Biomarkers in Aortic Valve Stenosis and their Clinical Significance in Transcatheter Aortic Valve Implantation

Author(s): Konstantinos Toutouzas*, Konstantinos Stathogiannis, George Latsios, Andreas Synetos, Maria Drakopoulou, Vicky Penesopoulou, Archontoula Michelongona, Eleftherios Tsiamis, Dimitris Tousoulis.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 5 , 2019

  Journal Home
Translate in Chinese

Abstract:

Aortic valve stenosis is one of the most common valvular heart disorders and the prevalence will rise as the population ages. Once symptomatic patients with aortic valve stenosis tend to fare worse with high mortality rates. Aortic valve replacement is indicated in these patients and besides the standard surgical replacement, a less invasive approach, transcatheter aortic valve implantation, has gained momentum and has showed promising and solid results in patients with high surgical risk. An important aspect of evaluating patients with aortic valve stenosis is the ability to choose the best possible candidate for the procedure. In addition, predicting the short and long-term clinical outcomes after the valve replacement could offer the treating physicians a better insight and provide information for optimal therapy. Biomarkers are biological parameters that can be objectively measured and evaluated as indicators of normal biological processes and are easily monitored. The aim of this review is to critically assess some of the most widely used biomarkers at present (natriuretic peptides, troponins, C-reactive protein) and provide an insight in novel biomarkers that are currently being investigated (galectin-3, growth differentiation factor-15, microRNAs) for possible diagnostic and prognostic use in aortic valve stenosis and transcatheter aortic valve implantation respectively.

Keywords: Biomarkers, aortic stenosis, TAVI, BNP, troponins, CRP, galectin-3, miRNAs, GDF-15.

[1]
Vahanian, A.; Alfieri, O.; Andreotti, F.; Antunes, M.J.; Barón-Esquivias, G.; Baumgartner, H.; Borger, M.A.; Carrel, T.P.; De Bonis, M.; Evangelista, A.; Falk, V.; Iung, B.; Lancellotti, P.; Pierard, L.; Price, S.; Schäfers, H.J.; Schuler, G.; Stepinska, J.; Swedberg, K.; Takkenberg, J.; Von Oppell, U.O.; Windecker, S.; Zamorano, J.L.; Zembala, M. Guidelines on the management of valvular heart disease (version 2012). Eur. Heart J., 2012, 33(19), 2451-2496.
[2]
Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; Williams, M.; Dewey, T.; Kapadia, S.; Babaliaros, V.; Thourani, V.H.; Corso, P.; Pichard, A.D.; Bavaria, J.E.; Herrmann, H.C.; Akin, J.J.; Anderson, W.N.; Wang, D.; Pocock, S.J.; Investigators, P.T. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med., 2011, 364(23), 2187-2198.
[3]
Toutouzas, K.P.; Stathogiannis, K.E.; Latsios, G.S.; Synetos, A.G.; Stefanadis, C.I. Recent valves used for transluminal implantation in patients with aortic valve stenosis. Recent Pat. Cardiovasc. Drug Discov., 2012, 7(3), 206-215.
[4]
Spargias, K.; Toutouzas, K.; Chrissoheris, M.; Synetos, A.; Halapas, A.; Paizis, I.; Latsios, G.; Stathogiannis, K.; Papametzelopoulos, S.; Zanos, S.; Pavlides, G.; Zacharoulis, A.; Antoniades, A.; Stefanadis, C. The Athens TAVR Registry of newer generation transfemoral aortic valves: 30-day outcomes. Hellenic J. Cardiol., 2013, 54(1), 18-24.
[5]
Cazzola, M.; Novelli, G. Biomarkers in COPD. Pulm. Pharmacol. Ther., 2010, 23(6), 493-500.
[6]
Sadip Pant, AD; Pritam Neupane, M.P. Vijayashankar Cardiac Biomarkers, Novel Strategies in Is-chemic Heart Disease: InTech. 2012.
[7]
Motloch, L.J.; Reda, S.; Rottlaender, D.; Khatib, R.; Müller-Ehmsen, J.; Seck, C.; Strauch, J.; Madershahian, N.; Erdmann, E.; Wahlers, T.; Hoppe, U.C. Postprocedural atrial fibrillation after transcatheter aortic valve implantation versus surgical aortic valve replacement. Ann. Thorac. Surg., 2012, 93(1), 124-131.
[8]
Lazaros, G.; Toutouzas, K.; Drakopoulou, M.; Boudoulas, H.; Stefanadis, C.; Rajamannan, N. Aortic sclerosis and mitral annulus calcification: a window to vascular atherosclerosis? Expert Rev. Cardiovasc. Ther., 2013, 11(7), 863-877.
