Potential Triazole-based Molecules for the Treatment of Neglected Diseases

Author(s): Susimaire Pedersoli Mantoani, Peterson de Andrade, Talita Perez Cantuaria Chierrito, Andreza Silva Figueredo, Ivone Carvalho*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 23 , 2019

Abstract:

Neglected Diseases (NDs) affect million of people, especially the poorest population around the world. Several efforts to an effective treatment have proved insufficient at the moment. In this context, triazole derivatives have shown great relevance in medicinal chemistry due to a wide range of biological activities. This review aims to describe some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis and Leishmaniasis.

Keywords: Neglected diseases, triazoles, chagas disease, malaria, Leishmaniasis, tuberculosis.

[1]
Canuto, G.A.B.; da Cruz, P.L.R.; Faccio, A.T.; Klassen, A.; Tavares, M.F.M. Neglected diseases prioritized in Brazil under the perspective of metabolomics: A review. Electrophoresis, 2015, 36(18), 2336-2347.
[http://dx.doi.org/10.1002/elps.201500102] [PMID: 26095472]
[2]
Houweling, T.A.J.; Karim-Kos, H.E.; Kulik, M.C.; Stolk, W.A.; Haagsma, J.A.; Lenk, E.J.; Richardus, J.H.; de Vlas, S.J. Socioeconomic inequalities in neglected tropical diseases: a systematic review. PLoS Negl. Trop. Dis., 2016, 10(5)e0004546
[http://dx.doi.org/10.1371/journal.pntd.0004546] [PMID: 27171166]
[3]
Pedrique, B.; Strub-Wourgaft, N.; Some, C.; Olliaro, P.; Trouiller, P.; Ford, N.; Pécoul, B.; Bradol, J.H. The drug and vaccine landscape for neglected diseases (2000-11): a systematic assessment. Lancet Glob. Health, 2013, 1(6), e371-e379.
[http://dx.doi.org/10.1016/S2214-109X(13)70078-0] [PMID: 25104602]
[4]
Burrows, J.N.; Elliott, R.L.; Kaneko, T.; Mowbray, C.E.; Waterson, D. The role of modern drug discovery in the fight against neglected and tropical diseases. MedChemComm, 2014, 5, 688-700.
[http://dx.doi.org/10.1039/c4md00011k]
[5]
WHO site: World Health Organization, Neglected Tropical Diseases http://www.who.int/neglected_diseases/diseases/en/(Accessed 28 September, 2016).,
[6]
CDCP site: Centers for Disease Control and Prevention, Neglected Tropical Diseases http://www.cdc.gov/globalhealth/ntd// (Accessed 2 October 2016).
[7]
Turner, H.C.; Walker, M.; French, M.D.; Blake, I.M.; Churcher, T.S.; Basáñez, M.G. Neglected tools for neglected diseases: mathematical models in economic evaluations. Trends Parasitol., 2014, 30(12), 562-570.
[http://dx.doi.org/10.1016/j.pt.2014.10.001] [PMID: 25455565]
[8]
Johnston, K.L.; Ford, L.; Taylor, M.J. Overcoming the challenges of drug discovery for neglected tropical diseases: the A·WOL experience. J. Biomol. Screen., 2014, 19(3), 335-343.
[http://dx.doi.org/10.1177/1087057113511270] [PMID: 24241712]
[9]
Sahu, J.K.; Ganguly, S.; Kaushik, A. Triazoles: a valuable insight into recent developments and biological activities. Chin. J. Nat. Med., 2013, 11(5), 456-465.
[http://dx.doi.org/10.1016/S1875-5364(13)60084-9] [PMID: 24359767]
[10]
Asif, M. A mini review on antimalarial activities of biologically active substituted triazoles derivatives. Int. J. Adv. Res. Chem. Sci., 2014, 1(6), 22-28.
[11]
Parthasaradhi, Y.; Suresh, S.; Kumar, B.R.; Jyostna, T.S. Design and synthesis of some new quinoline based 1,2,3-triazoles as antimicrobial and antimalarial agents. Orbital: Electron. J. Chem., 2015, 7(3), 264-269.
[12]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[13]
Tron, G.C.; Pirali, T.; Billington, R.A.; Canonico, P.L.; Sorba, G.; Genazzani, A.A. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 2008, 28(2), 278-308.
[http://dx.doi.org/10.1002/med.20107] [PMID: 17763363]
[14]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur. J. Org. Chem., 2014, 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[15]
Haider, S.; Alam, M.S.; Hamid, H. 1,2,3-Triazoles: scaffold with medicinal significance. Inflamm. Cell Signal., 2014, 1e95 .
