Hemicellulose from Plant Biomass in Medical and Pharmaceutical Application: A Critical Review

Author(s): Xinxin Liu, Qixuan Lin, Yuhuan Yan, Feng Peng, Runcang Sun, Junli Ren*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 14 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer


Background: Due to the non-toxicity, abundance and biodegradability, recently more and more attention has been focused on the exploration of hemicellulose as the potential substrate for the production of liquid fuels and other value-added chemicals and materials in different fields. This review aims to summarize the current knowledge on the promising application of nature hemicellulose and its derivative products including its degradation products, its new derivatives and hemicellulosebased medical biodegradable materials in the medical and pharmaceutical field, especially for inmmune regulation, bacteria inhibition, drug release, anti-caries, scaffold materials and anti-tumor.

Methods: We searched the related papers about the medical and pharmaceutical application of hemicellulose and its derivative products, and summarized their preparation methods, properties and use effects.

Results: Two hundred and twenty-seven papers were included in this review. Forty-seven papers introduced the extraction and application in immune regulation of nature hemicellulose, such as xylan, mannan, xyloglucan (XG) and β-glucan. Seventy-seven papers mentioned the preparation and application of degradation products of hemicellulose for adjusting intestinal function, maintaining blood glucose levels, enhancing the immunity and alleviating human fatigue fields such as xylooligosaccharides, xylitol, xylose, arabinose, etc. The preparation of hemicellulose derivatives were described in thirty-two papers such as hemicellulose esters, hemicellulose ethers and their effects on anticoagulants, adsorption of creatinine, the addition of immune cells and the inhibition of harmful bacteria. Finally, the preparations of hemicellulose-based materials such as hydrogels and membrane for the field of drug release, cell immobilization, cancer therapy and wound dressings were presented using fifty-five papers.

Conclusion: The structure of hemicellulose-based products has the significant impact on properties and the use effect for the immunity, and treating various diseases of human. However, some efforts should be made to explore and improve the properties of hemicellulose-based products and design the new materials to broaden hemicellulose applications.

Keywords: Plant biomass, hemicellulose, hemicellulose-derived products, modification, pharmaceutical and medical application, β-glucan.

McKendry, P. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol., 2002, 83(1), 37-46. [http://dx.doi.org/10.1016/S0960-8524(01)00118-3]. [PMID: 12058829].
Cao, X.F.; Peng, P.; Sun, S.; Li, M.; Sun, R. fractionation of lignocellulosic materials for the biorefinery: separation and characterization of lignin from Calamagrostis angustifolia Kom. Sep. Sci. Technol., 2013, 48, 1272. [http://dx.doi.org/10.1080/01496395.2012.724499].
Zhang, H.; Bai, Y.; Zhou, W.; Chen, F. Color reduction of sulfonated eucalyptus kraft lignin. Int. J. Biol. Macromol., 2017, 97, 201-208. [http://dx.doi.org/10.1016/j.ijbiomac.2017.01.031]. [PMID: 28082224].
Zhang, H.; Chang, Z.Y.; Qian, X.R.; An, X.H. In situ preparation, characterization and performance of magnesium carbonate whiskers/cellulose fibers hybrid paper. Cellulose, 2014, 21, 4633. [http://dx.doi.org/10.1007/s10570-014-0462-5].
Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098. [http://dx.doi.org/10.1021/cr068360d]. [PMID: 16967928].
Sun, R.; Lawther, J.M.; Banks, W.B. Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr. Polym., 1996, 29, 325. [http://dx.doi.org/10.1016/S0144-8617(96)00018-5].
Peng, F.; Peng, P.; Xu, F.; Sun, R.C. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 2012, 30(4), 879-903. [http://dx.doi.org/10.1016/j.biotechadv.2012.01.018]. [PMID: 22306329].
Ren, J.L.; Sun, R.C. Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose, 1st ed; Elsevier: Amsterdam, 2010.
Huang, F.; Ragauskas, A. Extraction of hemicellulose from loblolly pine woodchips and subsequent kraft pulping. Ind. Eng. Chem. Res., 2013, 52, 1743. [http://dx.doi.org/10.1021/ie302242h].
Yong, T.L.K.; Matsumura, Y. Catalytic gasification of poultry manure and eucalyptus wood mixture in supercritical water. Eng. Chem. Res., 2012, 51, 5685. [http://dx.doi.org/10.1021/ie202385s].
Wannapeera, J.; Li, X.; Worasuwannarak, N.; Ashida, R.; Miura, K. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction. Energy Fuels, 2012, 26, 4521. [http://dx.doi.org/10.1021/ef3003153].
Picou, L.; Boldor, D. Thermophysical characterization of the seeds of invasive Chinese tallow tree: importance for biofuel production. Environ. Sci. Technol., 2012, 46(20), 11435-11442. [http://dx.doi.org/10.1021/es3023489]. [PMID: 23013244].
Owen, B.C.; Haupert, L.J.; Jarrell, T.M.; Marcum, C.L.; Parsell, T.H.; Abu-Omar, M.M.; Bozell, J.J.; Black, S.K.; Kenttämaa, H.I. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal. Chem., 2012, 84(14), 6000-6007. [http://dx.doi.org/10.1021/ac300762y]. [PMID: 22746183].
Medic, D.; Darr, M.; Shah, A.; Rahn, S. Effect of torrefaction on water vapor adsorption properties and resistance to microbial degradation of corn stover. Energy Fuels, 2012, 26, 2386. [http://dx.doi.org/10.1021/ef3000449].
Barbat, A.; Gloaguen, V.; Moine, C.; Sainte-Catherine, O.; Kraemer, M.; Rogniaux, H.; Ropartz, D.; Krausz, P. Structural characterization and cytotoxic properties of a 4-O-methylglucuronoxylan from castanea sativa. 2. Evidence of a structure-activity relationship. J. Nat. Prod., 2008, 71(8), 1404-1409. [http://dx.doi.org/10.1021/np800207g]. [PMID: 18646856].
Oliveira, E.E.; Silva, A.E.; Júnior, T.N.; Gomes, M.C.S.; Aguiar, L.M.; Marcelino, H.R.; Araújo, I.B.; Bayer, M.P.; Ricardo, N.M.P.S.; Oliveira, A.G.; Egito, E.S.T. Xylan from corn cobs, a promising polymer for drug delivery: production and characterization. Bioresour. Technol., 2010, 101(14), 5402-5406. [http://dx.doi.org/10.1016/j.biortech.2010.01.137]. [PMID: 20171878].
Ebrignerová, A.; Hromadkova, Z.; Heinze, T. Hemicellulose. Adv. Polym. Sci., 2005, 186, 1-67. [DOI https://doi.org/10.1007/b136816].
Chen, W.; Zhong, L.X.; Peng, X.W.; Wang, K.; Chen, Z.F.; Sun, R.C. Xylan-type hemicellulose supported palladium nanoparticles: a highly efficient and reusable catalyst for the carbon–carbon coupling reactions. Catal. Sci. Technol., 2014, 4, 1426. [http://dx.doi.org/10.1039/C3CY00933E].
Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol., 2003, 30(5), 279-291. [http://dx.doi.org/10.1007/s10295-003-0049-x]. [PMID: 12698321].
Sun, X.F.; Sun, R.; Fowler, P.; Baird, M.S. Extraction and characterization of original lignin and hemicelluloses from wheat straw. J. Agric. Food Chem., 2005, 53(4), 860-870. [http://dx.doi.org/10.1021/jf040456q]. [PMID: 15712990].