[9]
Lazaros, G.; Drakopoulou, M.; Toutouzas, K.; Tousoulis, D. Left-sided cardiac valve calcification: Another rubik’s cube puzzle. Cardiology, 2016, 134(1), 34-36.
[10]
Synetos, A.; Stathogiannis, K.; Papanikolaou, A.; Drakopoulou, M.; Trantalis, G.; Kaitozis, O.; Latsios, G.; Giannopoulos, G.; Deftereos, S.; Toutouzas, K.; Tousoulis, D. Therapeutic applications of calcium metabolism modulation in heart disease. Med. Chem., 2016, 12(2), 177-183.
[11]
Calzetta, L.; Orlandi, A.; Page, C.; Rogliani, P.; Rinaldi, B.; Rosano, G.; Cazzola, M.; Matera, M.G. Brain natriuretic peptide: Much more than a biomarker. Int. J. Cardiol., 2016, 221, 1031-1038.
[12]
Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; Jessup, M.; Linde, C.; Nihoyannopoulos, P.; Parissis, J.T.; Pieske, B.; Riley, J.P.; Rosano, G.M.C.; Ruilope, L.M.; Ruschitzka, F.; Rutten, F.H.; van der Meer, P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J., 2016, 37(27), 2129-2200.
[13]
Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; Johnson, M.R.; Kasper, E.K.; Levy, W.C.; Masoudi, F.A.; McBride, P.E.; McMurray, J.J.; Mitchell, J.E.; Peterson, P.N.; Riegel, B.; Sam, F.; Stevenson, L.W.; Tang, W.H.; Tsai, E.J.; Wilkoff, B.L. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2013, 62(16), e147-e239.
[14]
Weber, M.; Arnold, R.; Rau, M.; Brandt, R.; Berkovitsch, A.; Mitrovic, V.; Hamm, C. Relation of N-terminal pro-B-type natriuretic peptide to severity of valvular aortic stenosis. Am. J. Cardiol., 2004, 94(6), 740-745.
[15]
Lim, P.; Monin, J.L.; Monchi, M.; Garot, J.; Pasquet, A.; Hittinger, L.; Vanoverschelde, J.L.; Carayon, A.; Gueret, P. Predictors of outcome in patients with severe aortic stenosis and normal left ventricular function: Role of B-type natriuretic peptide. Eur. Heart J., 2004, 25(22), 2048-2053.
[16]
Bergler-Klein, J.; Klaar, U.; Heger, M.; Rosenhek, R.; Mundigler, G.; Gabriel, H.; Binder, T.; Pacher, R.; Maurer, G.; Baumgartner, H. Natriuretic peptides predict symptom-free survival and postoperative outcome in severe aortic stenosis. Circulation, 2004, 109(19), 2302-2308.
[17]
Gerber, I.L.; Stewart, R.A.; Legget, M.E.; West, T.M.; French, R.L.; Sutton, T.M.; Yandle, T.G.; French, J.K.; Richards, A.M.; White, H.D. Increased plasma natriuretic peptide levels reflect symptom onset in aortic stenosis. Circulation, 2003, 107(14), 1884-1890.
[18]
Antonini-Canterin, F.; Popescu, B.A.; Popescu, A.C.; Beladan, C.C.; Korcova, R.; Piazza, R.; Cappelletti, P.; Rubin, D.; Cassin, M.; Faggiano, P.; Nicolosi, G.L. Heart failure in patients with aortic stenosis: clinical and prognostic significance of carbohydrate antigen 125 and brain natriuretic peptide measurement. Int. J. Cardiol., 2008, 128(3), 406-412.
[19]
Torres-Ramalho, P.; Araujo, J.P.; Bettencourt, P.; Moura, L.M. Natriuretic peptides in aortic stenosis. Rev. Port. de Cardiol., 2012, 31, 655-660.
[20]
Clavel, M.A.; Malouf, J.; Michelena, H.I.; Suri, R.M.; Jaffe, A.S.; Mahoney, D.W.; Enriquez-Sarano, M. B-type natriuretic peptide clinical activation in aortic stenosis: impact on long-term survival. J. Am. Coll. Cardiol., 2014, 63(19), 2016-2025.
[21]
Katz, M.; Tarasoutchi, F.; Pesaro, A.E.; Lopes, R.D.; Spina, G.S.; Vieira, M.L.; Grinberg, M. Natriuretic peptides and long-term mortality in patients with severe aortic stenosis. J. Heart Valve Dis., 2012, 21(3), 331-336.
[22]
Elhmidi, Y.; Bleiziffer, S.; Piazza, N.; Ruge, H.; Krane, M.; Deutsch, M.A.; Hettich, I.; Voss, B.; Mazzitelli, D.; Lange, R. The evolution and prognostic value of N-terminal brain natriuretic peptide in predicting 1-year mortality in patients following transcatheter aortic valve implantation. J. Invasive Cardiol., 2013, 25(1), 38-44.
