NGF and BDNF Alterations by Prenatal Alcohol Exposure

Author(s): Valentina Carito, Mauro Ceccanti, Giampiero Ferraguti, Roberto Coccurello, Stefania Ciafrè, Paola Tirassa, Marco Fiore*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: It is now widely established that the devastating effects of prenatal alcohol exposure on the embryo and fetus development cause marked cognitive and neurobiological deficits in the newborns. The negative effects of the gestational alcohol use have been well documented and known for some time. However, also the subtle role of alcohol consumption by fathers prior to mating is drawing special attention.

Objective: Both paternal and maternal alcohol exposure has been shown to affect the neurotrophins' signalling pathways in the brain and in target organs of ethanol intoxication. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are molecules playing a pivotal role in the survival, development and function of the peripheral and central nervous systems but also in the pathogenesis of developmental defects caused by alcohol exposure.

Methods: New researches from the available literature and experimental data from our laboratory are presented in this review to offer the most recent findings regarding the effects of maternal and paternal prenatal ethanol exposure especially on the neurotrophins' signalling pathways.

Results: NGF and BDNF changes play a subtle role in short- and long-lasting effects of alcohol in ethanol target tissues, including neuronal cell death and severe cognitive and physiological deficits in the newborns.

Conclusion: The review suggests a possible therapeutic intervention based on the use of specific molecules with antioxidant properties in order to induce a potential prevention of the harmful effects of the paternal and/or maternal alcohol exposure.

Keywords: Gestational alcohol, FAS, oxidative stress, FASD, NGF, BDNF.

[1]
Barde, Y.A. Neurotrophic factors: an evolutionary perspective. J. Neurobiol., 1994, 25(11), 1329-1333.
[http://dx.doi.org/10.1002/neu.480251102] [PMID: 7852988]
[2]
Levi-Montalcini, R. The nerve growth factor 35 years later. Science, 1987, 237(4819), 1154-1162.
[http://dx.doi.org/10.1126/science.3306916] [PMID: 3306916]
[3]
Boschen, K.E.; Klintsova, A.Y. Neurotrophins in the brain: Interaction with alcohol exposure during development. Vitam. Horm., 2017, 104, 197-242.
[http://dx.doi.org/10.1016/bs.vh.2016.10.008] [PMID: 28215296]
[4]
Ebendal, T. NGF in CNS: Experimental data and clinical implications. Prog. Growth Factor Res., 1989, 1(3), 143-159.
[http://dx.doi.org/10.1016/0955-2235(89)90008-2] [PMID: 2562358]
[5]
Fiore, M.; Chaldakov, G.N.; Aloe, L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev. Neurosci., 2009, 20(2), 133-145.
[http://dx.doi.org/10.1515/REVNEURO.2009.20.2.133] [PMID: 19774790]
[6]
Barde, Y.A. The nerve growth factor family. Prog. Growth Factor Res., 1990, 2(4), 237-248.
[http://dx.doi.org/10.1016/0955-2235(90)90021-B] [PMID: 2133291]
[7]
Barde, Y.A. Neurotrophins: A family of proteins supporting the survival of neurons. Prog. Clin. Biol. Res., 1994, 390, 45-56.
[PMID: 7724649]
[8]
Thoenen, H. The changing scene of neurotrophic factors. Trends Neurosci., 1991, 14(5), 165-170.
[http://dx.doi.org/10.1016/0166-2236(91)90097-E] [PMID: 1713715]
[9]
Chao, M.V.; Rajagopal, R.; Lee, F.S. Neurotrophin signalling in health and disease. Clin. Sci. (Lond.), 2006, 110(2), 167-173.
[http://dx.doi.org/10.1042/CS20050163] [PMID: 16411893]
[10]
Fiore, M.; Angelucci, F.; Aloe, L.; Iannitelli, A.; Korf, J. Nerve Growth Factor and Brain-Derived Neurotrophic Factor in schizophrenia and depression: Findings in humans and in animal models. Curr. Neuropharmacol., 2003, 1, 109-123.
[http://dx.doi.org/10.2174/1570159033477206]
[11]
Aloe, L.; Alleva, E.; Fiore, M. Stress and nerve growth factor: Findings in animal models and humans. Pharmacol. Biochem. Behav., 2002, 73(1), 159-166.
[http://dx.doi.org/10.1016/S0091-3057(02)00757-8] [PMID: 12076735]
[12]
Cirulli, F.; Francia, N.; Berry, A.; Aloe, L.; Alleva, E.; Suomi, S.J. Early life stress as a risk factor for mental health: Role of neurotrophins from rodents to non-human primates. Neurosci. Biobehav. Rev., 2009, 33(4), 573-585.
[PMID: 18817811]
[13]
Ceccanti, M.; Mancinelli, R.; Tirassa, P.; Laviola, G.; Rossi, S.; Romeo, M.; Fiore, M. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol. Aging, 2012, 33(2), 359-367.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[14]
Ceccanti, M.; De Nicolò, S.; Mancinelli, R.; Chaldakov, G.; Carito, V.; Ceccanti, M.; Laviola, G.; Tirassa, P.; Fiore, M. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders. Ann. Ist. Super. Sanita, 2013, 49(4), 383-390.