[16]
Manneganti, V.; Bethala, L.A.P.D.; Rachapudi, B.N.P.; Singh, A.; Ummanni, R. Design, synthesis and anticancer activities of novel unsaturated fatty acid-based β-hydroxy 1,2,3-triazoles. IJPSR, 2015, 6(4), 1635-1649.
[17]
Wheless, J.W.; Vazquez, B. Rufinamide: a novel broad-spectrum antiepileptic drug. Epilepsy Curr., 2010, 10(1), 1-6.
[http://dx.doi.org/10.1111/j.1535-7511.2009.01336.x] [PMID: 20126329]
[18]
Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem., 2016, 109, 380-392.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.009] [PMID: 26826582]
[19]
Shneine, J.K.; Alaraji, Y.H. Chemistry of 1, 2, 4-Triazole: A Review Article. Int. J. Sci. Res. (Ahmedabad), 2016, 5(3), 1411-1423.
[20]
Maddila, S.; Pagadala, R.; Jonnalagadda, S.B. 1,2,4-Triazoles: A review of synthetic approaches and the biological activity. Lett. Org. Chem., 2013, 10, 693-714.
[http://dx.doi.org/10.2174/157017861010131126115448]
[21]
Huisgen, R. 1,3-Dipolar cycloadditions – Introduction, survey, mechanism. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, pp. 1-176.
[22]
Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:1,2,3-Triazoles by regiospecific copper(I)-catalyzed 1,3- dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67, 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[23]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[24]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[25]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[26]
Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J.; Astruc, D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev., 2016, 316, 1-20.
[http://dx.doi.org/10.1016/j.ccr.2016.02.010]
[27]
Hassan, S.; Müller, T.J.J. Multicomponent syntheses based upon copper-catalyzed alkyne-azide cycloaddition. Adv. Synth. Catal., 2015, 357, 617-666.
[http://dx.doi.org/10.1002/adsc.201400904]
[28]
Haldón, E.; Nicasio, M.C.; Pérez, P.J. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org. Biomol. Chem., 2015, 13(37), 9528-9550.
[http://dx.doi.org/10.1039/C5OB01457C] [PMID: 26284434]
[29]
Kádár, Z.; Frank, E.; Schneider, G.; Molnár, J.; Zupkó, I.; Kóti, J.; Schönecker, B.; Wölflinga, J. Efficient synthesis of novel A-ring-substituted 1,2,3-triazolylcholestane derivatives via catalytic azide-alkyne cycloaddition. ARKIVOC, 2012, 3, 279-296.
[30]
Garudachari, B.; Isloor, A.M.; Satyanarayana, M.N.; Fun, H.K.; Hegde, G. Click chemistry approach: regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2014, 74, 324-332.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.008] [PMID: 24486415]
[31]
Chandrasekhar, S.; Seenaiah, M.; Kumar, A.; Reddy, C.R.; Mamidyala, S.K.; Kumar, C.G.; Balasubramanian, S. Intramolecular copper(I)-catalyzed 1,3-dipolar cycloaddition of azido-alkynes: synthesis of triazolo-benzoxazepine derivatives and their biological evaluation. Tetrahedron Lett., 2011, 52, 806-808.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.040]
[32]
Johansson, J.R.; Hermansson, E.; Nordén, B.; Kann, N.; Beke-Somfai, T. δ-Peptides from RuAAC-derived 1,5-disubstituted triazole units. Eur. J. Org. Chem., 2014, 2703-2713.
[http://dx.doi.org/10.1002/ejoc.201400018]
[33]
Wu, L.; Chen, X.; Tang, M.; Song, X.; Chen, G.; Song, X.; Lin, Q. Potassium tert-butoxide promoted cycloaddition reaction for the synthesis of 1,5-disubstituted 1,2,3-triazoles from aromatic azides and trimethylsilyl-protected alkynes. Synlett, 2012, 23, 1529-1533.
[http://dx.doi.org/10.1055/s-0031-1291042]
[34]
Iminov, R.; Mashkov, A.V.; Chalyk, B.A.; Mykhailiuk, P.K.; Tverdokhlebov, A.V.; Tolmachev, A.A.; Volovenko, Y.M.; Shishkin, O.V.; Shishkina, S.V. A Convenient route to 1-alkyl-5-trifluoromethyl-1,2,3-triazole-4-carboxylic acids employing a diazo transfer reaction. Eur. J. Org. Chem., 2013, 2891-2897.
[http://dx.doi.org/10.1002/ejoc.201300030]
[35]
Cai, Z-J.; Lu, X-M.; Zi, Y.; Yang, C.; Shen, L-J.; Li, J.; Wang, S-Y.; Ji, S-J. I2/TBPB mediated oxidative reaction of N-tosylhydrazones with anilines: practical construction of 1,4-disubstituted 1,2,3-triazoles under metal-free and azide-free conditions. Org. Lett., 2014, 16(19), 5108-5111.