[23]
Ben-Dor, I.; Minha, S.; Barbash, I.M.; Aly, O.; Dvir, D.; Deksissa, T.; Okubagzi, P.; Torguson, R.; Lindsay, J.; Satler, L.F.; Pichard, A.D.; Waksman, R. Correlation of brain natriuretic peptide levels in patients with severe aortic stenosis undergoing operative valve replacement or percutaneous transcatheter intervention with clinical, echocardiographic, and hemodynamic factors and prognosis. Am. J. Cardiol., 2013, 112(4), 574-579.
[24]
Pedrazzini, G.B.; Masson, S.; Latini, R.; Klersy, C.; Rossi, M.G.; Pasotti, E.; Faletra, F.F.; Siclari, F.; Minervini, F.; Moccetti, T.; Auricchio, A. Comparison of brain natriuretic peptide plasma levels versus logistic EuroSCORE in predicting in-hospital and late postoperative mortality in patients undergoing aortic valve replacement for symptomatic aortic stenosis. Am. J. Cardiol., 2008, 102(6), 749-754.
[25]
Parikh, V.; Kim, C.; Siegel, R.J.; Arsanjani, R.; Rader, F. Natriuretic peptides for risk stratification of patients with valvular aortic stenosis. Circ Heart Fail, 2015, 8(2), 373-380.
[26]
Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; Brown, D.L.; Block, P.C.; Guyton, R.A.; Pichard, A.D.; Bavaria, J.E.; Herrmann, H.C.; Douglas, P.S.; Petersen, J.L.; Akin, J.J.; Anderson, W.N.; Wang, D.; Pocock, S.; Investigators, P.T. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med., 2010, 363(17), 1597-1607.
[27]
Abramowitz, Y.; Chakravarty, T.; Jilaihawi, H.; Lee, C.; Cox, J.; Sharma, R.P.; Mangat, G.; Cheng, W.; Makkar, R.R. Impact of preprocedural B-type natriuretic peptide levels on the outcomes after transcatheter aortic valve implantation. Am. J. Cardiol., 2015, 116(12), 1904-1909.
[28]
Koskinas, K.C.; O’Sullivan, C.J.; Heg, D.; Praz, F.; Stortecky, S.; Pilgrim, T.; Buellesfeld, L.; Jüni, P.; Windecker, S.; Wenaweser, P. Effect of B-type natriuretic peptides on long-term outcomes after transcatheter aortic valve implantation. Am. J. Cardiol., 2015, 116(10), 1560-1565.
[29]
Gotzmann, M.; Czauderna, A.; Aweimer, A.; Hehnen, T.; Bösche, L.; Lind, A.; Kloppe, A.; Mügge, A.; Ewers, A. B-type natriuretic peptide is a strong independent predictor of long-term outcome after transcatheter aortic valve implantation. J. Heart Valve Dis., 2014, 23(5), 537-544.
[30]
Giordana, F.; D’Ascenzo, F.; Nijhoff, F.; Moretti, C.; D’Amico, M.; Biondi Zoccai, G.; Sinning, J.M.; Nickenig, G.; Van Mieghem, N.M.; Chieffo, A.; Dumonteil, N.; Tchetche, D.; Barbash, I.M.; Waksman, R.; D’Onofrio, A.; Lefevre, T.; Pilgrim, T.; Amabile, N.; Codner, P.; Kornowski, R.; Yong, Z.Y.; Baan, J.; Colombo, A.; Latib, A.; Salizzoni, S.; Omedè, P.; Conrotto, F.; La Torre, M.; Marra, S.; Rinaldi, M.; Gaita, F. Meta-analysis of predictors of all-cause mortality after transcatheter aortic valve implantation. Am. J. Cardiol., 2014, 114(9), 1447-1455.
[31]
O’Sullivan, C.J.; Stortecky, S.; Heg, D.; Juni, P.; Windecker, S.; Wenaweser, P. Impact of B-type natriuretic peptide on short-term clinical outcomes following transcatheter aortic valve implantation. EuroIntervention, 2015, 10, e1-e8.
[32]
Kefer, J.; Beauloye, C.; Astarci, P.; Renkin, J.; Glineur, D.; Dekleermaeker, A.; Vanoverschelde, J.L. Usefulness of B-type natriuretic peptide to predict outcome of patients treated by transcatheter aortic valve implantation. Am. J. Cardiol., 2010, 106(12), 1782-1786.
[33]
Debry, N.; Sudre, A.; Amr, G.; Delhaye, C.; Schurtz, G.; Montaigne, D.; Koussa, M.; Modine, T. Transcatheter aortic valve implantation for paradoxical low-flow low-gradient aortic stenosis patients. Catheter. Cardiovasc. Interv., 2016, 87, 797-804.