Rennie, E.A.; Scheller, H.V. Xylan biosynthesis. Curr. Opin. Biotechnol., 2014, 26, 100-107. [http://dx.doi.org/10.1016/j.copbio.2013.11.013]. [PMID: 24679265].
Ebringerová, A.; Heinze, T. Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun., 2000, 21, 542. [http://dx.doi.org/10.1002/1521-3927(20000601)21:9<542:AID-MARC542>3.0.CO;2-7].
Garrote, G.; Domínguez, H.; Parajo, J.C. Kinetic modelling of corncob autohydrolysis. Process Biochem., 2001, 36, 571. [http://dx.doi.org/10.1016/S0032-9592(00)00253-3].
Bastawde, K.B. Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol., 1992, 8(4), 353-368. [http://dx.doi.org/10.1007/BF01198746]. [PMID: 24425504].
Grous, W.R.; Converse, A.O.; Grethlein, H.E. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb. Technol., 1986, 8, 274. [http://dx.doi.org/10.1016/0141-0229(86)90021-9].
Persson, T.; Ren, J.L.; Joelsson, E.; Jönsson, A.S. Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresour. Technol., 2009, 100(17), 3906-3913. [http://dx.doi.org/10.1016/j.biortech.2009.02.063]. [PMID: 19349171].
Martín, C.; Marcet, M.; Thomsen, A.B. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. BioResources, 2008, 3, 670-683.
Li, J.; Henriksson, G.; Gellerstedt, G. Carbohydrate reactions during high-temperature steam treatment of aspen wood. Appl. Biochem. Biotechnol., 2005, 125(3), 175-188. [http://dx.doi.org/10.1385/ABAB:125:3:175]. [PMID: 15917581].
Rajaram, S.; Varma, A. Production and characterization of xylanase from Bacillus thermoalkalophilus grown on agricultural wastes. Appl. Biochem. Biotechnol., 1990, 34, 141-144. [https://doi.org/10.1007/BF00170939].
Maloney, M.T.; Chapman, T.W.; Baker, A. Dilute acid hydrolysis of paper birch: Kinetics studies of xylan and acetyl‐group hydrolysis. J. Biotechnol. Bioeng., 1985, 27, 355. [http://dx.doi.org/10.1002/bit.260270321].
Sartori, J.; Potthast, A.; Ecker, A.; Sixta, H.; Rosenau, T.; Kosma, P. Alkaline degradation kinetics and CE-separation of cello- and xylooligomers. Part I. Carbohydr. Res., 2003, 338(11), 1209-1216. [http://dx.doi.org/10.1016/S0008-6215(03)00115-0]. [PMID: 12747863].
Nabarlatz, D.; Montané, D.; Kardosová, A.; Bekesová, S.; Hríbalová, V.; Ebringerová, A. Almond shell xylo-oligosaccharides exhibiting immunostimulatory activity. Carbohydr. Res., 2007, 342(8), 1122-1128. [http://dx.doi.org/10.1016/j.carres.2007.02.017]. [PMID: 17362891].
Ebringerová, A.; Hromádková, Z.; Hríbalová, V. Structure and mitogenic activities of corn cob heteroxylans. Int. J. Biol. Macromol., 1995, 17(6), 327-331. [http://dx.doi.org/10.1016/0141-8130(96)81840-X]. [PMID: 8789334].
Ebringerová, A.; Kardosová, A.; Hromádková, Z.; Malovíková, A.; Hríbalová, V. Immunomodulatory activity of acidic xylans in relation to their structural and molecular properties. Int. J. Biol. Macromol., 2002, 30(1), 1-6. [http://dx.doi.org/10.1016/S0141-8130(01)00186-6]. [PMID: 11893388].
Ebringerová, A.; Hromádková, Z.; Hříbalová, V.; Mason, T. Effect of ultrasound on the immunogenic corn cob xylan. J. Ultrason. Sonochem., 1997, 4, 311-315. [http://dx.doi.org/10.1016/S1350-4177(97)00041-2].
Li, X.; Zhou, A.; Han, Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro. Carbohydr. Polym., 2006, 66, 34-42. [http://dx.doi.org/10.1016/j.carbpol.2006.02.018].
Nakanishi-Shindo, Y.; Nakayama, K.; Tanaka, A.; Toda, Y.; Jigami, Y. Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem., 1993, 268(35), 26338-26345. [PMID: 8253757].
Liu, H.Z.; Wang, Q.; Liu, Y.; Fang, F. Statistical optimization of culture media and conditions for production of mannan by Saccharomyces cerevisiae. Bioprocess Biosyst. Eng., 2009, 14(5), 577-583. [http://dx.doi.org/10.1007/s12257-008-0248-4].
Huang, G.; Yang, Q.; Wang, Z.B. Extraction and Deproteinization of Mannan Oligosaccharides. Z. Naturforsch, 2010, 65, 387-390. [DOI: https://doi.org/10.1515/znc-2010-5-611].
Swamy, H.V.L.N.; Smith, T.K.; MacDonald, E.J.; Boermans, H.J.; Squires, E.J. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J. Anim. Sci., 2002, 80(12), 3257-3267. [http://dx.doi.org/10.2527/2002.80123257x]. [PMID: 12542167].
Kath, F.; Kulicke, W.M. Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae. Die. Angewandte. Makromolekulare. Chemie., 1999, 268, 59. [https://doi.org/10.1002/(SICI)1522-9505(19990701)268:1<59:AID-APMC59>3.0.CO;2-F].
Nguyen, T.H.; Fleet, G.H.; Rogers, P.L. Composition of the cell walls of several yeast species. Appl. Microbiol. Biotechnol., 1998, 50(2), 206-212. [http://dx.doi.org/10.1007/s002530051278]. [PMID: 9763691].
Diaz, S.; Zínker, S.; Ruiz-Herrera, J. Antonie. Van. Alterations in the cell wall ofSaccharomyces cerevisiae induced by the alpha sex factor or a mutation in the cell cycle. Leeuwenhoek., 1992, 61, 269-276. [https://doi.org/10.1007/BF00713935].
Van, R.J.; Klis, F.M.; Ende, H.V.D. Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9. Yeast, 1991, 7, 717. [http://dx.doi.org/10.1002/yea.320070707]. [PMID: 1776362].
Moreira, L.R.S.; Filho, E.X. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol., 2008, 79(2), 165-178. [http://dx.doi.org/10.1007/s00253-008-1423-4]. [PMID: 18385995].
Ballou, L.; Cohen, R.E.; Ballou, C.E. Saccharomyces cerevisiae mutants that make mannoproteins with a truncated carbohydrate outer chain. J. Biol. Chem., 1980, 255(12), 5986-5991. [PMID: 6991499].
Paulovicová, E.; Bystrický, S.; Masárová, J.; Machová, E.; Mislovicová, D. Immune response to Saccharomyces cerevisiae mannan conjugate in mice. Int. Immunopharmacol., 2005, 5(12), 1693-1698. [http://dx.doi.org/10.1016/j.intimp.2005.04.009]. [PMID: 16102519].
Mirelman, D.; Altmann, G.; Eshdat, Y. Screening of bacterial isolates for mannose-specific lectin activity by agglutination of yeasts. J. Clin. Microbiol., 1980, 11(4), 328-331. [PMID: 6989854].
Castro, D.P.; Moraes, C.S.; Garcia, E.S. Inhibitory effects of d-mannose on trypanosomatid lysis induced by Serratia marcescens. Exp. Para., 2007, 115, 200. [http://dx.doi.org/10.1016/j.exppara.2006.08.001].