[http://dx.doi.org/10.4415/ann_13_04_11] [PMID: 24334784]
[15]
Fiore, M.; Laviola, G.; Aloe, L.; di Fausto, V.; Mancinelli, R.; Ceccanti, M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology, 2009, 30(1), 59-71.
[http://dx.doi.org/10.1016/j.neuro.2008.11.009] [PMID: 19100286]
[16]
Fiore, M.; Mancinelli, R.; Aloe, L.; Laviola, G.; Sornelli, F.; Vitali, M.; Ceccanti, M. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol. Lett., 2009, 188(3), 208-213.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.013] [PMID: 19397965]
[17]
Heaton, M.B.; Paiva, M.; Madorsky, I.; Mayer, J.; Moore, D.B. Effects of ethanol on neurotrophic factors, apoptosis-related proteins, endogenous antioxidants, and reactive oxygen species in neonatal striatum: relationship to periods of vulnerability. Brain Res. Dev. Brain Res., 2003, 140(2), 237-252.
[http://dx.doi.org/10.1016/S0165-3806(02)00610-7] [PMID: 12586429]
[18]
Heaton, M.B.; Moore, D.B.; Paiva, M.; Madorsky, I.; Mayer, J.; Shaw, G. The role of neurotrophic factors, apoptosis-related proteins, and endogenous antioxidants in the differential temporal vulnerability of neonatal cerebellum to ethanol. Alcohol. Clin. Exp. Res., 2003, 27(4), 657-669.
[http://dx.doi.org/10.1111/j.1530-0277.2003.tb04402.x] [PMID: 12711928]
[19]
Idrus, N.M.; Thomas, J.D. Fetal alcohol spectrum disorders: experimental treatments and strategies for intervention. Alcohol Res. Health, 2011, 34(1), 76-85.
[PMID: 23580044]
[20]
Light, K.E.; Ge, Y.; Belcher, S.M. Early postnatal ethanol exposure selectively decreases BDNF and truncated TrkB-T2 receptor mRNA expression in the rat cerebellum. Brain Res. Mol. Brain Res., 2001, 93(1), 46-55.
[http://dx.doi.org/10.1016/S0169-328X(01)00182-6] [PMID: 11532337]
[21]
Ceccanti, M.; Carito, V.; Vitali, M.; Iannuzzi, S.; Tarani, L.; De Nicolò, S. Serum BDNF and NGF modulation by olive polyphenols in alcoholics during withdrawal. J. Alcohol. Drug Depend., 2015, 3, 1-6.
[http://dx.doi.org/10.4172/2329-6488.1000214]
[22]
Kulkarny, V.V.; Wiest, N.E.; Marquez, C.P.; Nixon, S.C.; Valenzuela, C.F.; Perrone-Bizzozero, N.I. Opposite effects of acute ethanol exposure on GAP-43 and BDNF expression in the hippocampus versus the cerebellum of juvenile rats. Alcohol, 2011, 45(5), 461-471.
[http://dx.doi.org/10.1016/j.alcohol.2010.12.004] [PMID: 21367572]
[23]
Li, Z.; Ding, M.; Thiele, C.J.; Luo, J. Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons. Neuroscience, 2004, 126(1), 149-162.
[http://dx.doi.org/10.1016/j.neuroscience.2004.03.028] [PMID: 15145081]
[24]
Miller, M.W.; Mooney, S.M. Chronic exposure to ethanol alters neurotrophin content in the basal forebrain-cortex system in the mature rat: effects on autocrine-paracrine mechanisms. J. Neurobiol., 2004, 60(4), 490-498.
[http://dx.doi.org/10.1002/neu.20059] [PMID: 15307153]
[25]
Mooney, S.M.; Miller, M.W. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent. Neuroscience, 2007, 149(2), 372-381.
[http://dx.doi.org/10.1016/j.neuroscience.2007.08.012] [PMID: 17869443]
[26]
Heberlein, A.; Schuster, R.; Kleimann, A.; Groh, A.; Kordon, A.; Opfermann, B.; Lichtinghagen, R.; Gröschl, M.; Kornhuber, J.; Bleich, S.; Frieling, H.; Hillemacher, T. Joint effects of the epigenetic alteration of neurotrophins and cytokine signaling: A possible exploratory model of affective symptoms in alcohol-dependent patients? Alcohol Alcohol., 2017, 52(3), 277-281.
[http://dx.doi.org/10.1093/alcalc/agw100] [PMID: 28430931]
[27]
Heberlein, A.; Muschler, M.; Frieling, H.; Behr, M.; Eberlein, C.; Wilhelm, J.; Gröschl, M.; Kornhuber, J.; Bleich, S.; Hillemacher, T. Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addict. Biol., 2013, 18(3), 508-510.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00307.x] [PMID: 21392176]
[28]
Heberlein, A.; Käser, M.; Lichtinghagen, R.; Rhein, M.; Lenz, B.; Kornhuber, J.; Bleich, S.; Hillemacher, T. TNF-α and IL-6 serum levels: neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol, 2014, 48(7), 671-676.
