; Li, Q.; Su, R.; He, Z. Ethanol from corn stover using SSF: An economic assessment. Energy Sources B Econ. Plan. Policy, 2011, 6(2), 136-144. [http://dx.doi.org/10.1080/15567240903047640].
[5]
Goodell, B.; Qian, Y.; Jellison, J. Fungal decay of wood: Soft Rot—Brown Rot—White Rot. ACS, 2009, 982, 9-31.
[6]
Blanchette, R.A.; Nilsson, T.; Daniel, G.; Abad, A. Biological degradation of wood. ACS, 2009, 225, 141-174.
[7]
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol., 2014, 12(3), 168-180. [http://dx.doi.org/10.1038/nrmicro3182]. [PMID: 24487819].
[8]
Zhu, L.; Wu, Q.; Dai, J.; Zhang, S.; Wei, F. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. USA, 2011, 108(43), 17714-17719. [http://dx.doi.org/10.1073/pnas.1017956108]. [PMID: 22006317].
[9]
Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D.R.; Teoh, K.H.; Reed, D.W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K.W.; Fickes, S.; Galazzo, J.; Gaucher, S.P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L.F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P.S.; Keasling, J.D.; Reiling, K.K.; Renninger, N.S.; Newman, J.D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446), 528-532. [http://dx.doi.org/10.1038/nature12051]. [PMID: 23575629].
[10]
Zhang, C.; Zou, R.; Chen, X.; Stephanopoulos, G.; Too, H.P. Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production. Appl. Microbiol. Biotechnol., 2015, 99(9), 3825-3837. [http://dx.doi.org/10.1007/s00253-015-6463-y]. [PMID: 25715782].
[11]
Zhang, C.; Chen, X.; Stephanopoulos, G.; Too, H.P. Efflux transporter engineering markedly improves amorphadiene production in Escherichia coli. Biotechnol. Bioeng., 2016, 113(8), 1755-1763. [http://dx.doi.org/10.1002/bit.25943]. [PMID: 26804325].
[12]
Yuan, J.; Ching, C.B. Combinatorial engineering of mevalonate pathway for improved amorpha-4,11-diene production in budding yeast. Biotechnol. Bioeng., 2014, 111(3), 608-617. [http://dx.doi.org/10.1002/bit.25123]. [PMID: 24122315].
[13]
Ajikumar, P.K.; Xiao, W-H.; Tyo, K.E.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000), 70-74. [http://dx.doi.org/10.1126/science.1191652]. [PMID: 20929806].
[14]
Zhou, K.; Qiao, K.; Edgar, S.; Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol., 2015, 33(4), 377-383. [http://dx.doi.org/10.1038/nbt.3095]. [PMID: 25558867].
[15]
Thodey, K.; Galanie, S.; Smolke, C.D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol., 2014, 10(10), 837-844. [http://dx.doi.org/10.1038/nchembio.1613]. [PMID: 25151135].
[16]
Nakagawa, A.; Matsumura, E.; Koyanagi, T.; Katayama, T.; Kawano, N.; Yoshimatsu, K.; Yamamoto, K.; Kumagai, H.; Sato, F.; Minami, H. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun., 2016, 7, 10390. [http://dx.doi.org/10.1038/ncomms10390]. [PMID: 26847395].
[17]
Galanie, S.; Thodey, K.; Trenchard, I.J.; Filsinger Interrante, M.; Smolke, C.D. Complete biosynthesis of opioids in yeast. Science, 2015, 349(6252), 1095-1100. [http://dx.doi.org/10.1126/science.aac9373]. [PMID: 26272907].
[18]
Salehi Jouzani, G.; Taherzadeh, M.J. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res. J., 2015, 2(1), 152-195. [http://dx.doi.org/10.18331/BRJ2015.2.1.4].
[19]
Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev., 2010, 14(2), 578-597. [http://dx.doi.org/10.1016/j.rser.2009.10.003].
[20]
Huang, R.; Su, R.; Qi, W.; He, Z. Bioconversion of lignocellulose into bioethanol: Process intensification and mechanism research. BioEnergy Res., 2011, 4(4), 225-245. [http://dx.doi.org/10.1007/s12155-011-9125-7].
[21]
Sanderson, K. Lignocellulose: A chewy problem. Nature, 2011, 474(7352), S12-S14. [http://dx.doi.org/10.1038/474S012a]. [PMID: 21697834].
[22]
Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol., 2016, 199, 42-48. [http://dx.doi.org/10.1016/j.biortech.2015.08.085]. [PMID: 26341010].
[23]
Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active En- Zymes database (CAZy): an ex-pert resource for Glycogenomics. Nucleic Acids Res., 2009, 37, (Datebase), D233- D238.