Lucyszyn, N.; Lubambo, A.F.; Ono, L.; Jó, T.A.; De Souza, C.F.; Sierakowski, M.R. Chemical, physico-chemical and cytotoxicity characterisation of xyloglucan from Guibourtia hymenifolia (Moric.) J. Leonard seeds. Food Hydro., 2011, 25, 1242. [http://dx.doi.org/10.1016/j.foodhyd.2010.11.012].
Mishra, A.; Malhotra, A.V. Tamarind xyloglucan: a polysaccharide with versatile application potential. J. Mater. Chem., 2009, 19(45), 8528-8536. [http://dx.doi.org/10.1039/b911150f].
Kawasaki, N.; Ohkura, R.; Miyazaki, S.; Uno, Y.; Sugimoto, S.; Attwood, D. Thermally reversible xyloglucan gels as vehicles for oral drug delivery. Int. J. Pharm., 1999, 181(2), 227-234. [http://dx.doi.org/10.1016/S0378-5173(99)00026-5]. [PMID: 10370218].
Doco, T.; Williams, P.; Pauly, M.; O’Neill, M.A.; Pellerin, P. Polysaccharides from grape berry cell walls. Part II. Structural characterization of the xyloglucan polysaccharides. Carbohydr. Polym., 2003, 53, 253-261. [http://dx.doi.org/10.1016/S0144-8617(03)00072-9].
Rosário, M.M.T.; Noleto, G.R.; Bento, J.F.; Reicher, F.; Oliveira, M.B.M.; Petkowicz, C.L.O. Effect of storage xyloglucans on peritoneal macrophages. Phytochemistry, 2008, 69(2), 464-472. [http://dx.doi.org/10.1016/j.phytochem.2007.08.011]. [PMID: 17888467].
Thompson, I.J.; Oyston, P.C.F.; Williamson, D.E. Expert. Rev. Potential of the beta-glucans to enhance innate resistance to biological agents. Anti-infe., 2010, 8, 339-352. [https://doi.org/10.1586/eri.10.10].
McIntosh, M.; Stone, B.A.; Stanisich, V.A. Curdlan and other bacterial (1->3)-beta-D-glucans. Appl. Microbiol. Biotechnol., 2005, 68(2), 163-173. [http://dx.doi.org/10.1007/s00253-005-1959-5]. [PMID: 15818477].
Yun, C.H.; Estrada, A.; Van Kessel, A.; Park, B.C.; Laarveld, B. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol., 2003, 35(1), 67-75. [http://dx.doi.org/10.1016/S0928-8244(02)00460-1]. [PMID: 12589959].
Yan, J.; Allendorf, D.J.; Brandley, B. Yeast whole glucan particle (WGP) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opin. Biol. Ther., 2005, 5(5), 691-702. [http://dx.doi.org/10.1517/14712598.5.5.691]. [PMID: 15934844].
Ensley, H.E.; Tobias, B.; Pretus, H.A.; McNamee, R.B.; Jones, E.L.; Browder, I.W.; Williams, D.L. NMR spectral analysis of a water-insoluble (1-->3)-beta-D-glucan isolated from Saccharomyces cerevisiae. Carbohydr. Res., 1994, 258, 307-311. [http://dx.doi.org/10.1016/0008-6215(94)84098-9]. [PMID: 8039185].
Kerckhoffs, D.A.J.M.; Hornstra, G.; Mensink, R.P. Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. Am. J. Clin. Nutr., 2003, 78(2), 221-227. [http://dx.doi.org/10.1093/ajcn/78.2.221]. [PMID: 12885701].
Malkki, Y. Chemical Composition, Minerals and Antioxidants of the Heart of Date Palm from Three Saudi Cultivars. Cereal Foods World, 2001, 46, 196-199. [DOI: 10.4236/fns.2014.514150].
Murphy, E.A.; Davis, J.M.; Brown, A.S.; Carmichael, M.D.; Mayer, E.P.; Ghaffar, A. Effects of moderate exercise and oat beta-glucan on lung tumor metastases and macrophage antitumor cytotoxicity. J. Appl. Physiol., 2004, 97(3), 955-959. [http://dx.doi.org/10.1152/japplphysiol.00252.2004]. [PMID: 15145923].
Malkki, Y.; Virtanen, E. Gastrointestinal Effects of Oat Bran and Oat Gum: A Review. Lebensm. Wiss. Technol., 2001, 34, 337-347. [http://dx.doi.org/10.1006/fstl.2001.0795].
Vazquez, M.J.; Alonso, J.L.; Dominguez, H.; Parajo, J.C. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol., 2000, 11, 387-393. [http://dx.doi.org/10.1016/S0924-2244(01)00031-0].
Carvalho, A.F.A.; de Oliva, N.P.; Da Silva, D.F.; Pastore, G.M.P. Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int., 2013, 51, 75-85. [http://dx.doi.org/10.1016/j.foodres.2012.11.021].
Ayyappan, A.A.; Siddalingaiya, G.P.J. Production of Stilbenoids from the Callus of Arachis hypogaea: a Novel Source of the Anticancer Compound Piceatannol. Agr. Food Chem., 2008, 56, 3981-3881. [http://dx.doi.org/ 10.1021/jf050242o].
Swennen, K.; Courtin, C.M.; Van der Bruggen, B.; Vandecasteele, C.; Delcour, J.A. Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydr. Polym., 2005, 62, 283. [http://dx.doi.org/10.1016/j.carbpol.2005.08.001].
Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Enzymatic production of pentoses from the hemicellulose fraction of corn residues. Lebensm. Wiss. Technol., 2006, 39, 388-392. [http://dx.doi.org/10.1016/j.lwt.2005.02.005].
Sunna, A.; Antranikian, G. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol., 1997, 17(1), 39-67. [http://dx.doi.org/10.3109/07388559709146606]. [PMID: 9118232].
Jacobsen, S.E.; Wyman, C.E. Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose at Varying Solids Concentration. Ind. Eng. Chem. Res., 2002, 41, 1454-1461. [http://dx.doi.org/10.1021/ie001025+].
Carvalheiro, F.; Esteves, M.P.; Parajó, J.C.; Pereira, H.; Gírio, F.M. Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour. Technol., 2004, 91(1), 93-100. [http://dx.doi.org/10.1016/S0960-8524(03)00148-2]. [PMID: 14585626].
Vila, C.; Garrote, G.; Dominguez, H.; Parajó, J.C. Hydrolytic Processing of Rice Husks in Aqueous Media: A Kinetic Assessment. Collect. Czech. Chem. Commun., 2002, 67, 509. [http://dx.doi.org/10.1135/cccc20020509].
Akpinar, O.; Erdogan, K.; Bostanci, S. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res., 2009, 344(5), 660-666. [http://dx.doi.org/10.1016/j.carres.2009.01.015]. [PMID: 19211099].
Delattre, C.; Michaud, P.; Courtois, B. Courtois. Oligosaccharides engineering from plants and algae applications in biotechnology and therapeutics. J. Minerva Biotecnol., 2005, 17, 107.
Duarte, L.C.; Silva-Fernandes, T.; Carvalheiro, F.; Gírio, F.M. Dilute acid hydrolysis of wheat straw oligosaccharides. Appl. Biochem. Biotechnol., 2009, 153(1-3), 116-126. [http://dx.doi.org/10.1007/s12010-008-8426-6]. [PMID: 19043676].
Oku, T.; Nakamura, S. Digestion, absorption, fermentation, and metabolism of functional sugar substitutes and their available energy. Pure Appl. Chem., 2002, 74, 1253-1261. [http://dx.doi.org/10.1351/pac200274071253].