[http://dx.doi.org/10.1016/j.alcohol.2014.08.003] [PMID: 25262503]
[29]
Kiefer, F.; Jahn, H.; Schick, M.; Wiedemann, K. Alcohol intake, tumour necrosis factor-alpha, leptin and craving: factors of a possibly vicious circle? Alcohol Alcohol., 2002, 37(4), 401-404.
[http://dx.doi.org/10.1093/alcalc/37.4.401] [PMID: 12107045]
[30]
Jones, K.L. The fetal alcohol syndrome. Addict. Dis., 1975, 2(1-2), 79-88.
[PMID: 1163375]
[31]
Lemoine, P.; Harousseau, H.; Borteyru, J.P.; Menuet, J.C. Les enfants de parents alcooliques: Anomalies observees a propos de 127 cas. Ouest Med., 1968, 21, 2.
[32]
Jones, K.L.; Smith, D.W. Recognition of the fetal alcohol syndrome in early infancy. Lancet, 1973, 302(7836), 999-1001.
[http://dx.doi.org/10.1016/S0140-6736(73)91092-1] [PMID: 4127281]
[33]
Clarren, S.K.; Smith, D.W. The fetal alcohol syndrome. N. Engl. J. Med., 1978, 298(19), 1063-1067.
[http://dx.doi.org/10.1056/NEJM197805112981906] [PMID: 347295]
[34]
Bertrand, J.; Floyd, L.L.; Weber, M.K. Guidelines for identifying and referring persons with fetal alcohol syndrome. MMWR Recomm. Rep., 2005, 54(RR-11), 1-14.
[PMID: 16251866]
[35]
Caley, L.M.; Kramer, C.; Robinson, L.K. Fetal alcohol spectrum disorder. J. Sch. Nurs., 2005, 21(3), 139-146.
[http://dx.doi.org/10.1177/10598405050210030301] [PMID: 15898848]
[36]
Hoyme, H.E.; May, P.A.; Kalberg, W.O.; Kodituwakku, P.; Gossage, J.P.; Trujillo, P.M.; Buckley, D.G.; Miller, J.H.; Aragon, A.S.; Khaole, N.; Viljoen, D.L.; Jones, K.L.; Robinson, L.K. A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 institute of medicine criteria. Pediatrics, 2005, 115(1), 39-47.
[http://dx.doi.org/10.1542/peds.2004-0259] [PMID: 15629980]
[37]
Sokol, R.J.; Abel, E.L. Alcohol-related birth defects: Outlining current research opportunities. Neurotoxicol. Teratol., 1988, 10(3), 183-186.
[http://dx.doi.org/10.1016/0892-0362(88)90015-3] [PMID: 3062355]
[38]
Stratton, K.; Howe, C.; Battaglia, F.C., Eds.; Fetal alcohol syndrome: Diagnosis, epidemiology, prevention, and treatment; National Academies Press, 1996. https://www.nap.edu/read/4991/chapter/1
[39]
Cohen-Kerem, R.; Koren, G. Antioxidants and fetal protection against ethanol teratogenicity. I. Review of the experimental data and implications to humans. Neurotoxicol. Teratol., 2003, 25(1), 1-9.
[http://dx.doi.org/10.1016/S0892-0362(02)00324-0] [PMID: 12633732]
[40]
Henderson, G.I.; Patwardhan, R.V.; Hoyumpa, A.M., Jr; Schenker, S. Fetal alcohol syndrome: Overview of pathogenesis. Neurobehav. Toxicol. Teratol., 1981, 3(2), 73-80.
[PMID: 6114444]
[41]
Michaelis, E.K. Fetal alcohol exposure: cellular toxicity and molecular events involved in toxicity. Alcohol. Clin. Exp. Res., 1990, 14(6), 819-826.
[http://dx.doi.org/10.1111/j.1530-0277.1990.tb01821.x] [PMID: 1982397]
[42]
Ikonomidou, C.; Bittigau, P.; Ishimaru, M.J.; Wozniak, D.F.; Koch, C.; Genz, K.; Price, M.T.; Stefovska, V.; Hörster, F.; Tenkova, T.; Dikranian, K.; Olney, J.W. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science, 2000, 287(5455), 1056-1060.
[http://dx.doi.org/10.1126/science.287.5455.1056] [PMID: 10669420]
[43]
Ramachandran, V.; Watts, L.T.; Maffi, S.K.; Chen, J.; Schenker, S.; Henderson, G. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J. Neurosci. Res., 2003, 74(4), 577-588.
[http://dx.doi.org/10.1002/jnr.10767] [PMID: 14598302]
[44]
Carito, V.; Venditti, A.; Bianco, A.; Ceccanti, M.; Serrilli, A.M.; Chaldakov, G.; Tarani, L.; De Nicolò, S.; Fiore, M. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat. Prod. Res., 2014, 28(22), 1970-1984.
[http://dx.doi.org/10.1080/14786419.2014.918977] [PMID: 24865115]
[45]
Carito, V.; Ceccanti, M.; Chaldakov, G.; Tarani, L.; De Nicolò, S.; Ciafrè, S. Polyphenols, Nerve Growth Factor, Brain-Derived Neurotrophic Factor, and the Brain. In “Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease”., Elsevier. Edited by Watson RR and Preedy VR.. 2015, 65-71.