[http://dx.doi.org/10.1021/ol502431b] [PMID: 25250817]
[36]
Quan, X-J.; Ren, Z-H.; Wang, Y-Y.; Guan, Z-H. p-Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4-aryl-NH-1,2,3-triazoles. Org. Lett., 2014, 16(21), 5728-5731.
[http://dx.doi.org/10.1021/ol5027975] [PMID: 25343314]
[37]
Bonacorso, H.G.; Moraes, M.C.; Luz, F.M.; Quintana, P.S.; Zanatta, N.; Martins, M.A.P. New solventless and metal-free synthesis of the antiepileptic drug 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (Rufinamide) and analogues. Tetrahedron Lett., 2015, 56, 441-444.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.125]
[38]
Hitotsuyanagi, Y.; Motegi, S.; Fukaya, H.; Takeya, K. A cis amide bond surrogate incorporating 1,2,4-triazole. J. Org. Chem., 2002, 67(10), 3266-3271.
[http://dx.doi.org/10.1021/jo010904i] [PMID: 12003534]
[39]
Moulin, A.; Bibian, M.; Blayo, A.L.; El Habnouni, S.; Martinez, J.; Fehrentz, J.A. Synthesis of 3,4,5-trisubstituted-1,2,4-triazoles. Chem. Rev., 2010, 110(4), 1809-1827.
[http://dx.doi.org/10.1021/cr900107r] [PMID: 20151658]
[40]
Potts, K.T. The chemistry of 1,2,4-triazoles. Chem. Rev., 1961, 61, 87.
[http://dx.doi.org/10.1021/cr60210a001]
[41]
Temple, C., Jr The Chemistry of Heterocyclic Compounds: Triazoles 1,2,4; Wiley: New York, 1981, Vol. 37, .
[http://dx.doi.org/10.1002/9780470187104]
[42]
Curtis, A.; Jennings, N. ComprehensiVe Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V; Taylor, R.J.K., Ed.; Elsevier Ltd.: New York, 2008, Vol. 5, .
[43]
World Health Organization (WHO) . http://www.who.int/neglected_diseases/9789241564861/en/ (Accessed Oct 2, 2016)
[44]
Andrade, L.O.; Andrews, N.W. The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat. Rev. Microbiol., 2005, 3(10), 819-823.
[http://dx.doi.org/10.1038/nrmicro1249] [PMID: 16175174]
[45]
Rassi, A., Jr; Rassi, A.; Marcondes de Rezende, J. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am., 2012, 26(2), 275-291.
[http://dx.doi.org/10.1016/j.idc.2012.03.002] [PMID: 22632639]
[46]
Rassi, A., Jr; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet, 2010, 375(9723), 1388-1402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X] [PMID: 20399979]
[47]
Zhang, L.; Tarleton, R.L. Parasite persistence correlates with disease severity and localization in chronic Chagas’ disease. J. Infect. Dis., 1999, 180(2), 480-486.
[http://dx.doi.org/10.1086/314889] [PMID: 10395865]
[48]
Urbina, J.A. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop., 2010, 115(1-2), 55-68.
[http://dx.doi.org/10.1016/j.actatropica.2009.10.023] [PMID: 19900395]
[49]
Diogo, E.B.T.; Dias, G.G.; Rodrigues, B.L.; Guimarães, T.T.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; da Silva, M.G.; Ferreira, V.F.; de Paiva, Y.G.; Goulart, M.O.F.; Menna-Barreto, R.F.S.; de Castro, S.L.; da Silva Júnior, E.N. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg. Med. Chem., 2013, 21(21), 6337-6348.
[http://dx.doi.org/10.1016/j.bmc.2013.08.055] [PMID: 24074878]
[50]
da Silva, E.N., Jr; Menna-Barreto, R.F.S. Pinto, Mdo.C.; Silva, R.S.F.; Teixeira, D.V.; de Souza, M.C.; De Simone, C.A.; De Castro, S.L.; Ferreira, V.F.; Pinto, A.V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur. J. Med. Chem., 2008, 43(8), 1774-1780.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742]
[51]
Brak, K.; Kerr, I.D.; Barrett, K.T.; Fuchi, N.; Debnath, M.; Ang, K.; Engel, J.C.; McKerrow, J.H.; Doyle, P.S.; Brinen, L.S.; Ellman, J.A. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J. Med. Chem., 2010, 53(4), 1763-1773.
[http://dx.doi.org/10.1021/jm901633v] [PMID: 20088534]
[52]
Brak, K.; Doyle, P.S.; McKerrow, J.H.; Ellman, J.A. Identification of a new class of nonpeptidic inhibitors of cruzain. J. Am. Chem. Soc., 2008, 130(20), 6404-6410.