Scheppach, W.; Luehrs, H.; Menzel, T. Beneficial health effects of low-digestible carbohydrate consumption. Br. J. Nutr., 2001, 85(S1)(Suppl. 1), S23-S30. [http://dx.doi.org/10.1079/BJN2000259]. [PMID: 11321025].
Menezes, C.R.D.; Durrant, L.R. Xylooligosaccharides: production, applications and effects on human health. Cienc. Rural, 2008, 38(2), 587. [http://dx.doi.org/10.1590/S0103-84782008000200050].
Jain, I.; Kumar, V.; Satyanarayana, T. Xylooligosaccharides: An economical prebiotic from agroresidues and their health benefits. Indian J. Exp. Biol., 2015, 53(3), 131-142. [PMID: 25872243].
Ebersbach, T.; Andersen, J.B.; Bergström, A.; Hutkins, R.W.; Licht, T.R. Xylo-oligosaccharides inhibit pathogen adhesion to enterocytes in vitro. Res. Microbiol., 2012, 163(1), 22-27.
[http://dx.doi.org/10.1016/j.resmic.2011.10.003] [PMID: 22056968].
Digantkumar, C.; Pratima, P.; Amita, S. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour. Technol., 2012, 115, 215-221. [http://dx.doi.org/10.1016/j.biortech.2011.10.083]. [PMID: 22100233].
Moure, A.; Gullón, P.; Domínguez, H.; Parajó, J.C. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem., 2006, 41, 1913-1923. [http://dx.doi.org/10.1016/j.procbio.2006.05.011].
Mäkinen, K.K. Xylitol and oral health. Adv. Food Res., 1979, 25, 137-158. [http://dx.doi.org/10.1016/S0065-2628(08)60236-0]. [PMID: 391000].
Misra, S.; Gupta, P.; Raghuwanshi, S.; Dutt, K.; Saxena, R. Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Separ. Purif. Tech., 2011, 78, 266-273. [http://dx.doi.org/10.1016/j.seppur.2011.02.018].
Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour. Technol., 2004, 93(1), 1-10. [http://dx.doi.org/10.1016/j.biortech.2003.10.005]. [PMID: 14987714].
Latif, F.; Rajoka, M.I. Production of ethanol and xylitol from corn cobs by yeasts. Bioresour. Technol., 2001, 77(1), 57-63. [http://dx.doi.org/10.1016/S0960-8524(00)00134-6]. [PMID: 11211076].
Shen, P.; Cai, F.; Nowicki, A.; Vincent, J.; Reynolds, E.C. Remineralization of enamel subsurface lesions by sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. J. Dent. Res., 2001, 80(12), 2066-2070. [http://dx.doi.org/10.1177/00220345010800120801]. [PMID: 11808763].
Burt, B.A. The use of sorbitol- and xylitol-sweetened chewing gum in caries control. J. Am. Dent. Assoc., 2006, 137, 109-196. [http://dx.doi.org/10.14219/jada.archive.2006.0144].
Rao, L.V.; Goli, J.K.; Gentela, J.; Koti, S. Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresour. Technol., 2016, 213, 299-310. [http://dx.doi.org/10.1016/j.biortech.2016.04.092]. [PMID: 27142629].
Granstrom, T.B.; Izumori, K.; Leisola, M. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl. Microbiol. Bio., 2007, 74, 273. [http://dx.doi.org/10.1007/s00253-006-0760-4].
Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol., 2003, 30(5), 279-291. [http://dx.doi.org/10.1007/s10295-003-0049-x]. [PMID: 12698321].
Parajó, J.C.; Domínguez, H. Domínguez. Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. J. Bioresour. Technol., 1998, 65, 191-201. [https://doi.org/10.1016/S0960-8524(98)00038-8].
Rafiqul, I.S.M.; Sakinah, A.M.M. Processes for the Production of Xylitol—A Review. Food Rev. Int., 2013, 29, 127-156. [http://dx.doi.org/10.1080/87559129.2012.714434].
Rangaswamy, S.; Agblevor, F.A. Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl. Microbiol. Biotechnol., 2002, 60(1-2), 88-93. [http://dx.doi.org/10.1007/s00253-002-1067-8]. [PMID: 12382046].
Hyvönen, L.; Koivistoinen, P.; Voirol, F. Food Technological Evaluation of Xylitol. Adv. Food Res., 1982, 28, 373-403. [http://dx.doi.org/10.1016/S0065-2628(08)60114-7].
Kim, S.H.; Yun, J.Y.; Kin, S.G.; Seo, J.H.; Park, J.B. Production of xylitol from d-xylose and glucose with recombinant Corynebacterium glutamicum. Enzyme Microb. Technol., 2010, 46, 366-371. [http://dx.doi.org/10.1016/j.enzmictec.2009.12.012].
Ur-Rehman, S.; Mushtaq, Z.; Zahoor, T.; Jamil, A.; Murtaza, M.A. Xylitol: A review on bioproduction, application, health benefits, and related safety issues. Crit. Rev. Food Sci. Nutr., 2015, 55(11), 1514-1528. [http://dx.doi.org/10.1080/10408398.2012.702288]. [PMID: 24915309].
Kamat, S.; Khot, M.; Zinjarde, S.; Ravikumar, A.; Gade, W.N. Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour. Technol., 2013, 135, 264-253. [http://dx.doi.org/10.1016/j.biortech.2012.11.059].
Sampaio, F.C.; Silveira, W.B.; Chaves, A.V.M.; Passos, F.M.; Coelho, J.L.C. Triagem de fungos filamentosos para produção de xilitol a partir de D-xilose. Braz. J. Microbiol., 2003, 34, 321. [http://dx.doi.org/10.1590/S1517-83822003000400007].
Misra, S.; Raghuwanshi, S.; Saxena, R.K. Fermentation behavior of an osmotolerant yeast D. hansenii for Xylitol production. Biotechnol. Prog., 2012, 28(6), 1457-1465. [http://dx.doi.org/10.1002/btpr.1630]. [PMID: 22961753].
Pal, S.; Choudhary, V.; Kumar, A.; Biswas, D.; Mondal, A.K.; Sahoo, D.K. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour. Technol., 2013, 147, 449-455. [http://dx.doi.org/10.1016/j.biortech.2013.08.065]. [PMID: 24012734].
Ding, X.; Xia, L. Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Appl. Biochem. Biotechnol., 2006, 133(3), 263-270. [http://dx.doi.org/10.1385/ABAB:133:3:263]. [PMID: 16720906].
Neuhauser, W.; Steininger, M.; Haltrich, D.; Kulbe, K.D.; Nidetzky, B. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Biotechnol. Bioeng., 1998, 60(3), 277-282. [http://dx.doi.org/10.1002/(SICI)1097-0290(19981105)60:3<277:AID-BIT2>3.0.CO;2-E]. [PMID: 10099429].
Suzuki, S.; Sugiyama, M.; Mihara, Y.; Hashiguchi, K.; Yokozeki, K. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci. Biotechnol. Biochem., 2002, 66(12), 2614-2620. [http://dx.doi.org/10.1271/bbb.66.2614]. [PMID: 12596856].
Park, S.M.; Sang, B.I.; Park, D.W.; Park, D.H. Electrochemical Reduction of Xylose to Xylitol by Whole Cells or Crude Enzyme of Candida peltata. J. Microbiol., 2005, 43, 451. [PMID: 16273038].
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053. [http://dx.doi.org/10.2337/diacare.27.5.1047]. [PMID: 15111519].