[http://dx.doi.org/10.1016/B978-0-12-411462-3.00007-2]
[46]
Carito, V.; Ceccanti, M.; Tarani, L.; Ferraguti, G.; Chaldakov, G.N.; Fiore, M. Neurotrophins’ modulation by olive polyphenols. Curr. Med. Chem., 2016, 23(28), 3189-3197.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[47]
Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition, 2017, 33, 65-69.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[48]
Correa, M.; Salamone, J.D.; Segovia, K.N.; Pardo, M.; Longoni, R.; Spina, L.; Peana, A.T.; Vinci, S.; Acquas, E. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci. Biobehav. Rev., 2012, 36(1), 404-430.
[http://dx.doi.org/10.1016/j.neubiorev.2011.07.009] [PMID: 21824493]
[49]
Deitrich, R.A. Acetaldehyde: déjà vu du jour. J. Stud. Alcohol, 2004, 65(5), 557-572.
[http://dx.doi.org/10.15288/jsa.2004.65.557] [PMID: 15536764]
[50]
Muggironi, G.; Fois, G.R.; Diana, M. Ethanol-derived acetaldehyde: pleasure and pain of alcohol mechanism of action. Front. Behav. Neurosci., 2013, 7, 87.
[http://dx.doi.org/10.3389/fnbeh.2013.00087] [PMID: 23882197]
[51]
Quertemont, E.; Tambour, S.; Tirelli, E. The role of acetaldehyde in the neurobehavioral effects of ethanol: A comprehensive review of animal studies. Prog. Neurobiol., 2005, 75, 247-274.
[http://dx.doi.org/10.1016/j.pneurobio.2005.03.003]
[52]
Burd, L.; Blair, J.; Dropps, K. Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J. Perinatol., 2012, 32(9), 652-659.
[http://dx.doi.org/10.1038/jp.2012.57] [PMID: 22595965]
[53]
Espinet, C.; Argilés, J.M. Ethanol and acetaldehyde concentrations in the rat foeto-maternal system after an acute ethanol administration given to the mother. Arch. Int. Physiol. Biochim., 1984, 92(5), 339-344.
[http://dx.doi.org/10.3109/13813458409080609] [PMID: 6085549]
[54]
Guerri, C.; Sanchis, R. Acetaldehyde and alcohol levels in pregnant rats and their fetuses. Alcohol, 1985, 2(2), 267-270.
[http://dx.doi.org/10.1016/0741-8329(85)90057-6] [PMID: 4040377]
[55]
Spagnolo, A. Teratogenesis of alcohol. Ann. Ist. Super. Sanita, 1993, 29(1), 89-96.
[PMID: 8129276]
[56]
Sulik, K.K.; Pfefferbaum, A. Fetal alcohol spectrum disorder: Pathogenesis and mechanisms. Handb. Clin. Neurol., 2014, 125, 463-475.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00026-4] [PMID: 25307590]
[57]
Aloe, L. Alcohol intake during prenatal life affects neuroimmune mediators and brain neurogenesis. Ann. Ist. Super. Sanita, 2006, 42(1), 17-21.
[PMID: 16801721]
[58]
Feng, M.J.; Yan, S.E.; Yan, Q.S. Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res., 2005, 1042(2), 125-132.
[http://dx.doi.org/10.1016/j.brainres.2005.02.017] [PMID: 15854584]
[59]
Moore, D.B.; Madorsky, I.; Paiva, M.; Barrow Heaton, M. Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of neonatal exposure. J. Neurobiol., 2004, 60(1), 114-126.
[http://dx.doi.org/10.1002/neu.20010] [PMID: 15188277]
[60]
National Institutes of Health. National Institute on Alcohol Abuse and Alcoholism. Alcohol: a women health issue. NIH Publication No. 15-4956. Published 2003. Revised 2015.. https://www.acog.org/-/media/Departments/Tobacco-Alcohol-and-Substance-Abuse/AlcoholA-Womans-Health-Issue.pdf
[61]
Fernández-Solà, J.; Estruch, R.; Nicolás, J.M.; Paré, J.C.; Sacanella, E.; Antúnez, E.; Urbano-Márquez, A. Comparison of alcoholic cardiomyopathy in women versus men. Am. J. Cardiol., 1997, 80(4), 481-485.
[http://dx.doi.org/10.1016/S0002-9149(97)00399-8] [PMID: 9285662]
[62]
Thurman, R.G. Sex-related liver injury due to alcohol involves activation of Kupffer cells by endotoxin. Can. J. Gastroenterol. J. Can. Gastro-enterol., 2000, (14 Suppl D: 129D-135D)
[http://dx.doi.org/10.1155/2000/735262]
[63]
Ceylan-Isik, A.F.; McBride, S.M.; Ren, J. Sex difference in alcoholism: who is at a greater risk for development of alcoholic complication? Life Sci., 2010, 87(5-6), 133-138.