[24]
Eastwood, D.C.; Floudas, D.; Binder, M.; Majcherczyk, A.; Schneider, P.; Aerts, A.; Asiegbu, F.O.; Baker, S.E.; Barry, K.; Bendiksby, M.; Blumentritt, M.; Coutinho, P.M.; Cullen, D.; de Vries, R.P.; Gathman, A.; Goodell, B.; Henrissat, B.; Ihrmark, K.; Kauserud, H.; Kohler, A.; LaButti, K.; Lapidus, A.; Lavin, J.L.; Lee, Y.H.; Lindquist, E.; Lilly, W.; Lucas, S.; Morin, E.; Murat, C.; Oguiza, J.A.; Park, J.; Pisabarro, A.G.; Riley, R.; Rosling, A.; Salamov, A.; Schmidt, O.; Schmutz, J.; Skrede, I.; Stenlid, J.; Wiebenga, A.; Xie, X.; Kües, U.; Hibbett, D.S.; Hoffmeister, D.; Högberg, N.; Martin, F.; Grigoriev, I.V.; Watkinson, S.C. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science, 2011, 333(6043), 762-765. [http://dx.doi.org/10.1126/science.1205411]. [PMID: 21764756].
[25]
Kracher, D.; Scheiblbrandner, S.; Felice, A.K.; Breslmayr, E.; Preims, M.; Ludwicka, K.; Haltrich, D.; Eijsink, V.G.; Ludwig, R. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science, 2016, 352(6289), 1098-1101. [http://dx.doi.org/10.1126/science.aaf3165]. [PMID: 27127235].
[26]
Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martínez, A.T.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; Aerts, A.; Benoit, I.; Boyd, A.; Carlson, A.; Copeland, A.; Coutinho, P.M.; de Vries, R.P.; Ferreira, P.; Findley, K.; Foster, B.; Gaskell, J.; Glotzer, D.; Górecki, P.; Heitman, J.; Hesse, C.; Hori, C.; Igarashi, K.; Jurgens, J.A.; Kallen, N.; Kersten, P.; Kohler, A.; Kües, U.; Kumar, T.K.; Kuo, A.; LaButti, K.; Larrondo, L.F.; Lindquist, E.; Ling, A.; Lombard, V.; Lucas, S.; Lundell, T.; Martin, R.; McLaughlin, D.J.; Morgenstern, I.; Morin, E.; Murat, C.; Nagy, L.G.; Nolan, M.; Ohm, R.A.; Patyshakuliyeva, A.; Rokas, A.; Ruiz-Dueñas, F.J.; Sabat, G.; Salamov, A.; Samejima, M.; Schmutz, J.; Slot, J.C.; St John, F.; Stenlid, J.; Sun, H.; Sun, S.; Syed, K.; Tsang, A.; Wiebenga, A.; Young, D.; Pisabarro, A.; Eastwood, D.C.; Martin, F.; Cullen, D.; Grigoriev, I.V.; Hibbett, D.S. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 2012, 336(6089), 1715-1719. [http://dx.doi.org/10.1126/science.1221748]. [PMID: 22745431].
[27]
Ohm, R.A.; de Jong, J.F.; Lugones, L.G.; Aerts, A.; Kothe, E.; Stajich, J.E.; de Vries, R.P.; Record, E.; Levasseur, A.; Baker, S.E.; Bartholomew, K.A.; Coutinho, P.M.; Erdmann, S.; Fowler, T.J.; Gathman, A.C.; Lombard, V.; Henrissat, B.; Knabe, N.; Kües, U.; Lilly, W.W.; Lindquist, E.; Lucas, S.; Magnuson, J.K.; Piumi, F.; Raudaskoski, M.; Salamov, A.; Schmutz, J.; Schwarze, F.W.; vanKuyk, P.A.; Horton, J.S.; Grigoriev, I.V.; Wösten, H.A. Genome sequence of the model mushroom Schizophyllum commune. Nat. Biotechnol., 2010, 28(9), 957-963. [http://dx.doi.org/10.1038/nbt.1643]. [PMID: 20622885].
[28]
Martinez, D.; Larrondo, L.F.; Putnam, N.; Gelpke, M.D.; Huang, K.; Chapman, J.; Helfenbein, K.G.; Ramaiya, P.; Detter, J.C.; Larimer, F.; Coutinho, P.M.; Henrissat, B.; Berka, R.; Cullen, D.; Rokhsar, D. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol., 2004, 22(6), 695-700. [http://dx.doi.org/10.1038/nbt967]. [PMID: 15122302].