Islam, M.S. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. J. Med. Food, 2011, 14(5), 505-511. [http://dx.doi.org/10.1089/jmf.2010.0015]. [PMID: 21434778].
Petta, S.; Muratore, C.; Craxì, A. Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig. Liver Dis., 2009, 41(9), 615-625. [http://dx.doi.org/10.1016/j.dld.2009.01.004]. [PMID: 19223251].
de Albuquerque, T.L.; da Silva, I.J.; de Macedo, G.R.; Rocha, M.V.P. Biotechnological production of xylitol from lignocellulosic wastes: A review. Process Biochem., 2014, 49, 1779-1789. [http://dx.doi.org/10.1016/j.procbio.2014.07.010].
Mohamad, N.L.; Mustapa, K.S.M.; Mokhtar, M.N. Xylitol Biological Production: A Review of Recent Studies. Food Rev. Int., 2015, 31, 74. [http://dx.doi.org/10.1080/87559129.2014.961077].
Kutsch, V.K. Dental caries: An updated medical model of risk assessment. J. Prosthet. Dent., 2014, 111(4), 280-285. [http://dx.doi.org/10.1016/j.prosdent.2013.07.014]. [PMID: 24331852].
Wang, S.; He, Z.; Yuan, Q. Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle. Chem. Eng. Sci., 2017, 158, 37-40. [http://dx.doi.org/10.1016/j.ces.2016.09.026].
Van, Z.C.; Prior, B.A.; Kilian, S.G.; Kock, J.L. D-Xylose Utilization by Saccharomyces cerevisiae. Microbiology, 1989, 135, 2791-2798. [http://dx.doi.org/10.1099/00221287-135-11-2791].
Lavarack, B.P.; Griffin, G.J.; Rodman, D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy, 2002, 23, 367-380. [http://dx.doi.org/10.1016/S0961-9534(02)00066-1].
Roberto, I.C.; Mussatto, S.I.; Rodrigues, R.C.L.B. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind. Crops Prod., 2003, 17171176 [http://dx.doi.org/10.1016/S0926-6690(02)00095-X].
Kumar, R.; Wyman, C.E. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol. Bioeng., 2009, 102(2), 457-467. [http://dx.doi.org/10.1002/bit.22068]. [PMID: 18781688].
Haldrup, A.; Petersen, S.G.; Okkels, F.T. Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep., 1998, 18, 76-81. [http://dx.doi.org/10.1007/s002990050535].
Herrera, A.; Téllez, L.S.J.; Ramırez, J.A.; Vázquez, M. Production of Xylose from Sorghum Straw Using Hydrochloric Acid. J. Cereal Sci., 2003, 37, 267-274. [http://dx.doi.org/10.1006/jcrs.2002.0510].
Tschiersch, B.; Schwabe, K.; Stokov, I. On the preparation of l-(+) arabinose from sugar-beets. Pharmazie, 1981, 36, 159-160.
Ahmed, Z.; Shimonishi, T.; Bhuiyan, S.H.; Utamura, M.; Takada, G.; Izumori, K. Biochemical preparation of L-ribose and L-arabinose from ribitol: A new approach. J. Biosci. Bioeng., 1999, 88(4), 444-448. [http://dx.doi.org/10.1016/S1389-1723(99)80225-4]. [PMID: 16232643].
Szanto, S. Yudkin. The effect of dietary sucrose on blood lipids, serum insulin, platelet adhesiveness and body weight in human volunteers. J. Postgrad. Med. J., 1969, 45, 602. [http://dx.doi.org/10.1136/pgmj.45.527.602].
Seri, K.; Sanai, K.; Matsuo, N.; Kawakubo, K.; Xue, C.; Inoue, S. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism, 1996, 45(11), 1368-1374. [http://dx.doi.org/10.1016/S0026-0495(96)90117-1]. [PMID: 8931641].
Yudkin, J. Sucrose, coronary heart disease, diabetes, and obesity: do hormones provide a link? Am. Heart J., 1988, 115, 493-498. [PMID: 3277362].
Zduńczyk, Z.; Juśkiewicz, J.; Jankowski, J.; Koncicki, A. Performance and caecal adaptation of turkeys to diets without or with antibiotic and with different levels of mannan-oligosaccharide. Arch. Anim. Nutr., 2004, 58(5), 367-378. [http://dx.doi.org/10.1080/00039420400005042]. [PMID: 15595620].
Davis, M.E.; Maxwell, C.V.; Brown, D.C.; de Rodas, B.Z.; Johnson, Z.B.; Kegley, E.B.; Hellwig, D.H.; Dvorak, R.A. Effect of dietary mannan oligosaccharides and(or) pharmacological additions of copper sulfate on growth performance and immunocompetence of weanling and growing/finishing pigs. J. Anim. Sci., 2002, 80(11), 2887-2894. [http://dx.doi.org/10.2527/2002.80112887x]. [PMID: 12462256].
Dvorak, R. Jacques, K.A. Mannanoligosaccharide, fructooligosaccharide and Carbadox for pigs days 0-21 post-weaning. J. Anim. Sci., 1998, 76, 64.
Zduńczyk, Z.; Juśkiewicz, J.; Jankowski, J.; Biedrzycka, E.; Koncicki, A. Metabolic response of the gastrointestinal tract of turkeys to diets with different levels of mannan-oligosaccharide. Poult. Sci., 2005, 84(6), 903-909. [http://dx.doi.org/10.1093/ps/84.6.903]. [PMID: 15971528].
Spring, P.; Wenk, C.; Dawson, K.A.; Newman, K.E. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci., 2000, 79(2), 205-211. [http://dx.doi.org/10.1093/ps/79.2.205]. [PMID: 10735748].
Grieshop, C.M.; Flickinger, E.A.; Bruce, K.J.; Patil, A.R.; Czarnecki-Maulden, G.L.; Fahey, G.C., Jr Gastrointestinal and immunological responses of senior dogs to chicory and mannan-oligosaccharides. Arch. Anim. Nutr., 2004, 58(6), 483-493. [http://dx.doi.org/10.1080/00039420400019977]. [PMID: 15732581].
Mirelman, D.; Altmann, G.; Eshdat, Y. Screening of bacterial isolates for mannose-specific lectin activity by agglutination of yeasts. J. Clin. Microbiol., 1980, 11(4), 328-331. [PMID: 6989854].
Zaghini, A.; Martelli, G.; Roncada, P.; Simioli, M.; Rizzi, L. Mannanoligosaccharides and aflatoxin B1 in feed for laying hens: Effects on egg quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poult. Sci., 2005, 84(6), 825-832. [http://dx.doi.org/10.1093/ps/84.6.825]. [PMID: 15971517].
Lucca, P.; Ye, X.; Potrykus, I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed., 2001, 7, 43-49. [http://dx.doi.org/10.1023/A:1009661014167].
Wu, J.; Apontes, P.; Song, L.; Liang, P.; Yang, L.; Li, F. Molecular mechanism of upregulation of survivin transcription by the AT-rich DNA-binding ligand, Hoechst33342: Evidence for survivin involvement in drug resistance. Nucleic Acids Res., 2007, 35(7), 2390-2402. [http://dx.doi.org/10.1093/nar/gkm149]. [PMID: 17392340].
Stahl, P.D.; Ezekowitz, R.A.B. The mannose receptor is a pattern recognition receptor involved in host defense. Curr. Opin. In. Immunol., 1998, 10, 50-55. [http://dx.doi.org/10.1016/S0952-7915(98)80031-9].