[34]
Peacock, W.F., IV; De Marco, T.; Fonarow, G.C.; Diercks, D.; Wynne, J.; Apple, F.S.; Wu, A.H. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med., 2008, 358(20), 2117-2126.
[35]
You, J.J.; Austin, P.C.; Alter, D.A.; Ko, D.T.; Tu, J.V. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am. Heart J., 2007, 153(4), 462-470.
[36]
Missov, E.; Calzolari, C.; Pau, B. Circulating cardiac troponin I in severe congestive heart failure. Circulation, 1997, 96(9), 2953-2958.
[37]
Latini, R.; Masson, S.; Anand, I.S.; Missov, E.; Carlson, M.; Vago, T.; Angelici, L.; Barlera, S.; Parrinello, G.; Maggioni, A.P.; Tognoni, G.; Cohn, J.N.; Val-He, F.T.I. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation, 2007, 116(11), 1242-1249.
[38]
Chin, C.W.; Shah, A.S.; McAllister, D.A.; Joanna Cowell, S.; Alam, S.; Langrish, J.P.; Strachan, F.E.; Hunter, A.L.; Maria Choy, A.; Lang, C.C.; Walker, S.; Boon, N.A.; Newby, D.E.; Mills, N.L.; Dweck, M.R. High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur. Heart J., 2014, 35(34), 2312-2321.
[39]
Chin, C.W.; Messika-Zeitoun, D.; Shah, A.S.; Lefevre, G.; Bailleul, S.; Yeung, E.N.; Koo, M.; Mirsadraee, S.; Mathieu, T.; Semple, S.I.; Mills, N.L.; Vahanian, A.; Newby, D.E.; Dweck, M.R. A clinical risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis. Eur. Heart J., 2016, 37(8), 713-723.
[40]
Rodés-Cabau, J.; Gutiérrez, M.; Bagur, R.; De Larochellière, R.; Doyle, D.; Côté, M.; Villeneuve, J.; Bertrand, O.F.; Larose, E.; Manazzoni, J.; Pibarot, P.; Dumont, E. Incidence, predictive factors, and prognostic value of myocardial injury following uncomplicated transcatheter aortic valve implantation. J. Am. Coll. Cardiol., 2011, 57(20), 1988-1999.
[41]
Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; Hahn, R.T.; Kirtane, A.J.; Krucoff, M.W.; Kodali, S.; Mack, M.J.; Mehran, R.; Rodés-Cabau, J.; Vranckx, P.; Webb, J.G.; Windecker, S.; Serruys, P.W.; Leon, M.B. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The valve academic research consortium-2 consensus document. J. Am. Coll. Cardiol., 2012, 60(15), 1438-1454.
[42]
Köhler, W.M.; Freitag-Wolf, S.; Lambers, M.; Lutz, M.; Niemann, P.M.; Petzina, R.; Lutter, G.; Bramlage, P.; Frey, N.; Frank, D. Preprocedural but not periprocedural high-sensitive Troponin T levels predict outcome in patients undergoing transcatheter aortic valve implantation. Cardiovasc. Ther., 2016, 34(6), 385-396.
[43]
Koskinas, K.C.; Stortecky, S.; Franzone, A.; O’Sullivan, C.J.; Praz, F.; Zuk, K.; Räber, L.; Pilgrim, T.; Moschovitis, A.; Fiedler, G.M.; Jüni, P.; Heg, D.; Wenaweser, P.; Windecker, S. Post-procedural troponin elevation and clinical outcomes following transcatheter aortic valve implantation. J. Am. Heart Assoc., 2016, 5(2), 5.
[44]
Chorianopoulos, E.; Krumsdorf, U.; Geis, N.; Pleger, S.T.; Giannitsis, E.; Katus, H.A.; Bekeredjian, R. Preserved prognostic value of preinterventional troponin T levels despite successful TAVI in patients with severe aortic stenosis. Clin. Res. Cardiol., 2014, 103(1), 65-72.
[45]
Sinning, J.M.; Hammerstingl, C.; Schueler, R.; Neugebauer, A.; Keul, S.; Ghanem, A.; Mellert, F.; Schiller, W.; Muller, C.; Vasa-Nicotera, M.; Zur, B.; Welz, A.; Grube, E.; Nickenig, G.; Werner, N. The prognostic value of acute and chronic troponin elevation after transcatheter aortic valve implantation. EuroIntervention, 2016, 11, 1522-1529.
[46]
Drakopoulou, M.; Toutouzas, K.; Michelongona, A.; Tousoulis, D.; Stefanadis, C. Vulnerable plaque and inflammation: potential clinical strategies. Curr. Pharm. Des., 2011, 17(37), 4190-4209.