[http://dx.doi.org/10.1021/ja710254m] [PMID: 18435536]
[53]
Carvalho, I.; Andrade, P.; Campo, V.L.; Guedes, P.M.M.; Sesti-Costa, R.; Silva, J.S.; Schenkman, S.; Dedola, S.; Hill, L.; Rejzek, M.; Nepogodiev, S.A.; Field, R.A. ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem., 2010, 18(7), 2412-2427.
[http://dx.doi.org/10.1016/j.bmc.2010.02.053] [PMID: 20335038]
[54]
Campo, V.L.; Sesti-Costa, R.; Carneiro, Z.A.; Silva, J.S.; Schenkman, S.; Carvalho, I. Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem., 2012, 20(1), 145-156.
[http://dx.doi.org/10.1016/j.bmc.2011.11.022] [PMID: 22154559]
[55]
de Andrade, P.; Galo, O.A.; Carvalho, M.R.; Lopes, C.D.; Carneiro, Z.A.; Sesti-Costa, R.; de Melo, E.B.; Silva, J.S.; Carvalho, I. 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(21), 6815-6826.
[http://dx.doi.org/10.1016/j.bmc.2015.10.008] [PMID: 26476667]
[56]
Papadopoulou, M.V.; Trunz, B.B.; Bloomer, W.D.; McKenzie, C.; Wilkinson, S.R.; Prasittichai, C.; Brun, R.; Kaiser, M.; Torreele, E. Novel 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines as anti-chagasic agents. J. Med. Chem., 2011, 54(23), 8214-8223.
[http://dx.doi.org/10.1021/jm201215n] [PMID: 22023653]
[57]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J. Med. Chem., 2012, 55(11), 5554-5565.
[http://dx.doi.org/10.1021/jm300508n] [PMID: 22550999]
[58]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Kaiser, M.; Chatelain, E.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents. Bioorg. Med. Chem., 2013, 21(21), 6600-6607.
[http://dx.doi.org/10.1016/j.bmc.2013.08.022] [PMID: 24012457]
[59]
Papadopoulou, M.V.; Bloomer, W.D.; Lepesheva, G.I.; Rosenzweig, H.S.; Kaiser, M.; Aguilera-Venegas, B.; Wilkinson, S.R.; Chatelain, E.; Ioset, J.R. Novel 3-nitrotriazole-based amides and carbinols as bifunctional antichagasic agents. J. Med. Chem., 2015, 58(3), 1307-1319.
[http://dx.doi.org/10.1021/jm5015742] [PMID: 25580906]
[60]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur. J. Med. Chem., 2016, 123, 895-904.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.002] [PMID: 27543881]
[61]
Silva, F.T.; Franco, C.H.; Favaro, D.C.; Freitas-Junior, L.H.; Moraes, C.B.; Ferreira, E.I. Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues. Eur. J. Med. Chem., 2016, 121, 553-560.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.065] [PMID: 27318979]
[62]
Assíria Fontes Martins, T.; de Figueiredo Diniz, L.; Mazzeti, A.L.; da Silva do Nascimento, Á.F.; Caldas, S.; Caldas, I.S.; de Andrade, I.M.; Ribeiro, I.; Bahia, M.T. Benznidazole/itraconazole combination treatment enhances Anti-Trypanosoma cruzi activity in experimental chagas disease. PLoS One, 2015, 10(6)e0128707
[http://dx.doi.org/10.1371/journal.pone.0128707] [PMID: 26076455]
[63]
Urbina, J.A. Ergosterol biosynthesis and drug development for Chagas disease. Mem. Inst. Oswaldo Cruz, 2009, 104(Suppl. 1), 311-318.
[http://dx.doi.org/10.1590/S0074-02762009000900041] [PMID: 19753490]
[64]
Guedes, P.M.M.; Urbina, J.A.; de Lana, M.; Afonso, L.C.C.; Veloso, V.M.; Tafuri, W.L.; Machado-Coelho, G.L.L.; Chiari, E.; Bahia, M.T. Activity of the new triazole derivative albaconazole against Trypanosoma (Schizotrypanum) cruzi in dog hosts. Antimicrob. Agents Chemother., 2004, 48(11), 4286-4292.
[http://dx.doi.org/10.1128/AAC.48.11.4286-4292.2004] [PMID: 15504854]
[65]
Apt, W.; Arribada, A.; Zulantay, I.; Rodríguez, J.; Saavedra, M.; Muñoz, A. Treatment of Chagas’ disease with itraconazole: electrocardiographic and parasitological conditions after 20 years of follow-up. J. Antimicrob. Chemother., 2013, 68(9), 2164-2169.