McKenzie, E.J.; Taylor, P.R.; Stillion, R.J.; Lucas, A.D.; Harris, J.; Gordon, S.; Martinez-Pomares, L. Mannose receptor expression and function define a new population of murine dendritic cells. J. Immunol., 2007, 178(8), 4975-4983. [http://dx.doi.org/10.4049/jimmunol.178.8.4975]. [PMID: 17404279].
Sallusto, F.; Cella, M.; Danieli, C.; Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med., 1995, 182(2), 389-400. [http://dx.doi.org/10.1084/jem.182.2.389]. [PMID: 7629501].
Ren, J.L.; Sun, R.C.; Liu, C.F. Etherification of hemicelluloses from sugarcane bagasse. J. Appl. Polym. Sci., 2007, 105, 3301. [http://dx.doi.org/10.1002/app.26606].
Ren, J.L.; Sun, R.C. Applications of hemicelluloses and of their derivatives in papermaking: A review. Cellul. Chem. Technol., 2006, 40, 281-289.
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Sun, R.C.; Shi, W.B.; Hu, B. Glycidyl methacrylate derivatized xylan-rich hemicelluloses: synthesis and characterizations. Cellulose, 2012, 19, 1361-1372. [http://dx.doi.org/10.1007/s10570-012-9718-0].
Peng, F.; Ren, J.L.; Peng, B.; Xu, F.; Sun, R.C.; Sun, J.X. Rapid homogeneous lauroylation of wheat straw hemicelluloses under mild conditions. Carbohydr. Res., 2008, 343(17), 2956-2962. [http://dx.doi.org/10.1016/j.carres.2008.08.023]. [PMID: 18793765].
Daus, S.; Petzold, W.K.; Kötteritzsch, M.; Baumgaertel, A.; Schubert, U.S.; Heinze, T. Homogeneous Sulfation of Xylan from Different Sources. Macromol. Mater. Eng., 2011, 296, 551. [http://dx.doi.org/10.1002/mame.201000390].
Campbell, A.; Nesheim, M.E.; Doctor, V.M. Mechanism of potentiation of antithrombin III [AT-III] inhibition by sulfated xylans. Thromb. Res., 1987, 47(3), 341-352. [http://dx.doi.org/10.1016/0049-3848(87)90148-4]. [PMID: 2442830].
Tamada, Y. Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials, 2004, 25(3), 377-383. [http://dx.doi.org/10.1016/S0142-9612(03)00533-7]. [PMID: 14585685].
Anderson, V.R.; Perry, C.M. Pentosan polysulfate: A review of its use in the relief of bladder pain or discomfort in interstitial cystitis. Drugs, 2006, 66(6), 821-835. [http://dx.doi.org/10.2165/00003495-200666060-00006]. [PMID: 16706553].
Kumagai, K.; Shirabe, S.; Miyata, N.; Murata, M.; Yamauchi, A.; Kataoka, Y.; Niwa, M. Sodium pentosan polysulfate resulted in cartilage improvement in knee osteoarthritis--an open clinical trial. BMC Clin. Pharmacol., 2010, 10, 7. [DOI: 10.1186/1472-6904-10-7]. [PMID: 20346179].
Baba, M.; Nakajima, M.; Schols, D.; Pauwels, R.; Balzarini, J.; De Clercq, E. Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro. J. Antiviral. Res., 1988, 9, 335-343. [PMID: 2465736].
Ouidja, M.O.; Petit, E.; Kerros, M.E.; Ikeda, Y.; Morin, C.; Carpentier, G. Papy, Garcia, D. Biochem. Biophys. Res. Commun., 2007, 363, 95. [http://dx.doi.org/10.1016/j.bbrc.2007.08.113]. [PMID: 17826736].
Kollár, L.; Scholz, M.E.; Rozsos, I. Pentosan polysulfate sodium gel and heparinoid gel in the treatment of infusion thrombophlebitides - a randomized double-blindstudyPerfusion. 1994, 7, 18.
Kong, W.; Dai, Q.; Ren, J.; Ma, N. Homogeneous acylation of xylan with 3,5-dinitrobenzoyl in ionic liquid and the adsorption property. Carbohydr. Polym., 2015, 128, 105-111. [http://dx.doi.org/10.1016/j.carbpol.2015.04.006]. [PMID: 26005145].
Butler, A.R. The Jaffé reaction. Identification of the coloured species. Clin. Chim. Acta, 1975, 59(2), 227-232. [http://dx.doi.org/10.1016/0009-8981(75)90033-9]. [PMID: 1120366].
Yang, Y.; Gao, B.J. Wang, J. Adsorption of dinitrobenzoate-modified HEMA/NVP microsphere for creatinine and the mechanism of chemisorption. Acta Polym., 2008, 6, 587. [http://dx.doi.org/10.3724/SP.J.1105.2008.00587].
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Sun, R.C. Homogeneous synthesis of hemicellulosic succinates with high degree of substitution in ionic liquid. Carbohydr. Polym., 2011, 86, 1768-1774. [http://dx.doi.org/10.1016/j.carbpol.2011.07.018].
Peng, X.W.; Ren, J.L.; Sun, R.C. Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromolecules, 2010, 11(12), 3519-3524. [http://dx.doi.org/10.1021/bm1010118]. [PMID: 21053970].
Rokhade, A.P.; Agnihotri, S.A.; Patil, S.A.; Mallikarjuna, N.N.; Kulkarni, P.V.; Aminabhavi, T.M. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr. Polym., 2006, 65, 243-252. [http://dx.doi.org/10.1016/j.carbpol.2006.01.013].
Bruneel, D.; Schacht, E. Chemical modification of pullulan: 3. Succinoylation. Polymer (Guildf.), 1994, 35, 2656-2658. [http://dx.doi.org/10.1016/0032-3861(94)90395-6].
Kim, S.H.; Won, C.Y.; Chu, C.C. Synthesis and characterization of dextran-maleic acid based hydrogel. J. Biomed. Mater. Res., 1999, 46(2), 160-170. [http://dx.doi.org/10.1002/(SICI)1097-4636(199908)46:2<160:AID-JBM4>3.0.CO;2-P]. [PMID: 10379993].
Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci., 1961, (50), 874-875. [https://doi.org/10.1002/jps.2600501018].
Methacanon, P.; Chaikumpollert, O.; Thavorniti, P.; Suchiva, K. Hemicellulosic polymer from Vetiver grass and its physicochemical properties. Carbohydr. Polym., 2003, 54, 335-342. [http://dx.doi.org/10.1016/S0144-8617(03)00182-6].
Heinze, T.; Koschella, A. Carboxymethyl Ethers of Cellulose and Starch – A Review. Macromol. Symp., 2005, 223, 13. [http://dx.doi.org/10.1002/masy.200550502].
Chen, S.Y.; Zou, Y.; Yan, Z.Y.; Shen, W.; Shi, S.K.; Zhang, X.; Wang, H. Carboxymethylated-bacterial cellulose for copper and lead ion removal. J. Hazard. Mater., 2009, 161, 1355-1359. [http://dx.doi.org/10.1016/j.jhazmat.2008.04.098]. [PMID: 18538922].
Fan, X.R.; Feng, Z.H. Effects of carboxymethyl-modified hemicellulose on the activity of T lymphocytes and the amount of immunocytes. Zhongguo yao li xue bao., 1987, 8, (2), 169.-173.
Ebringerová, A.; Hromadkova, Z.; Kačuráková, M.; Antal, M. Quaternized xylans: synthesis and structural characterization. Carbohydr. Polym., 1994, 24, 301-308. [http://dx.doi.org/10.1016/0144-8617(94)90075-2].