[29]
Martinez, D.; Challacombe, J.; Morgenstern, I.; Hibbett, D.; Schmoll, M.; Kubicek, C.P.; Ferreira, P.; Ruiz-Duenas, F.J.; Martinez, A.T.; Kersten, P.; Hammel, K.E.; Vanden Wymelenberg, A.; Gaskell, J.; Lindquist, E.; Sabat, G.; Bondurant, S.S.; Larrondo, L.F.; Canessa, P.; Vicuna, R.; Yadav, J.; Doddapaneni, H.; Subramanian, V.; Pisabarro, A.G.; Lavín, J.L.; Oguiza, J.A.; Master, E.; Henrissat, B.; Coutinho, P.M.; Harris, P.; Magnuson, J.K.; Baker, S.E.; Bruno, K.; Kenealy, W.; Hoegger, P.J.; Kües, U.; Ramaiya, P.; Lucas, S.; Salamov, A.; Shapiro, H.; Tu, H.; Chee, C.L.; Misra, M.; Xie, G.; Teter, S.; Yaver, D.; James, T.; Mokrejs, M.; Pospisek, M.; Grigoriev, I.V.; Brettin, T.; Rokhsar, D.; Berka, R.; Cullen, D. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 1954-1959. [http://dx.doi.org/10.1073/pnas.0809575106]. [PMID: 19193860].
[30]
Baldrian, P.; Valásková, V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev., 2008, 32(3), 501-521. [http://dx.doi.org/10.1111/j.1574-6976.2008.00106.x]. [PMID: 18371173].
[31]
Kern, M.; McGeehan, J.E.; Streeter, S.D.; Martin, R.N.; Besser, K.; Elias, L.; Eborall, W.; Malyon, G.P.; Payne, C.M.; Himmel, M.E.; Schnorr, K.; Beckham, G.T.; Cragg, S.M.; Bruce, N.C.; McQueen-Mason, S.J. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc. Natl. Acad. Sci. USA, 2013, 110(25), 10189-10194. [http://dx.doi.org/10.1073/pnas.1301502110]. [PMID: 23733951].
[32]
Warnecke, F.; Luginbühl, P.; Ivanova, N.; Ghassemian, M.; Richardson, T.H.; Stege, J.T.; Cayouette, M.; McHardy, A.C.; Djordjevic, G.; Aboushadi, N.; Sorek, R.; Tringe, S.G.; Podar, M.; Martin, H.G.; Kunin, V.; Dalevi, D.; Madejska, J.; Kirton, E.; Platt, D.; Szeto, E.; Salamov, A.; Barry, K.; Mikhailova, N.; Kyrpides, N.C.; Matson, E.G.; Ottesen, E.A.; Zhang, X.; Hernández, M.; Murillo, C.; Acosta, L.G.; Rigoutsos, I.; Tamayo, G.; Green, B.D.; Chang, C.; Rubin, E.M.; Mathur, E.J.; Robertson, D.E.; Hugenholtz, P.; Leadbetter, J.R. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450(7169), 560-565. [http://dx.doi.org/10.1038/nature06269]. [PMID: 18033299].
[33]
Watanabe, H.; Tokuda, G. Cellulolytic systems in insects. Annu. Rev. Entomol., 2010, 55, 609-632. [http://dx.doi.org/10.1146/annurev-ento-112408-085319]. [PMID: 19754245].
[34]
Ding, S-Y.; Liu, Y-S.; Zeng, Y.; Himmel, M.E.; Baker, J.O.; Bayer, E.A. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 2012, 338(6110), 1055-1060. [http://dx.doi.org/10.1126/science.1227491]. [PMID: 23180856].
[35]
Artzi, L.; Bayer, E.A.; Moraïs, S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat. Rev. Microbiol., 2017, 15(2), 83-95. [http://dx.doi.org/10.1038/nrmicro.2016.164]. [PMID: 27941816].
[36]
Eriksson, T.; Karlsson, J.; Tjerneld, F. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Appl. Biochem. Biotechnol., 2002, 101(1), 41-60. [http://dx.doi.org/10.1385/ABAB:101:1:41]. [PMID: 12008866].
[37]
You, C.; Zhang, Y-H. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth. Biol., 2013, 2(2), 102-110. [http://dx.doi.org/10.1021/sb300068g]. [PMID: 23656373].
[38]
Cox, D.B.; Platt, R.J.; Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med., 2015, 21(2), 121-131. [http://dx.doi.org/10.1038/nm.3793]. [PMID: 25654603].
[39]
Davidi, L.; Moraïs, S.; Artzi, L.; Knop, D.; Hadar, Y.; Arfi, Y.; Bayer, E.A. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proc. Natl. Acad. Sci. USA, 2016, 113(39), 10854-10859. [http://dx.doi.org/10.1073/pnas.1608012113]. [PMID: 27621442].
[40]
Zhang, H.; Wang, X. Modular co-culture engineering, a new approach for metabolic engineering. Metab. Eng., 2016, 37, 114-121. [http://dx.doi.org/10.1016/j.ymben.2016.05.007]. [PMID: 27242132].