[http://dx.doi.org/10.1093/jac/dkt135] [PMID: 23645584]
[66]
Lepesheva, G.I. Design or screening of drugs for the treatment of Chagas disease: what shows the most promise? Expert Opin. Drug Discov., 2013, 8(12), 1479-1489.
[http://dx.doi.org/10.1517/17460441.2013.845554] [PMID: 24079515]
[67]
Diniz, L. F.; Caldas, I.S.; Guedes, P.M.; Crepalde, G.; de Lana, M.; Carneiro, C.M.; Talvani, A.; Urbina, J.A.; Bahia, M.T. Effects of ravuconazole treatment on parasite load and immune response in dogs experimentally infected with Trypanosoma cruzi. Antimicrob. Agents Chemother., 2010, 54(7), 2979-2986.
[http://dx.doi.org/10.1128/AAC.01742-09] [PMID: 20404124]
[68]
Gulin, J.E.N.; Eagleson, M.A.; Postan, M.; Cutrullis, R.A.; Freilij, H.; Bournissen, F.G.; Petray, P.B.; Altcheh, J. Efficacy of voriconazole in a murine model of acute Trypanosoma cruzi infection. J. Antimicrob. Chemother., 2013, 68(4), 888-894.
[http://dx.doi.org/10.1093/jac/dks478] [PMID: 23212113]
[69]
Benaim, G.; Sanders, J.M.; Garcia-Marchán, Y.; Colina, C.; Lira, R.; Caldera, A.R.; Payares, G.; Sanoja, C.; Burgos, J.M.; Leon-Rossell, A.; Concepcion, J.L.; Schijman, A.G.; Levin, M.; Oldfield, E.; Urbina, J.A. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J. Med. Chem., 2006, 49(3), 892-899.
[http://dx.doi.org/10.1021/jm050691f] [PMID: 16451055]
[70]
World Health Organization (WHO) http://www.who.int/mediacentre/factsheets/fs094/en/ (September 19, 2016).
[71]
Hamann, A.R.; de Kock, C.; Smith, P.J.; van Otterlo, W.A.; Blackie, M.A. Synthesis of novel triazole-linked mefloquine derivatives: biological evaluation against Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2014, 24(23), 5466-5469.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.015] [PMID: 25455485]
[72]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256.
[http://dx.doi.org/10.1016/j.bmc.2010.10.009] [PMID: 21044845]
[73]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis of 4-aminoquinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem. Biol. Drug Des., 2011, 78(1), 124-136.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01115.x] [PMID: 21457474]
[74]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[75]
Taleli, L.; de Kock, C.; Smith, P.J.; Pelly, S.C.; Blackie, M.A.; van Otterlo, W.A. In vitro antiplasmodial activity of triazole-linked chloroquinoline derivatives synthesized from 7-chloro-N-(prop-2-yn-1-yl)quinolin-4-amine. Bioorg. Med. Chem., 2015, 23(15), 4163-4171.
[http://dx.doi.org/10.1016/j.bmc.2015.06.044] [PMID: 26174655]
[76]
Boechat, N. Ferreira, Mde.L.; Pinheiro, L.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Júnior, C.C.S.; Aguiar, A.C.C.; de Andrade, I.M.; Krettli, A.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84(3), 325-332.
[http://dx.doi.org/10.1111/cbdd.12321] [PMID: 24803084]
[77]
Faidallah, H.M.; Panda, S.S.; Serrano, J.C.; Girgis, A.S.; Khan, K.A.; Alamry, K.A.; Therathanakorn, T.; Meyers, M.J.; Sverdrup, F.M.; Eickhoff, C.S.; Getchell, S.G.; Katritzky, A.R. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg. Med. Chem., 2016, 24(16), 3527-3539.
[http://dx.doi.org/10.1016/j.bmc.2016.05.060] [PMID: 27298002]
[78]
Santos, J.O.; Pereira, G.R.; Brandão, G.C.; Borgati, T.F.; Arantes, L.M.; de Paula, R.C.; Soares, L.F.; do Nascimento, M.F.A.; Ferreira, M.R.C.; Taranto, A.G.; Varotti, F.P.; de Oliveira, A.B. Synthesis, in vitro antimalarial activity and in silico studies of hybrid kauranoid 1,2,3-triazoles derived from naturally occurring diterpenes. J. Braz. Chem. Soc., 2016, 27(3), 551-565.