Antal, M.; Ebringerová, A.; Das Micko, M.M. Kationisierte Hemi cellulosen aus Espenholzmehl und ihr Einsatz in der Papierherstellung. Das Papier., 1991, 45, 232-235.
Ren, J.L.; Sun, R.C.; Liu, C.F. Etherification of hemicelluloses from sugarcane bagasse. J. Appl. Polym. Sci., 2007, 105, 3301. [http://dx.doi.org/10.1002/app.26606].
Ebringerová, A.; Belicová, A.; Ebringer, L. Antimicrobial activity of quaternized heteroxylans. J. Microbiol. Biotechnol., 1995, 10, 640-644. [http://dx.doi.org/10.1007/BF00327950].
Yin, Y.; Ye, F.; Cui, J.; Zhang, F.; Li, X.; Yao, K. Preparation and characterization of macroporous chitosan–gelatin/β‐tricalcium phosphate composite scaffolds for bone tissue engineering. J. Biomed. Mater. Res., 2003, 67, 844. [http://dx.doi.org/10.1002/jbm.a.10153].
Jagur, G. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. J. Polym. Adv. Technol, 2010, 21, 27. [DOI: 10.1002/pat.1504].
Gabrielii, I.; Gatenholm, P. Preparation and properties of hydrogels based on hemicellulose. J. Appl. Polym. Sci., 1998, 69, 1661.
Gabrielii, I.; Gatenholm, P.; Glasser, W.G.; Jain, R.K.; Kenne, L. Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydr. Polym., 2000, 43, 367-374. [http://dx.doi.org/10.1016/S0144-8617(00)00181-8].
Peng, X.W.; Zhong, L.X.; Ren, J.L.; Sun, R.C. Highly Effective Adsorption of Heavy Metal Ions from Aqueous Solutions by Macroporous Xylan-Rich Hemicelluloses-Based Hydrogel. J. Agr. Food Chem., 2012, 60, 3909-3916. [http://dx.doi.org/10.1021/jf300387q].
Wade, R.J.; Bassin, E.J.; Gramlich, W.M.; Burdick, J.A. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater., 2015, 27(8), 1356-1362. [http://dx.doi.org/10.1002/adma.201404993]. [PMID: 25640972].
Söderqvist, L.M.; Ranucci, E.; Albertsson, A.C. Biodegradable Polymers from Renewable Sources. New Hemicellulose‐Based Hydrogels. Macromol. Rapid Commun., 2001, 22, 962. [http://dx.doi.org/10.1002/1521-3927(20010801)22:12<962:AID-MARC962>3.0.CO;2-E].
Tanaka, T.; Fillmore, D.; Sun, S.T.; Nishio, I.; Swislow, G.; Shah, A. Phase Transitions in Ionic Gels. Phys. Rev. Lett., 1980, 45, 1636. [http://dx.doi.org/10.1103/PhysRevLett.45.1636].
Du, J.; Li, B.; Li, C.; Zhang, Y.; Yu, G.; Wang, H.; Mu, X. Tough and multi-responsive hydrogel based on the hemicellulose from the spent liquor of viscose process. Int. J. Biol. Macromol., 2016, 88, 451-456. [http://dx.doi.org/10.1016/j.ijbiomac.2016.04.013]. [PMID: 27064089].
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Peng, F.; Sun, R.C. Xylan-rich Hemicelluloses-graft-Acrylic Acid Ionic Hydrogels with Rapid Responses to pH, Salt, and Organic Solvents. J. Agr. Food Chem., 2011, 59, 8208-8215. [http://dx.doi.org/10.1021/jf201589y].
Sun, X.F.; Wang, H.H.; Jing, Z.X.; Mohanathas, R. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr. Polym., 2013, 92(2), 1357-1366. [http://dx.doi.org/10.1016/j.carbpol.2012.10.032]. [PMID: 23399165].
Tang, Y.; Singh, J. Controlled delivery of aspirin: Effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int. J. Pharm., 2008, 357(1-2), 119-125. [http://dx.doi.org/10.1016/j.ijpharm.2008.01.053]. [PMID: 18329202].
Ceballos, A.; Cirri, M.; Maestrelli, F.; Corti, G.; Mura, P. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco, 2005, 60(11-12), 913-918. [http://dx.doi.org/10.1016/j.farmac.2005.07.002]. [PMID: 16129436].
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polym, 2008, 49, 1993-2007. [http://dx.doi.org/10.1016/j.polymer.2008.01.027].
Yang, J.Y.; Zhou, X.S. Fang. Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. J. Carbohydr. Polym., 2011, 86, 1113-1117. [http://dx.doi.org/10.1016/j.carbpol.2011.05.043].
Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev., 2012, 64, 154-162. [http://dx.doi.org/10.1016/j.addr.2012.09.012].
Gao, C.; Ren, J.; Zhao, C.; Kong, W.; Dai, Q.; Chen, Q.; Liu, C.; Sun, R. Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr. Polym., 2016, 151, 189-197. [http://dx.doi.org/10.1016/j.carbpol.2016.05.075]. [PMID: 27474557].
Gao, C.D.; Ren, J.L.; Kong, W.Q.; Sun, R.C.; Chen, Q.F. Comparative study on temperature/pH sensitive xylan-based hydrogels: their properties and drug controlled release. RSC Adv., 2015, 5, 90671. [DOI: 10.1039/c5ra16703e].
Sun, X.F.; Liu, B.; Jing, Z.; Wang, H. Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr. Polym., 2015, 118, 16-23. [http://dx.doi.org/10.1016/j.carbpol.2014.11.013]. [PMID: 25542101].
Luo, X.G.; Liu, S.L.; Zhou, J.P.; Zhang, L. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J. Mater. Chem., 2009, 19(21), 3538-3545. [http://dx.doi.org/10.1039/b900103d].
Satarkar, N.S.; Hilt, J.Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Control. Release, 2008, 130(3), 246-251. [http://dx.doi.org/10.1016/j.jconrel.2008.06.008]. [PMID: 18606201].
Meenach, S.A.; Hilt, J.Z.; Anderson, K.W. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater., 2010, 6(3), 1039-1046. [http://dx.doi.org/10.1016/j.actbio.2009.10.017]. [PMID: 19840875].
Sun, X.F.; Liu, B.; Jing, Z.; Wang, H. Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr. Polym., 2015, 118, 16-23. [http://dx.doi.org/10.1016/j.carbpol.2014.11.013]. [PMID: 25542101].
Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.C. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules, 2015, 16(8), 2522-2528. [http://dx.doi.org/10.1021/acs.biomac.5b00801]. [PMID: 26196600].
Dai, Q.Q.; Ren, J.L.; Peng, F.; Chen, X.F.; Gao, C.D.; Sun, R.C. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection. Materials (Basel), 2016, 9, 690. [http://dx.doi.org/10.3390/ma9080690].
Gao, Y.; Wei, Z.; Li, F.; Yang, Z.M.; Chen, Y.M.; Zrinyi, M. Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem., 2014, 16(3), 1255. [http://dx.doi.org/10.1039/C3GC41535J].
Sumaru, K.; Ohi, K.; Takagi, T.; Kanamori, T.; Shinbo, T. Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir, 2006, 22(9), 4353-4356. [http://dx.doi.org/10.1021/la052899+]. [PMID: 16618186].
Tomatsu, I.; Hashidzume, A.; Harada, A. Photoresponsive Hydrogel System Using Molecular Recognition of α-Cyclodextrin. Macromolecules, 2005, 38, 5223-5227. [http://dx.doi.org/10.1021/ma050670v].