[41]
Gustavsson, M.; Lee, S.Y. Prospects of microbial cell factories developed through systems metabolic engineering. Microb. Biotechnol., 2016, 9(5), 610-617. [http://dx.doi.org/10.1111/1751-7915.12385]. [PMID: 27435545].
[42]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477. [http://dx.doi.org/10.1021/np068054v]. [PMID: 17309302].
[43]
Eichenberger, M.; Lehka, B.J.; Folly, C.; Fischer, D.; Martens, S.; Simón, E.; Naesby, M. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab. Eng., 2017, 39, 80-89. [http://dx.doi.org/10.1016/j.ymben.2016.10.019]. [PMID: 27810393].
[44]
Koopman, F.; Beekwilder, J.; Crimi, B.; van Houwelingen, A.; Hall, R.D.; Bosch, D.; van Maris, A.J.; Pronk, J.T.; Daran, J.M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact., 2012, 11, 155. [http://dx.doi.org/10.1186/1475-2859-11-155]. [PMID: 23216753].
[45]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220. [http://dx.doi.org/10.1038/nm.2471]. [PMID: 21989013].
[46]
Ro, D-K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; Chang, M.C.; Withers, S.T.; Shiba, Y.; Sarpong, R.; Keasling, J.D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086), 940-943. [http://dx.doi.org/10.1038/nature04640]. [PMID: 16612385].
[47]
Zhang, C.; Chen, X.; Zou, R.; Zhou, K.; Stephanopoulos, G.; Too, H.P. Combining genotype improvement and statistical media optimization for isoprenoid production in E. coli. PLoS One, 2013, 8(10)e75164 [http://dx.doi.org/10.1371/journal.pone.0075164]. [PMID: 24124471].
[48]
Zou, R.; Zhou, K.; Stephanopoulos, G.; Too, H.P. Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS One, 2013, 8(11)e79557 [http://dx.doi.org/10.1371/journal.pone.0079557]. [PMID: 24223968].
[49]
Westfall, P.J.; Pitera, D.J.; Lenihan, J.R.; Eng, D.; Woolard, F.X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D.J.; Owens, A.; Fickes, S.; Diola, D.; Benjamin, K.R.; Keasling, J.D.; Leavell, M.D.; McPhee, D.J.; Renninger, N.S.; Newman, J.D.; Paddon, C.J. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA, 2012, 109(3), E111-E118. [http://dx.doi.org/10.1073/pnas.1110740109]. [PMID: 22247290].
[50]
Yuan, J.; Ching, C.B. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb. Cell Fact., 2015, 14, 38. [http://dx.doi.org/10.1186/s12934-015-0220-x]. [PMID: 25889168].
[51]
Zhou, K.; Zou, R.; Zhang, C.; Stephanopoulos, G.; Too, H.P. Optimization of amorphadiene synthesis in bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol. Bioeng., 2013, 110(9), 2556-2561. [http://dx.doi.org/10.1002/bit.24900]. [PMID: 23483530].
[52]
Hao, X. Pan, J.; Zhu, X; Natural Products, 2013, pp. 2797-2812. [http://dx.doi.org/10.1007/978-3-642-22144-6_124]
[53]
Kusari, S.; Singh, S.; Jayabaskaran, C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol., 2014, 32(6), 304-311. [http://dx.doi.org/10.1016/j.tibtech.2014.03.011]. [PMID: 24810040].
[54]
Peplow, M. Synthetic biology’s first malaria drug meets market resistance. Nature, 2016, 530(7591), 389-390. [http://dx.doi.org/10.1038/530390a]. [PMID: 26911755].
[55]
Minty, J.J.; Singer, M.E.; Scholz, S.A.; Bae, C.H.; Ahn, J.H.; Foster, C.E.; Liao, J.C.; Lin, X.N. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. USA, 2013, 110(36), 14592-14597. [http://dx.doi.org/10.1073/pnas.1218447110]. [PMID: 23959872].
[56]
Kothe, E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl. Microbiol. Biotechnol., 2001, 56(5-6), 602-612. [http://dx.doi.org/10.1007/s002530100763]. [PMID: 11601606].
[57]
Song, H.; Ding, M.Z.; Jia, X.Q.; Ma, Q.; Yuan, Y.J. Synthetic microbial consortia: From systematic analysis to construction and applications. Chem. Soc. Rev., 2014, 43(20), 6954-6981. [http://dx.doi.org/10.1039/C4CS00114A]. [PMID: 25017039].
[58]
Li, Y.; Smolke, C.D. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat. Commun., 2016, 7, 12137. [http://dx.doi.org/10.1038/ncomms12137]. [PMID: 27378283].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 14
Year: 2019
Page: [2475 - 2484]
Pages: 10
DOI: 10.2174/0929867324666170912095755
Price: $58

Article Metrics

PDF: 20
HTML: 2