[79]
Devender, N.; Gunjan, S.; Chhabra, S.; Singh, K.; Pasam, V.R.; Shukla, S.K.; Sharma, A.; Jaiswal, S.; Singh, S.K.; Kumar, Y.; Lal, J.; Trivedi, A.K.; Tripathi, R.; Tripathi, R.P. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents. Eur. J. Med. Chem., 2016, 109, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.038] [PMID: 26774925]
[80]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113(4), 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[81]
Havaldar, F.H.; Patil, A.R. Synthesis of 1,2,4 Triazole Derivatives and their Biological Activity. E-J. Chem., 2008, 5(2), 347-354.
[http://dx.doi.org/10.1155/2008/394737]
[82]
Bhattacharya, A.; Mishra, L.C.; Sharma, M.; Awasthi, S.K.; Bhasin, V.K. Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur. J. Med. Chem., 2009, 44(9), 3388-3393.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.008] [PMID: 19269069]
[83]
World Health Organization (WHO): Leishmaniasis Fact Sheet.. http://www.who.int/mediacentre/factsheets/fs375/en/ (Accessed October 25, 2016).
[84]
Seifert, K. Structures, targets and recent approaches in anti-leishmanial drug discovery and development. Open Med. Chem. J., 2011, 5, 31-39.
[http://dx.doi.org/10.2174/1874104501105010031] [PMID: 21629509]
[85]
Sangshetti, J.N.; Khan, F.A.K.; Kulkarni, A.A.; Aroteb, R.; Patilc, R.H. Antileishmanial drug discovery: comprehensive review of the last 10 years. RSC Advances, 2015, 5, 32376-32415.
[http://dx.doi.org/10.1039/C5RA02669E]
[86]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.N.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[87]
Bakunov, S.A.; Bakunova, S.M.; Wenzler, T.; Ghebru, M.; Werbovetz, K.A.; Brun, R.; Tidwell, R.R. Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J. Med. Chem., 2010, 53(1), 254-272.
[http://dx.doi.org/10.1021/jm901178d] [PMID: 19928900]
[88]
Costa, E.C.; Cassamale, T.B.; Carvalho, D.B.; Bosquiroli, L.S.S.; Ojeda, M.; Ximenes, T.V.; Matos, M.F.C.; Kadri, M.C.T.; Baroni, A.C.M.; Arruda, C.C.P. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G. Molecules, 2016, 21(6), 802-812.
[http://dx.doi.org/10.3390/molecules21060802] [PMID: 27331807]
[89]
Guimarães, T.T. Pinto, Mdo.C.; Lanza, J.S.; Melo, M.N.; do Monte-Neto, R.L.; de Melo, I.M.M.; Diogo, E.B.T.; Ferreira, V.F.; Camara, C.A.; Valença, W.O.; de Oliveira, R.N.; Frézard, F.; da Silva, E.N., Jr Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: synthesis of novel α- and nor-α-lapachone-based 1,2,3-triazoles by copper-catalyzed azide-alkyne cycloaddition. Eur. J. Med. Chem., 2013, 63, 523-530.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.038] [PMID: 23535320]
[90]
Rodríguez-Hernández, D.; Barbosa, L.C.A.; Demuner, A.J.; de Almeida, R.M.; Fujiwara, R.T.; Ferreira, S.R. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. Eur. J. Med. Chem., 2016, 124, 153-159.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.030] [PMID: 27569196]
[91]
van der Peet, P.; Ralton, J.E.; McConville, M.J.; Williams, S.J. Discovery of inhibitors of Leishmania β-1,2-mannosyltransferases using a click-chemistry-derived guanosine monophosphate library. PLoS One, 2012, 7(2)e32642
[http://dx.doi.org/10.1371/journal.pone.0032642] [PMID: 22393429]
[92]
Giannini, G.; Battistuzzi, G. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites. Bioorg. Med. Chem. Lett., 2015, 25(3), 462-465.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.048] [PMID: 25547934]
[93]
Yousuf, M.; Mukherjee, D.; Dey, S.; Pal, C.; Adhikari, S. Antileishmanial ferrocenylquinoline derivatives: Synthesis and biological evaluation against Leishmania donovani. Eur. J. Med. Chem., 2016, 124, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.049] [PMID: 27598235]
[94]
Stroppa, P.H.F.; Antinarelli, L.M.R.; Carmo, A.M.L.; Gameiro, J.; Coimbra, E.S.; da Silva, A.D. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis. Bioorg. Med. Chem., 2017, 25(12), 3034-3045.
[http://dx.doi.org/10.1016/j.bmc.2017.03.051] [PMID: 28433512]
[95]
da Silva, E.R.; Boechat, N.; Pinheiro, L.C.S.; Bastos, M.M.; Costa, C.C.P.; Bartholomeu, J.C.; da Costa, T.H. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase. Chem. Biol. Drug Des., 2015, 86(5), 969-978.