[47]
Toutouzas, K.; Grassos, C.; Drakopoulou, M.; Synetos, A.; Tsiamis, E.; Aggeli, C.; Stathogiannis, K.; Klettas, D.; Kavantzas, N.; Agrogiannis, G.; Patsouris, E.; Klonaris, C.; Liasis, N.; Tousoulis, D.; Siores, E.; Stefanadis, C. First in vivo application of microwave radiometry in human carotids: a new noninvasive method for detection of local inflammatory activation. J. Am. Coll. Cardiol., 2012, 59(18), 1645-1653.
[48]
Toutouzas, K.; Benetos, G.; Drakopoulou, M.; Deligianni, C.; Spengos, K.; Stefanadis, C.; Siores, E.; Tousoulis, D. Incremental predictive value of carotid inflammation in acute ischemic stroke. Stroke, 2015, 46(1), 272-274.
[49]
Toutouzas, K.; Benetos, G.; Karanasos, A.; Chatzizisis, Y.S.; Giannopoulos, A.A.; Tousoulis, D. Vulnerable plaque imaging: updates on new pathobiological mechanisms. Eur. Heart J., 2015, 36(45), 3147-3154.
[50]
Lazaros, G.; Benetos, G.; Toutouzas, K.; Tousoulis, D. Osteoporosis and aortic stenosis: ‘Killing two birds with one stone’? Cardiology, 2015, 132(1), 9-10.
[51]
Elster, S.K.; Braunwald, E.; Wood, H.F. A study of C-reactive protein in the serum of patients with congestive heart failure. Am. Heart J., 1956, 51(4), 533-541.
[52]
Anand, I.S.; Latini, R.; Florea, V.G.; Kuskowski, M.A.; Rector, T.; Masson, S.; Signorini, S.; Mocarelli, P.; Hester, A.; Glazer, R.; Cohn, J.N.; Val-He, F.T.I. C-reactive protein in heart failure: Prognostic value and the effect of valsartan. Circulation, 2005, 112(10), 1428-1434.
[53]
Swierszcz, J.; Dubiel, J.S.; Krzysiek, J.; Sztefko, K. One-year observation of inflammatory markers in patients with aortic valve stenosis. J. Heart Valve Dis., 2011, 20(6), 639-649.
[54]
Blyme, A.; Asferg, C.; Nielsen, O.W.; Boman, K.; Gohlke-Bärwolf, C.; Wachtell, K.; Olsen, M.H. Increased hsCRP is associated with higher risk of aortic valve replacement in patients with aortic stenosis. Scand. Cardiovasc. J., 2016, 50(3), 138-145.
[55]
Sinning, J.M.; Scheer, A.C.; Adenauer, V.; Ghanem, A.; Hammerstingl, C.; Schueler, R.; Müller, C.; Vasa-Nicotera, M.; Grube, E.; Nickenig, G.; Werner, N. Systemic inflammatory response syndrome predicts increased mortality in patients after transcatheter aortic valve implantation. Eur. Heart J., 2012, 33(12), 1459-1468.
[56]
Krumsdorf, U.; Chorianopoulos, E.; Pleger, S.T.; Kallenbach, K.; Karck, M.; Katus, H.A.; Bekeredjian, R. C-reactive protein kinetics and its prognostic value after transfemoral aortic valve implantation. J. Invasive Cardiol., 2012, 24(6), 282-286.
[57]
Erdoes, G.; Lippuner, C.; Kocsis, I.; Schiff, M.; Stucki, M.; Carrel, T.; Windecker, S.; Eberle, B.; Stueber, F.; Book, M. Technical approach determines inflammatory response after surgical and transcatheter aortic valve replacement. PLoS One, 2015, 10(11), e0143089.
[58]
Stähli, B.E.; Grünenfelder, J.; Jacobs, S.; Falk, V.; Landmesser, U.; Wischnewsky, M.B.; Lüscher, T.F.; Corti, R.; Maier, W.; Altwegg, L.A. Assessment of inflammatory response to transfemoral transcatheter aortic valve implantation compared to transapical and surgical procedures: A pilot study. J. Invasive Cardiol., 2012, 24(8), 407-411.
[59]
Ruparelia, N.; Panoulas, V.F.; Frame, A.; Ariff, B.; Sutaria, N.; Fertleman, M.; Cousins, J.; Anderson, J.; Bicknell, C.; Chukwuemeka, A.; Sen, S.; Malik, I.S.; Colombo, A.; Mikhail, G.W. Impact of clinical and procedural factors upon C reactive protein dynamics following transcatheter aortic valve implantation. World J. Cardiol., 2016, 8(7), 425-431.
[60]
Meijers, W.C.; van der Velde, A.R.; de Boer, R.A. ST2 and Galectin-3: Ready for prime time? EJIFCC, 2016, 27(3), 238-252.