[http://dx.doi.org/10.1016/j.lfs.2010.06.002] [PMID: 20598716]
[64]
Nixon, S.J.; Tivis, R.; Ceballos, N.; Varner, J.L.; Rohrbaugh, J. Neurophysiological efficiency in male and female alcoholics. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(5), 919-927.
[http://dx.doi.org/10.1016/S0278-5846(02)00206-3] [PMID: 12369267]
[65]
Retson, T.A.; Sterling, R.C.; Van Bockstaele, E.J. Alcohol-induced dysregulation of stress-related circuitry: The search for novel targets and implications for interventions across the sexes. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 252-259.
[http://dx.doi.org/10.1016/j.pnpbp.2015.05.009] [PMID: 26006055]
[66]
Ely, M.; Hardy, R.; Longford, N.T.; Wadsworth, M.E. Gender differences in the relationship between alcohol consumption and drink problems are largely accounted for by body water. Alcohol Alcohol., 1999, 34(6), 894-902.
[http://dx.doi.org/10.1093/alcalc/34.6.894] [PMID: 10659726]
[67]
Mancinelli, R. Gender differences in alcohol-related impairment: A critical review. OA Alcohol, 2013, 1, 1-6.
[68]
Mancinelli, R.; Barlocci, E.; Ciprotti, M.; Senofonte, O.; Fidente, R.M.; Draisci, R.; Attilia, M.L.; Vitali, M.; Fiore, M.; Ceccanti, M. Blood thiamine, zinc, selenium, lead and oxidative stress in a population of male and female alcoholics: Clinical evidence and gender differences. Ann. Ist. Super. Sanita, 2013, 49(1), 65-72.
[http://dx.doi.org/10.4415/ann_13_01_11] [PMID: 23535132]
[69]
Pascale, E.; Ferraguti, G.; Codazzo, C.; Passarelli, F.; Mancinelli, R.; Bonvicini, C.; Bruno, S.M.; Lucarelli, M.; Ceccanti, M. Alcohol dependence and serotonin transporter functional polymorphisms 5-HTTLPR and rs25531 in an Italian population. Alcohol Alcohol., 2015, 50(3), 259-265.
[http://dx.doi.org/10.1093/alcalc/agv014] [PMID: 25770138]
[70]
Lex, B.W. Women and Substance Abuse. In Addictive Behaviors in Women”, Edited by Watson RR. Part of the Drug and Alcohol Abuse Reviews book series (DAAR, volume 5). Springer; 1994, pp. 279-327.
[http://dx.doi.org/10.1007/978-1-4612-0299-8_12]
[71]
van Faassen, E.; Niemelä, O., Eds.; Biochemistry of Prenatal Alcohol Exposure; Nova Biomedical Books, 2011.
[72]
Nava-Ocampo, A.A.; Velázquez-Armenta, Y.; Brien, J.F.; Koren, G. Elimination kinetics of ethanol in pregnant women. Reprod. Toxicol., 2004, 18(4), 613-617.
[http://dx.doi.org/10.1016/j.reprotox.2004.02.012] [PMID: 15135856]
[73]
Ferraguti, G.; Pascale, E.; Lucarelli, M. Alcohol addiction: A molecular biology perspective. Curr. Med. Chem., 2015, 22(6), 670-684.
[http://dx.doi.org/10.2174/0929867321666141229103158] [PMID: 25544474]
[74]
Aloe, L.; Tirassa, P. The effect of long-term alcohol intake on brain NGF-target cells of aged rats. Alcohol, 1992, 9(4), 299-304.
[http://dx.doi.org/10.1016/0741-8329(92)90070-Q] [PMID: 1322141]
[75]
Jeanblanc, J.; Coune, F.; Botia, B.; Naassila, M. Brain-derived neurotrophic factor mediates the suppression of alcohol self-administration by memantine. Addict. Biol., 2014, 19(5), 758-769.
[http://dx.doi.org/10.1111/adb.12039] [PMID: 23414063]
[76]
Zucca, S.; Valenzuela, C.F. Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons. J. Neurosci., 2010, 30(19), 6776-6781.
[http://dx.doi.org/10.1523/JNEUROSCI.5405-09.2010] [PMID: 20463239]
[77]
D’Sa, C.; Duman, R.S. Antidepressants and neuroplasticity. Bipolar Disord., 2002, 4(3), 183-194.
[http://dx.doi.org/10.1034/j.1399-5618.2002.01203.x] [PMID: 12180273]
[78]
Schmidt, H.D.; Duman, R.S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav. Pharmacol., 2007, 18(5-6), 391-418.
[http://dx.doi.org/10.1097/FBP.0b013e3282ee2aa8] [PMID: 17762509]
[79]
Caldwell, K.K.; Sheema, S.; Paz, R.D.; Samudio-Ruiz, S.L.; Laughlin, M.H.; Spence, N.E.; Roehlk, M.J.; Alcon, S.N.; Allan, A.M. Fetal alcohol spectrum disorder-associated depression: Evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model. Pharmacol. Biochem. Behav., 2008, 90(4), 614-624.