Cao, X.F.; Peng, X.W.; Zhong, L.X.; Sun, R.C. Multiresponsive Hydrogels Based on Xylan-Type Hemicelluloses and Photoisomerized Azobenzene Copolymer as Drug Delivery Carrier. J. Agr. Food Chem., 2014, 62, 10000-10007. [http://dx.doi.org/10.1021/jf504040s].
Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. (Maywood), 2007, 232(10), 1266-1274. [http://dx.doi.org/10.3181/0703-MR-67]. [PMID: 17959839].
Tong, X.; Wang, G.; Soldera, A.; Zhao, Y. How can azobenzene block copolymer vesicles be dissociated and reformed by light? J. Phys. Chem. B, 2005, 109(43), 20281-20287. [http://dx.doi.org/10.1021/jp0524274]. [PMID: 16853623].
Liu, X.; Jiang, M. Optical switching of self‐assembly: Micellization and micelle–hollow‐sphere transition of hydrogen‐bonded polymers. Angew. Chem., 2006, 118, 3930. [http://dx.doi.org/10.1002/ange.200504364].
Qi, X.M.; Chen, G.G.; Gong, X.D.; Fu, G.Q.; Niu, Y.S.; Bian, J.; Sun, R.C. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension. Sci. Rep., 2016, 6, 33603.
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Peng, F.; Sun, R.C. Xylan-rich Hemicelluloses-graft-Acrylic Acid Ionic Hydrogels with Rapid Responses to pH, Salt, and Organic Solvents. J. Agr. Food Chem., 2011, 59, 8208-8215. [http://dx.doi.org/10.1021/jf201589y].
Kong, W.Q.; Huang, D.Y.; Xu, G.B.; Ren, J.L.; Liu, C.F.; Zhao, L.H. Sun. R.C. Graphene Oxide/Polyacrylamide/Aluminum Ion Cross‐Linked Carboxymethyl Hemicellulose Nanocomposite Hydrogels with Very Tough and Elastic Properties. Chem. Asian J., 2016, 11, 1697. [http://dx.doi.org/10.1002/asia.201600138]. [PMID: 27062081].
Rinaudo, M. Polysaccharides: Structural Diversity and Functional Versatility., 2nd ed.; CRC Press. 2004, 2, 237. [http://dx.doi.org/10.1201/9781420030822].
Chen, D.; Guo, P.; Chen, S.; Cao, Y.; Ji, W.; Lei, X.; Liu, L.; Zhao, P.; Wang, R.; Qi, C.; Liu, Y.; He, H. Properties of xyloglucan hydrogel as the biomedical sustained-release carriers. J. Mater. Sci. Mater. Med., 2012, 23(4), 955-962. [http://dx.doi.org/10.1007/s10856-012-4564-z]. [PMID: 22354327].
Kuzmenko, V.; Hägg, D.; Toriz, G.; Gatenholm, P. In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydr. Polym., 2014, 102, 862-868. [http://dx.doi.org/10.1016/j.carbpol.2013.10.077]. [PMID: 24507357].
Markstedt, K.; Xu, W.; Liu, J.; Xu, C.; Gatenholm, P. Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce. Carbohydr. Polym., 2017, 157, 1349-1357. [http://dx.doi.org/10.1016/j.carbpol.2016.11.009]. [PMID: 27987842].
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31, 603-632. [http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001].
Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27. [https://doi.org/10.1016/S1381-5148(00)00038-9].
Wu, S.; Hu, J.; Wei, L.; Du, Y.; Shi, X.; Zhang, L. Antioxidant and antimicrobial activity of Maillard reaction products from xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems. Food Chem., 2014, 148, 196-203. [http://dx.doi.org/10.1016/j.foodchem.2013.10.044]. [PMID: 24262546].
Wu, S.; Du, Y.; Hu, Y.; Shi, X.; Zhang, L. Antioxidant and antimicrobial activity of xylan-chitooligomer-zinc complex. Food Chem., 2013, 138(2-3), 1312-1319. [http://dx.doi.org/10.1016/j.foodchem.2012.10.118]. [PMID: 23411248].
Jeon, Y.J.; Park, P.J.; Kim, S.K. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym., 2001, 44, 71-76. [http://dx.doi.org/10.1016/S0144-8617(00)00200-9].
Fernandes, G.; Nair, M.; Onoe, K.; Tanaka, T.; Floyd, R.; Good, R.A. Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc. Natl. Acad. Sci. USA, 1979, 76(1), 457-461. [http://dx.doi.org/10.1073/pnas.76.1.457]. [PMID: 311474].
Okamoto, Y.; Yano, R.; Miyatake, K.; Tomohiro, I.; Shigemasa, Y.; Minami, S. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym., 2003, 53, 337-342. [http://dx.doi.org/10.1016/S0144-8617(03)00076-6].
Janvikul, W.; Uppanan, P.; Thavornyutikarn, B.; Krewraing, J.; Prateepasen, R. In vitro comparative hemostatic studies of chitin, chitosan, and their derivatives. J. Appl. Polym. Sci., 2006, 102, 445. [http://dx.doi.org/10.1002/app.24192].
Guan, Y.; Qi, X.M.; Chen, G.G.; Peng, F.; Sun, R.C. Facile approach to prepare drug-loading film from hemicelluloses and chitosan. Carbohydr. Polym., 2016, 153, 542-548. [http://dx.doi.org/10.1016/j.carbpol.2016.08.008]. [PMID: 27561527].
Han, F.; Dong, Y.; Song, A.H.; Yin, R.; Li, S.M. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride. Appl. Surf. Sci., 2014, 311, 626-634. [http://dx.doi.org/10.1016/j.apsusc.2014.05.125].
Tang, C.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. Int. J. Pharm., 2014, 473(1-2), 434-441. [http://dx.doi.org/10.1016/j.ijpharm.2014.07.039]. [PMID: 25079432].
Bush, J.R.; Liang, H.; Dickinson, M.; Botchwey, E.A. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym. Adv. Technol., 2016, 27(8), 1050-1055. [http://dx.doi.org/10.1002/pat.3767]. [PMID: 27587941].
Liu, J.; Chinga, C.G.; Cheng, F.; Xu, W.; Willfor, S.; Syverud, K.; Xu, C. Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 2016, 23, 3129-3143. [http://dx.doi.org/10.1007/s10570-016-1038-3].
Prakobna, K.; Kisonen, V.; Xu, C.; Berglund, L.A. Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J. Mater. Sci., 2015, 50, 7413-7423. [http://dx.doi.org/10.1007/s10853-015-9299-z].
Köhnke, T.; Elder, T.; Theliander, H.; Ragauskas, A.J. Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr. Polym., 2014, 100, 24-30. [http://dx.doi.org/10.1016/j.carbpol.2013.03.060]. [PMID: 24188834].
Guan, Y.; Zhang, B.; Bian, J.; Peng, F.; Sun, R.C. Nanoreinforced hemicellulose-based hydrogels prepared by freeze–thaw treatment. Cellulose, 2014, 21, 1709-1721. [http://dx.doi.org/10.1007/s10570-014-0211-9].
Tanodekaew, S.; Channasanon, S.; Uppanan, P. Xylan/polyvinyl alcohol blend and its performance as hydrogel. J. Appl. Polym. Sci., 2006, 100, 1914. [http://dx.doi.org/10.1002/app.22919].

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [2430 - 2455]
Pages: 26
DOI: 10.2174/0929867324666170705113657
Price: $58

Article Metrics

PDF: 17
PRC: 1