[61]
Sharma, U.C.; Pokharel, S.; van Brakel, T.J.; van Berlo, J.H.; Cleutjens, J.P.; Schroen, B.; André, S.; Crijns, H.J.; Gabius, H.J.; Maessen, J.; Pinto, Y.M. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 2004, 110(19), 3121-3128.
[62]
Lin, Y.H.; Chou, C.H.; Wu, X.M.; Chang, Y.Y.; Hung, C.S.; Chen, Y.H.; Tzeng, Y.L.; Wu, V.C.; Ho, Y.L.; Hsieh, F.J.; Wu, K.D.; Group, T.S. Aldosterone induced galectin-3 secretion in vitro and in vivo: From cells to humans. PLoS One, 2014, 9(9), e95254.
[63]
van Kimmenade, R.R.; Januzzi, J.L., Jr; Ellinor, P.T.; Sharma, U.C.; Bakker, J.A.; Low, A.F.; Martinez, A.; Crijns, H.J.; MacRae, C.A.; Menheere, P.P.; Pinto, Y.M. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J. Am. Coll. Cardiol., 2006, 48(6), 1217-1224.
[64]
Ho, J.E.; Liu, C.; Lyass, A.; Courchesne, P.; Pencina, M.J.; Vasan, R.S.; Larson, M.G.; Levy, D. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J. Am. Coll. Cardiol., 2012, 60(14), 1249-1256.
[65]
Zhou, K.; Zhou, Y.; Zhao, Y.; Tan, C.; Yuan, Z.; Li, J.; Liao, X.; Gu, L.; Zhou, X. The relationship between galectin-3 and different patterns of ventricular geometry remodelling in aortic valve stenosis. Heart Lung Circ., 2016, 25(4), 371-377.
[66]
Sádaba, J.R.; Martínez-Martínez, E.; Arrieta, V.; Álvarez, V.; Fernández-Celis, A.; Ibarrola, J.; Melero, A.; Rossignol, P.; Cachofeiro, V.; López-Andrés, N. Role for galectin-3 in calcific aortic valve stenosis. J. Am. Heart Assoc., 2016, 5(11), 5.
[67]
Arangalage, D.; Nguyen, V.; Robert, T.; Melissopoulou, M.; Mathieu, T.; Estellat, C.; Codogno, I.; Huart, V.; Duval, X.; Cimadevilla, C.; Vahanian, A.; Dehoux, M.; Messika-Zeitoun, D. Determinants and prognostic value of Galectin-3 in patients with aortic valve stenosis. Heart, 2016, 102(11), 862-868.
[68]
Baldenhofer, G.; Zhang, K.; Spethmann, S.; Laule, M.; Eilers, B.; Leonhardt, F.; Sanad, W.; Dreger, H.; Sander, M.; Grubitzsch, H.; Baumann, G.; Stangl, K.; Stangl, V.; Knebel, F. Galectin-3 predicts short- and long-term outcome in patients undergoing transcatheter aortic valve implantation (TAVI). Int. J. Cardiol., 2014, 177(3), 912-917.
[69]
Krau, N.C.; Lünstedt, N.S.; Freitag-Wolf, S.; Brehm, D.; Petzina, R.; Lutter, G.; Bramlage, P.; Dempfle, A.; Frey, N.; Frank, D. Elevated growth differentiation factor 15 levels predict outcome in patients undergoing transcatheter aortic valve implantation. Eur. J. Heart Fail., 2015, 17(9), 945-955.
[70]
George, M.; Jena, A.; Srivatsan, V.; Muthukumar, R.; Dhandapani, V.E. GDF 15--A novel biomarker in the offing for heart failure. Curr. Cardiol. Rev., 2016, 12(1), 37-46.
[71]
Chan, M.M.; Santhanakrishnan, R.; Chong, J.P.; Chen, Z.; Tai, B.C.; Liew, O.W.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.; Yeo, P.S.; Ong, H.Y.; Jaufeerally, F.; Wong, R.C.; Chai, P.; Low, A.F.; Richards, A.M.; Lam, C.S. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail., 2016, 18(1), 81-88.
[72]
Lindman, B.R.; Breyley, J.G.; Schilling, J.D.; Vatterott, A.M.; Zajarias, A.; Maniar, H.S.; Damiano, R.J., Jr; Moon, M.R.; Lawton, J.S.; Gage, B.F.; Sintek, M.A.; Aquino, A.; Holley, C.L.; Patel, N.M.; Lawler, C.; Lasala, J.M.; Novak, E. Prognostic utility of novel biomarkers of cardiovascular stress in patients with aortic stenosis undergoing valve replacement. Heart, 2015, 101(17), 1382-1388.
[73]
Synetos, A.; Toutouzas, K.; Stathogiannis, K.; Latsios, G.; Tsiamis, E.; Tousoulis, D.; Stefanadis, C. MicroRNAs in arterial hypertension. Curr. Top. Med. Chem., 2013, 13(13), 1527-1532.