[http://dx.doi.org/10.1016/j.pbb.2008.05.004] [PMID: 18558427]
[80]
Tapia-Arancibia, L.; Rage, F.; Givalois, L.; Dingeon, P.; Arancibia, S.; Beaugé, F. Effects of alcohol on brain-derived neurotrophic factor mRNA expression in discrete regions of the rat hippocampus and hypothalamus. J. Neurosci. Res., 2001, 63(2), 200-208.
[http://dx.doi.org/10.1002/1097-4547(20010115)63:2<200:AID-JNR1012>3.0.CO;2-Q] [PMID: 11169630]
[81]
MacLennan, A.J.; Lee, N.; Walker, D.W. Chronic ethanol administration decreases brain-derived neurotrophic factor gene expression in the rat hippocampus. Neurosci. Lett., 1995, 197(2), 105-108.
[http://dx.doi.org/10.1016/0304-3940(95)11922-J] [PMID: 8552271]
[82]
Heaton, M.B.; Paiva, M.; Swanson, D.J.; Walker, D.W. Responsiveness of cultured septal and hippocampal neurons to ethanol and neurotrophic substances. J. Neurosci. Res., 1994, 39(3), 305-318.
[http://dx.doi.org/10.1002/jnr.490390308] [PMID: 7869423]
[83]
Aloe, L.; Bracci-Laudiero, L.; Tirassa, P. The effect of chronic ethanol intake on brain NGF level and on NGF-target tissues of adult mice. Drug Alcohol Depend., 1993, 31(2), 159-167.
[http://dx.doi.org/10.1016/0376-8716(93)90068-2] [PMID: 8436061]
[84]
Heaton, M.B.; Mitchell, J.J.; Paiva, M.; Walker, D.W. Ethanol-induced alterations in the expression of neurotrophic factors in the developing rat central nervous system. Brain Res. Dev. Brain Res., 2000, 121(1), 97-107.
[http://dx.doi.org/10.1016/S0165-3806(00)00032-8] [PMID: 10837897]
[85]
Heaton, M.B.; Mitchell, J.J.; Paiva, M. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum. J. Neurobiol., 2000, 45(2), 95-104.
[http://dx.doi.org/10.1002/1097-4695(20001105)45:2<95:AID-NEU4>3.0.CO;2-Y] [PMID: 11018771]
[86]
Moore, D.B.; Madorsky, I.; Paiva, M.; Barrow, H.M. Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of prenatal exposure. J. Neurobiol., 2004, 60(1), 101-113.
[http://dx.doi.org/10.1002/neu.20009] [PMID: 15188276]
[87]
De Nicoló, S.; Tarani, L.; Ceccanti, M.; Maldini, M.; Natella, F.; Vania, A.; Chaldakov, G.N.; Fiore, M. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition, 2013, 29(4), 681-687.
[http://dx.doi.org/10.1016/j.nut.2012.11.007] [PMID: 23466052]
[88]
Chen, J.H.; Tipoe, G.L.; Liong, E.C.; So, H.S.; Leung, K.M.; Tom, W.M.; Fung, P.C.; Nanji, A.A. Green tea polyphenols prevent toxin-induced hepatotoxicity in mice by down-regulating inducible nitric oxide-derived prooxidants. Am. J. Clin. Nutr., 2004, 80(3), 742-751.
[http://dx.doi.org/10.1093/ajcn/80.3.742] [PMID: 15321817]
[89]
Carito, V.; Ciafrè, S.; Tarani, L.; Ceccanti, M.; Natella, F.; Iannitelli, A.; Tirassa, P.; Chaldakov, G.N.; Ceccanti, M.; Boccardo, C.; Fiore, M. TNF-α and IL-10 modulation induced by polyphenols extracted by olive pomace in a mouse model of paw inflammation. Ann. Ist. Super. Sanita, 2015, 51(4), 382-386.
[http://dx.doi.org/10.4415/ANN_15_04_21] [PMID: 26783228]
[90]
Bhullar, K.S.; Rupasinghe, H.P.V. Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2013, 2013, 891748.
[http://dx.doi.org/10.1155/2013/891748] [PMID: 23840922]
[91]
Ceccanti, M.; Alessandra, S.P.; Tarani, L.; Luisa, A.M.; Chessa, L.; Mancinelli, R.; Stegagno, M.; Francesco Sasso, G.; Romeo, M.; Jones, K.L.; Robinson, L.K.; Del Campo, M.; Phillip Gossage, J.; May, P.A.; Eugene Hoyme, H. Clinical delineation of fetal alcohol spectrum disorders (FASD) in Italian children: Comparison and contrast with other racial/ethnic groups and implications for diagnosis and prevention. Neurosci. Biobehav. Rev., 2007, 31(2), 270-277.
[http://dx.doi.org/10.1016/j.neubiorev.2006.06.024] [PMID: 17215042]
[92]
May, P.A.; Fiorentino, D.; Phillip Gossage, J.; Kalberg, W.O.; Eugene Hoyme, H.; Robinson, L.K.; Coriale, G.; Jones, K.L.; del Campo, M.; Tarani, L.; Romeo, M.; Kodituwakku, P.W.; Deiana, L.; Buckley, D.; Ceccanti, M. Epidemiology of FASD in a province in Italy: Prevalence and characteristics of children in a random sample of schools. Alcohol. Clin. Exp. Res., 2006, 30(9), 1562-1575.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00188.x] [PMID: 16930219]
[93]
May, P.A.; Gossage, J.P.; Kalberg, W.O.; Robinson, L.K.; Buckley, D.; Manning, M.; Hoyme, H.E. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev. Disabil. Res. Rev., 2009, 15(3), 176-192.