[http://dx.doi.org/10.1111/cbdd.12566] [PMID: 25845502]
[96]
Khan, I.; Zaib, S.; Ibrar, A.; Rama, N.H.; Simpson, J.; Iqbal, J. Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Eur. J. Med. Chem., 2014, 78, 167-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.046] [PMID: 24681981]
[97]
Suryawanshi, S.N.; Tiwari, A.; Kumar, S.; Shivahare, R.; Mittal, M.; Kant, P.; Gupta, S. Chemotherapy of leishmaniasis. Part XII: design, synthesis and bioevaluation of novel triazole integrated phenyl heteroterpenoids as antileishmanial agents. Bioorg. Med. Chem. Lett., 2013, 23(10), 2925-2928.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.055] [PMID: 23582274]
[98]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M.; Chatelain, E.; Ioset, J-R. Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorg. Med. Chem., 2015, 23(19), 6467-6476.
[http://dx.doi.org/10.1016/j.bmc.2015.08.014] [PMID: 26344593]
[99]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M. 3-Nitrotriazole-based piperazides as potent antitrypanosomal agents. Eur. J. Med. Chem., 2015, 103, 325-334.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.042] [PMID: 26363868]
[100]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur. J. Med. Chem., 2016, 123, 895-904.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.002] [PMID: 27543881]
[101]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; Ferreira, M.L.G.; da Silva, F.C.; Bastos, M.M.; Costa, M.S.; Lourenço, M.S.C.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M. Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-Triazole Derivatives for Use against Mycobacterium tuberculosis H37Rv (ATCC 27294). Strain. J. Med. Chem., 2011, 54, 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[102]
Gonzaga, D.T.G.; da Rocha, D.R. da Silva, Fde.C.; Ferreira, V.F. Recent advances in the synthesis of new antimycobacterial agents based on the 1H-1,2,3-triazoles. Curr. Top. Med. Chem., 2013, 13(22), 2850-2865.
[http://dx.doi.org/10.2174/15680266113136660202] [PMID: 24111906]
[103]
World Health Organization (WHO): Leishmaniasis Fact Sheet.. http://www.who.int/mediacentre/factsheets/fs104/en/ (Accessed October 15, 2016).
[104]
Rožman, K.; Sosič, I.; Fernandez, R.; Young, R.J.; Mendoza, A.; Gobec, S.; Encinas, L. A new ‘golden age’ for the antitubercular target InhA. Drug Discov. Today, 2017, 22(3), 492-502.
[http://dx.doi.org/10.1016/j.drudis.2016.09.009] [PMID: 27663094]
[105]
Shiradkar, M.; Suresh Kumar, G.V.; Dasari, V.; Tatikonda, S.; Akula, K.C.A.; Shah, R. Clubbed triazoles: a novel approach to antitubercular drugs. Eur. J. Med. Chem., 2007, 42(6), 807-816.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.001] [PMID: 17239490]
[106]
Yempala, T.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2014, 71, 160-167.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.082] [PMID: 24292337]
[107]
Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: A Promising Antitubercular Agent. Chem. Biol. Drug Des., 2015, 86(4), 410-423.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[108]
Sarkar, S.; Suresh, M.R. An overview of tuberculosis chemotherapy - a literature review. J. Pharm. Pharm. Sci., 2011, 14(2), 148-161.
[http://dx.doi.org/10.18433/J33591] [PMID: 21733406]
[109]
Bankowska, E.; Wróblewski, A.E. Derivatives of 1,2,3-triazole. Potential drugs? Wiadomości Chemiczne, 2012, 66, 11-12.
[110]
Kumar, D. Beena; Khare, G.; Kidwai, S.; Tyagi, A.K.; Singh, R.; Rawat, D.S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem., 2014, 81, 301-313.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.005] [PMID: 24852277]
[111]
Kim, S.; Cho, S-N.; Oh, T.; Kim, P. Design and synthesis of 1H-1,2,3-triazoles derived from econazole as antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(22), 6844-6847.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.041] [PMID: 23058885]
[112]
Menendez, C.; Gau, S.; Lherbet, C.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Baltas, M. Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2011, 46(11), 5524-5531.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.013] [PMID: 21944473]
[113]
Menendez, C.; Chollet, A.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Lherbet, C.; Baltas, M. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2012, 52, 275-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.029] [PMID: 22483635]
[114]
Wilkinson, B.L.; Long, H.; Sim, E.; Fairbanks, A.J. Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6265-6267.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.082] [PMID: 18926698]
[115]
Singh, B.K.; Yadav, A.K.; Kumar, B.; Gaikwad, A.; Sinha, S.K.; Chaturvedi, V.; Tripathi, R.P. Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr. Res., 2008, 343(7), 1153-1162.