[74]
Latsios, G.; Tousoulis, D.; Androulakis, E.; Papageorgiou, N.; Synetos, A.; Toutouzas, K.; Siasos, G.; Oikonomou, E.; Stefanadis, C. MicroRNAs in the diagnosis and treatment of unstable angina. Curr. Top. Med. Chem., 2013, 13(13), 1596-1604.
[75]
Papageorgiou, N.; Tslamandris, S.; Giolis, A.; Tousoulis, D. MicroRNAs in cardiovascular disease: Perspectives and reality. Cardiol. Rev., 2016, 24(3), 110-118.
[76]
Tousoulis, D. Novel biomarkers in the prognosis, progression and treatment of cardiovascular disease: The role of microRNAs. Curr. Top. Med. Chem., 2013, 13(13), 1491-1492.
[77]
Yanagawa, B.; Lovren, F.; Pan, Y.; Garg, V.; Quan, A.; Tang, G.; Singh, K.K.; Shukla, P.C.; Kalra, N.P.; Peterson, M.D.; Verma, S. miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis. J. Thorac. Cardiovasc. Surg., 2012, 144(1), 256-262.
[78]
Zhang, M.; Liu, X.; Zhang, X.; Song, Z.; Han, L.; He, Y.; Xu, Z. MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells. J. Thorac. Cardiovasc. Surg., 2014, 147, 1073-1080.
[79]
Patel, V.; Carrion, K.; Hollands, A.; Hinton, A.; Gallegos, T.; Dyo, J.; Sasik, R.; Leire, E.; Hardiman, G.; Mohamed, S.A.; Nigam, S.; King, C.C.; Nizet, V.; Nigam, V. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. FASEB J., 2015, 29(5), 1859-1868.
[80]
Ohukainen, P.; Syväranta, S.; Näpänkangas, J.; Rajamäki, K.; Taskinen, P.; Peltonen, T.; Helske-Suihko, S.; Kovanen, P.T.; Ruskoaho, H.; Rysä, J. MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease. Ann. Med., 2015, 47(5), 423-429.
[81]
Coffey, S.; Williams, M.J.; Phillips, L.V.; Jones, G.T. Circulating microRNA profiling needs further refinement before clinical use in patients with aortic stenosis. J. Am. Heart Assoc., 2015, 4(8), e002150.
[82]
Varrone, F.; Gargano, B.; Carullo, P.; Di Silvestre, D.; De Palma, A.; Grasso, L.; Di Somma, C.; Mauri, P.; Benazzi, L.; Franzone, A.; Jotti, G.S.; Bang, M.L.; Esposito, G.; Colao, A.; Condorelli, G.; Catalucci, D. The circulating level of FABP3 is an indirect biomarker of microRNA-1. J. Am. Coll. Cardiol., 2013, 61(1), 88-95.
[83]
Siemieniuk, R.A.; Agoritsas, T.; Manja, V.; Devji, T.; Chang, Y.; Bala, M.M.; Thabane, L.; Guyatt, G.H. Transcatheter versus surgical aortic valve replacement in patients with severe aortic stenosis at low and intermediate risk: Systematic review and meta-analysis. BMJ, 2016, 354, i5130.
[84]
Castrodeza, J.; Amat-Santos, I.J.; Blanco, M.; Cortes, C.; Tobar, J.; Martin-Morquecho, I.; López, J.; Di Stefano, S.; Rojas, P.; Varela-Falcon, L.H.; Gomez, I.; San Roman, J.A. Propensity score matched comparison of transcatheter aortic valve implantation versus conventional surgery in intermediate and low risk aortic stenosis patients: A hint of real-world. Cardiol. J., 2016, 23(5), 541-551.
[85]
Vahanian, A.; Urena, M.; Walther, T.; Treede, H.; Wendler, O.; Lefevre, T.; Spence, M.S.; Redwood, S.; Kahlert, P.; Rodes-Cabau, J.; Leipsic, J.; Webb, J. Thirty-day outcomes in patients at intermediate risk for surgery from the SAPIEN 3 European approval trial. EuroIntervention, 2016, 12, e235-e243.
[86]
Kodali, S.; Thourani, V.H.; White, J.; Malaisrie, S.C.; Lim, S.; Greason, K.L.; Williams, M.; Guerrero, M.; Eisenhauer, A.C.; Kapadia, S.; Kereiakes, D.J.; Herrmann, H.C.; Babaliaros, V.; Szeto, W.Y.; Hahn, R.T.; Pibarot, P.; Weissman, N.J.; Leipsic, J.; Blanke, P.; Whisenant, B.K.; Suri, R.M.; Makkar, R.R.; Ayele, G.M.; Svensson, L.G.; Webb, J.G.; Mack, M.J.; Smith, C.R.; Leon, M.B. Early clinical and echocardiographic outcomes after SAPIEN 3 transcatheter aortic valve replacement in inoperable, high-risk and intermediate-risk patients with aortic stenosis. Eur. Heart J., 2016, 37(28), 2252-2262.