[http://dx.doi.org/10.1002/ddrr.68] [PMID: 19731384]
[94]
Aloe, L.; Tuveri, M.A.; Guerra, G.; Pinna, L.; Tirassa, P.; Micera, A.; Alleva, E. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol. Clin. Exp. Res., 1996, 20(3), 462-465.
[http://dx.doi.org/10.1111/j.1530-0277.1996.tb01076.x] [PMID: 8727238]
[95]
Abel, E. Paternal contribution to fetal alcohol syndrome. Addict Biol., 2004, 9
[http://dx.doi.org/10.1080/13556210410001716980]
[96]
Abel, E.L.; Dintcheff, B.A. Effects of prenatal alcohol exposure on behavior of aged rats. Drug Alcohol Depend., 1986, 16(4), 321-330.
[http://dx.doi.org/10.1016/0376-8716(86)90066-9] [PMID: 3698812]
[97]
Abel, E.L. Rat offspring sired by males treated with alcohol. Alcohol, 1993, 10(3), 237-242.
[http://dx.doi.org/10.1016/0741-8329(93)90042-M] [PMID: 8507394]
[98]
Tanaka, H.; Suzuki, N.; Arima, M. Experimental studies on the influence of male alcoholism on fetal development. Brain Dev., 1982, 4(1), 1-6.
[http://dx.doi.org/10.1016/S0387-7604(82)80094-6] [PMID: 7039389]
[99]
Abel, E.L. Paternal and maternal alcohol consumption: Effects on offspring in two strains of rats. Alcohol. Clin. Exp. Res., 1989, 13(4), 533-541.
[http://dx.doi.org/10.1111/j.1530-0277.1989.tb00373.x] [PMID: 2679211]
[100]
Jamerson, P.A.; Wulser, M.J.; Kimler, B.F. Neurobehavioral effects in rat pups whose sires were exposed to alcohol. Brain Res. Dev. Brain Res., 2004, 149(2), 103-111.
[http://dx.doi.org/10.1016/j.devbrainres.2003.12.010] [PMID: 15063090]
[101]
Wozniak, D.F.; Cicero, T.J.; Kettinger, L., III; Meyer, E.R. Paternal alcohol consumption in the rat impairs spatial learning performance in male offspring. Psychopharmacology (Berl.), 1991, 105(2), 289-302.
[http://dx.doi.org/10.1007/BF02244324] [PMID: 1796134]
[102]
Abel, E.L.; Bilitzke, P. Paternal alcohol exposure: Paradoxical effect in mice and rats. Psychopharmacology (Berl.), 1990, 100(2), 159-164.
[http://dx.doi.org/10.1007/BF02244399] [PMID: 2305005]
[103]
Ceccanti, M.; Coccurello, R.; Carito, V.; Ciafrè, S.; Ferraguti, G.; Giacovazzo, G.; Mancinelli, R.; Tirassa, P.; Chaldakov, G.N.; Pascale, E.; Ceccanti, M.; Codazzo, C.; Fiore, M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict. Biol., 2016, 21(4), 776-787.
[http://dx.doi.org/10.1111/adb.12255] [PMID: 25940002]
[104]
Finegersh, A.; Homanics, G.E. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS One, 2014, 9(6), e99078.
[http://dx.doi.org/10.1371/journal.pone.0099078] [PMID: 24896617]
[105]
Rompala, G.R.; Finegersh, A.; Homanics, G.E. Paternal preconception ethanol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice. Alcohol Fayettev N., 2016, 53, 19-25.
[http://dx.doi.org/10.1016/j.alcohol.2016.03.006]
[106]
Liang, F.; Diao, L.; Jiang, N.; Zhang, J.; Wang, H-J.; Zhou, W-H.; Huang, G.Y.; Ma, D. Chronic exposure to ethanol in male mice may be associated with hearing loss in offspring. Asian J. Androl., 2015, 17(6), 985-990.
[http://dx.doi.org/10.4103/1008-682X.160267] [PMID: 26262775]
[107]
Zuccolo, L.; DeRoo, L.A.; Wills, A.K.; Davey, S.G.; Suren, P.; Roth, C.; Stoltenberg, C.; Magnus, P. Pre-conception and prenatal alcohol exposure from mothers and fathers drinking and head circumference: Results from the Norwegian mother-child study (MoBa). Sci. Rep., 2016, 7, 39535.
[http://dx.doi.org/10.1038/srep39535] [PMID: 28008975]
[108]
Zuccolo, L.; DeRoo, L.A.; Wills, A.K.; Smith, G.D.; Suren, P.; Roth, C.; Stoltenberg, C.; Magnus, P. Erratum: Pre-conception and prenatal alcohol exposure from mothers and fathers drinking and head circumference: results from the Norwegian Mother-Child Study (MoBa). Sci. Rep., 2017, 7, 45877.