[http://dx.doi.org/10.1016/j.carres.2008.02.013] [PMID: 18346719]
[116]
Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D.; Shiradkar, M. Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6244-6247.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.096] [PMID: 18930654]
[117]
Castagnolo, D.; Radi, M.; Dessì, F.; Manetti, F.; Saddi, M.; Meleddu, R.; De Logu, A.; Botta, M. Synthesis and biological evaluation of new enantiomerically pure azole derivatives as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2009, 19(8), 2203-2205.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.101] [PMID: 19299129]
[118]
Tripathi, R.P.; Yadav, A.K.; Ajay, A.; Bisht, S.S.; Chaturvedi, V.; Sinha, S.K. Application of Huisgen (3+2) cycloaddition reaction: synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Eur. J. Med. Chem., 2010, 45(1), 142-148.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.036] [PMID: 19846238]
[119]
Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Anjana Devi, T.; Kalivendi, S.V.; Kantevari, S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J. Med. Chem., 2012, 55(8), 3911-3922.
[http://dx.doi.org/10.1021/jm300125e] [PMID: 22449006]
[120]
Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S.G.; Yang, Z.; Chan, R.J.; Liu, Y.; Zheng, J.; Zhang, Z-Y. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl. Acad. Sci. USA, 2010, 107(10), 4573-4578.
[http://dx.doi.org/10.1073/pnas.0909133107] [PMID: 20167798]
[121]
Shiradkar, M.R.; Murahari, K.K.; Gangadasu, H.R.; Suresh, T.; Kalyan, C.A.; Panchal, D.; Kaur, R.; Burange, P.; Ghogare, J.; Mokale, V.; Raut, M. Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem., 2007, 15(12), 3997-4008.
[http://dx.doi.org/10.1016/j.bmc.2007.04.003] [PMID: 17442576]
[122]
Mundhe, D.; Chandewar, A.V.; Shiradkar, M.R. Design and synthesis of substituted clubbed triazolyl thiazole as XDR & MDR antituberculosis agents Part-II. Der Pharma Chem., 2011, 3(6), 89-102.
[123]
Suresh Kumar, G.V.; Rajendraprasad, Y.; Mallikarjuna, B.P.; Chandrashekar, S.M.; Kistayya, C. Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2010, 45(5), 2063-2074.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.045] [PMID: 20149496]
[124]
Kakwani, M.D.; Palsule Desai, N.H.; Lele, A.C.; Ray, M.; Rajan, M.G.R.; Degani, M.S. Synthesis and preliminary biological evaluation of novel N-(3-aryl-1,2,4-triazol-5-yl) cinnamamide derivatives as potential antimycobacterial agents: an operational Topliss Tree approach. Bioorg. Med. Chem. Lett., 2011, 21(21), 6523-6526.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.076] [PMID: 21917452]
[125]
Westwood, I.M.; Bhakta, S.; Russell, A.J.; Fullam, E.; Anderton, M.C.; Kawamura, A.; Mulvaney, A.W.; Vickers, R.J.; Bhowruth, V.; Besra, G.S.; Lalvani, A.; Davies, S.G.; Sim, E. Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell, 2010, 1(1), 82-95.
[http://dx.doi.org/10.1007/s13238-010-0006-1] [PMID: 21204000]
[126]
Mohan Krishna, K.; Inturi, B.; Pujar, G.V.; Purohit, M.N.; Vijaykumar, G.S. Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antitubercular agents. Eur. J. Med. Chem., 2014, 84, 516-529.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.051] [PMID: 25055342]
[127]
Hunashal, R.D.; Satyanarayana, D. One pot synthesis of 3-(substituted phenoxymethyl)-6- phenyl/substituted phenoxymethyl-1,2,4-triazolo[3,4-b][1,3,4] thiadiazole derivatives as antimicrobial agents. Int. J. Pharma Bio Sci., 2012, 3(4), 183-192.
[128]
Desai, N.H.P.; Bairwa, R.; Kakwani, M.; Tawari, N.; Ray, M.K.; Rajan, M.G.; Degani, M. Novel 4H-1,2,4-triazol-3-yl cycloalkanols as potent antitubercular agents. Med. Chem. Res., 2013, 22, 401-408.
[http://dx.doi.org/10.1007/s00044-012-0043-9]
[129]
Patel, N.B.; Khan, I.H.; Rajani, S.D. Antimycobacterial and antimicrobial study of new 1,2,4-triazoles with benzothiazoles. Arch. Pharm. (Weinheim), 2010, 343(11-12), 692-699.
[http://dx.doi.org/10.1002/ardp.201000061] [PMID: 21110343]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 23
Year: 2019
Page: [4403 - 4434]
Pages: 32
DOI: 10.2174/0929867324666170727103901
Price: $58

Article Metrics

PDF: 21
HTML: 2