[87]
Huynh, K. Valvular disease: TAVI is noninferior to surgery in intermediate-risk patients. Nat. Rev. Cardiol., 2016, 13(6), 309.
[88]
Fraccaro, C.; Tarantini, G.; Rosato, S.; Tellaroli, P.; D’Errigo, P.; Tamburino, C.; Onorati, F.; Ranucci, M.; Barbanti, M.; Grossi, C.; Santoro, G.; Santini, F.; Covello, R.D.; Fusco, D.; Seccareccia, F.; Group, O.R. Early and midterm outcome of propensity-matched intermediate-risk patients aged ≥80 years with aortic stenosis undergoing surgical or transcatheter aortic valve replacement (from the italian multicenter OBSERVANT study). Am. J. Cardiol., 2016, 117(9), 1494-1501.
[89]
Barbash, I.M.; Finkelstein, A.; Barsheshet, A.; Segev, A.; Steinvil, A.; Assali, A.; Ben Gal, Y.; Vaknin Assa, H.; Fefer, P.; Sagie, A.; Guetta, V.; Kornowski, R. Outcomes of patients at estimated low, intermediate, and high risk undergoing transcatheter aortic valve implantation for aortic stenosis. Am. J. Cardiol., 2015, 116(12), 1916-1922.
[90]
Drakopoulou, M.; Toutouzas, K.; Tousoulis, D. Are all valves for all aortas? Hellenic J. Cardiol., 2015, 56(5), 429-431.
[91]
Genereux, P.; Demers, P.; Poulin, F. Same day discharge after transcatheter aortic valve replacement: Are we there yet? Catheter. Cardiovasc. Interv., 2016, 87, 980-982.
[92]
Chandrasekhar, J.; Mehran, R. Same or next day discharge: A new chapter in transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv., 2016, 87, 143-144.
[93]
Toutouzas, K.; Synetos, A.; Latsios, G.; Mastrokostopoulos, A.; Stathogiannis, K.; Drakopoulou, M.; Trantalis, G.; Tsiamis, E.; Tousoulis, D. The requirement of extracorporeal circulation system for transluminal aortic valve replacement: Do we really need it in the catheterization laboratory? Catheter. Cardiovasc. Interv., 2018, 91(5), E43-E48.
[94]
Grube, E.; Naber, C.; Abizaid, A.; Sousa, E.; Mendiz, O.; Lemos, P.; Kalil Filho, R.; Mangione, J.; Buellesfeld, L. Feasibility of transcatheter aortic valve implantation without balloon pre-dilation: A pilot study. JACC Cardiovasc. Interv., 2011, 4(7), 751-757.
[95]
Toutouzas, K.; Latsios, G.; Stathogiannis, K.; Drakopoulou, M.; Synetos, A.; Sanidas, E.; Mastrokostopoulos, A.; Trantalis, G.; Kaitozis, O.; Lazaros, G.; Yuecel, S.; Gerckens, U.; Grube, E.; Tousoulis, D. One-year outcomes after direct transcatheter aortic valve implantation with a self-expanding bioprosthesis. A two-center international experience. Int. J. Cardiol., 2016, 202, 631-635.
[96]
Latsios, G.; Tousoulis, D.; Androulakis, E.; Papageorgiou, N.; Synetos, A.; Tsioufis, C.; Toutouzas, K.; Stefanadis, C. Monitoring calcific aortic valve disease: The role of biomarkers. Curr. Med. Chem., 2012, 19(16), 2548-2554.
[97]
Parenica, J.; Nemec, P.; Tomandl, J.; Ondrasek, J.; Pavkova-Goldbergova, M.; Tretina, M.; Jarkovsky, J.; Littnerova, S.; Poloczek, M.; Pokorny, P.; Spinar, J.; Cermakova, Z.; Miklik, R.; Malik, P.; Pes, O.; Lipkova, J.; Tomandlova, M.; Kala, P. Prognostic utility of biomarkers in predicting of one-year outcomes in patients with aortic stenosis treated with transcatheter or surgical aortic valve implantation. PLoS One, 2012, 7(12), e48851.
[98]
Berezin, A. Aortic stenosis: Predictive value of cardiac biomarkers in older patients. J. Gerontol. Geriatr. Res., 2016, 5, 263-267.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 5
Year: 2019
Page: [864 - 872]
Pages: 9
DOI: 10.2174/0929867324666170727110241
Price: $65

Article Metrics

PDF: 35
HTML: 11
EPUB: 1