[http://dx.doi.org/10.1038/srep45877] [PMID: 28436988]
[109]
Ferraguti, G.; Ciolli, P.; Carito, V.; Battagliese, G.; Mancinelli, R.; Ciafrè, S.; Tirassa, P.; Ciccarelli, R.; Cipriani, A.; Messina, M.P.; Fiore, M.; Ceccanti, M. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol. Lett., 2017, 275, 49-56.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.016] [PMID: 28455000]
[110]
Coriale, G.; Fiorentino, D.; Di Lauro, F.; Marchitelli, R.; Scalese, B.; Fiore, M.; Maviglia, M.; Ceccanti, M. Fetal Alcohol Spectrum Disorder (FASD): Neurobehavioral profile, indications for diagnosis and treatment. Riv. Psichiatr., 2013, 48(5), 359-369.
[http://dx.doi.org/10.1708/1356.15062] [PMID: 24326748]
[111]
Kodituwakku, P.W.; Kodituwakku, E.L. From research to practice: An integrative framework for the development of interventions for children with fetal alcohol spectrum disorders. Neuropsychol. Rev., 2011, 21(2), 204-223.
[http://dx.doi.org/10.1007/s11065-011-9170-1] [PMID: 21544706]
[112]
Popova, S.; Lange, S.; Probst, C.; Gmel, G.; Rehm, J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. Lancet Glob. Health, 2017, 5(3), e290-e299.
[http://dx.doi.org/10.1016/S2214-109X(17)30021-9] [PMID: 28089487]
[113]
Pichini, S.; Busardò, F.P.; Ceccanti, M.; Tarani, L.; Pacifici, R. Unreliable estimation of prevalence of fetal alcohol syndrome. Lancet Glob. Health, 2017, 5(6), e574.
[http://dx.doi.org/10.1016/S2214-109X(17)30173-0] [PMID: 28495260]
[114]
Popova, S.; Lange, S.; Probst, C.; Gmel, G.; Rehm, J. Unreliable estimation of prevalence of fetal alcohol syndrome - Authors’ reply. Lancet Glob. Health, 2017, 5(6), e575-e576.
[http://dx.doi.org/10.1016/S2214-109X(17)30174-2] [PMID: 28495261]
[115]
Roozen, S.; Black, D.; Peters, G.Y.; Kok, G.; Townend, D.; Nijhuis, J.G.; Koek, G.H.; Curfs, L.M. Fetal Alcohol Spectrum Disorders (FASD): an Approach to Effective Prevention. Curr. Dev. Disord. Rep., 2016, 3(4), 229-234.
[http://dx.doi.org/10.1007/s40474-016-0101-y] [PMID: 27891300]
[116]
Morini, L.; Marchei, E.; Tarani, L.; Trivelli, M.; Rapisardi, G.; Elicio, M.R.; Ramis, J.; Garcia-Algar, O.; Memo, L.; Pacifici, R.; Groppi, A.; Danesino, P.; Pichini, S. Testing ethylglucuronide in maternal hair and nails for the assessment of fetal exposure to alcohol: Comparison with meconium testing. Ther. Drug Monit., 2013, 35(3), 402-407.
[http://dx.doi.org/10.1097/FTD.0b013e318283f719] [PMID: 23666568]
[117]
Pichini, S.; Marchei, E.; Vagnarelli, F.; Tarani, L.; Raimondi, F.; Maffucci, R. Assessment of prenatal exposure to ethanol by meconium analysis: Results of an Italian multicenter study. Alcohol. Clin. Exp. Res., 2012, 36, 417-424.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01647.x]
[118]
Bekinschtein, P.; Oomen, C.A.; Saksida, L.M.; Bussey, T.J. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol., 2011, 22(5), 536-542.
[http://dx.doi.org/10.1016/j.semcdb.2011.07.002] [PMID: 21767656]
[119]
Fiore, M.; Amendola, T.; Triaca, V.; Tirassa, P.; Alleva, E.; Aloe, L. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: Possible implication for brain progenitor cells’ activation. Eur. J. Neurosci., 2003, 17(7), 1455-1464.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02573.x] [PMID: 12713648]
[120]
Lee, J.; Seroogy, K.B.; Mattson, M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem., 2002, 80(3), 539-547.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00747.x] [PMID: 11905999]
[121]
Russo-Neustadt, A.; Beard, R.C.; Cotman, C.W. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsycho-pharmacol, 1999, 21, 679-682.
[http://dx.doi.org/10.1016/S0893-133X(99)00059-7]
[122]
Cimini, A.; Gentile, R.; D’Angelo, B.; Benedetti, E.; Cristiano, L.; Avantaggiati, M.L.; Giordano, A.; Ferri, C.; Desideri, G. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J. Cell. Biochem., 2013, 114(10), 2209-2220.
[http://dx.doi.org/10.1002/jcb.24548] [PMID: 23554028]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 17
ISSUE: 4
Year: 2019
Page: [308 - 317]
Pages: 10
DOI: 10.2174/1570159X15666170825101308
Price: $58

Article Metrics

PDF: 32
HTML: 1
EPUB: 1