Immune Modulation of Asian Folk Herbal Medicines and Related Chemical Components for Cancer Management

Author(s): Manee Patanapongpibul , Qiao-Hong Chen* .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 17 , 2019

  Journal Home
Translate in Chinese

Abstract:

Various exciting immunotherapies aiming to address immune deficiency induced by tumor and treatment hold promise in improving the quality of life and survival rate of cancer patients. It is thus becoming an important and rewarding arena to develop some appropriate immune modulators for cancer prevention and/or treatment. Exploitation of natural products-based immune modulators is of particular imperative because the potential of numerous traditional herbal medicines and edible mushrooms in boosting human immune system has long been verified by folklore practices. This review summarizes the immune modulations of various herbal medicines and edible mushrooms, their crude extracts, and/or key chemical components that have been, at least partly, associated with their cancer management. This article also tabulates the origin of species, key chemical components, and clinical studies of these herbal medicines and edible mushrooms.

Keywords: Natural products, tonic herbs, edible mushrooms, immune modulators, cancer treatment, herbal medicines.

[1]
McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J., 2006, 26, 154-158.
[PMID: 16789469]
[2]
Swann, J.B.; Smyth, M.J. Immune surveillance of tumors. J. Clin. Invest., 2007, 117(5), 1137-1146.
[http://dx.doi.org/10.1172/JCI31405] [PMID: 17476343]
[3]
Poupot, M.; Pont, F.; Fournié, J-J. Profiling blood lymphocyte interactions with cancer cells uncovers the innate reactivity of human γ δ T cells to anaplastic large cell lymphoma. J. Immunol., 2005, 174(3), 1717-1722.
[http://dx.doi.org/10.4049/jimmunol.174.3.1717] [PMID: 15661936]
[4]
Hadden, J.W. Immunodeficiency and cancer: prospects for correction. Int. Immunopharmacol., 2003, 3(8), 1061-1071.
[http://dx.doi.org/10.1016/S1567-5769(03)00060-2] [PMID: 12860163]
[5]
Rohrer, J.W.; Barsoum, A.L.; Coggin, J.H., Jr Identification of oncofetal antigen/immature laminin receptor protein epitopes that activate BALB/c mouse OFA/iLRP-specific effector and regulatory T cell clones. J. Immunol., 2006, 176(5), 2844-2856.
[http://dx.doi.org/10.4049/jimmunol.176.5.2844] [PMID: 16493041]
[6]
Ehrke, M.J. Immunomodulation in cancer therapeutics. Int. Immunopharmacol., 2003, 3(8), 1105-1119.
[http://dx.doi.org/10.1016/S1567-5769(03)00021-3] [PMID: 12860167]
[7]
Prager, M.D.; Gordon, W.C. Enhanced response to chemoimmunotherapy and immunoprophylaxis with the use of tumor-associated antigens with a lipophilic agent. Cancer Res., 1978, 38(7), 2052-2057.
[PMID: 657141]
[8]
Salgaller, M.L.; Lodge, P.A. Use of cellular and cytokine adjuvants in the immunotherapy of cancer. J. Surg. Oncol., 1998, 68(2), 122-138.
[http://dx.doi.org/10.1002/(SICI)1096-9098(199806)68:2<122:AID-JSO10>3.0.CO;2-4] [PMID: 9624043]
[9]
Mitchell, M.S. Immunotherapy as part of combinations for the treatment of cancer. Int. Immunopharmacol., 2003, 3(8), 1051-1059.
[http://dx.doi.org/10.1016/S1567-5769(03)00019-5] [PMID: 12860162]
[10]
Hu, B.; Wang, S-S.; Du, Q. Traditional Chinese medicine for prevention and treatment of hepatocarcinoma: From bench to bedside. World J. Hepatol., 2015, 7(9), 1209-1232.
[http://dx.doi.org/10.4254/wjh.v7.i9.1209] [PMID: 26019736]
[11]
Liu, T.; Ye, L.; Guan, X.; Liang, X.; Li, C.; Sun, Q.; Liu, Y.; Chen, S.; Bang, F.; Liu, B. Immunopontentiating and antitumor activities of a polysaccharide from Pulsatilla chinensis (Bunge) Regel. Int. J. Biol. Macromol., 2013, 54, 225-229.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.012] [PMID: 23246414]
[12]
Yin, S-Y.; Wei, W-C.; Jian, F-Y.; Yang, N-S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med., 2013, 2013, 302426.
[http://dx.doi.org/10.1155/2013/302426] [PMID: 23956768]
[13]
Chen, L.; Yu, J. Modulation of Toll-like receptor signaling in innate immunity by natural products. Int. Immunopharmacol., 2016, 37, 65-70.
[http://dx.doi.org/10.1016/j.intimp.2016.02.005] [PMID: 26899347]
[14]
Li, J.; Li, Q.; Feng, T.; Li, K. Aqueous extract of Solanum nigrum inhibit growth of cervical carcinoma (U14) via modulating immune response of tumor bearing mice and inducing apoptosis of tumor cells. Fitoterapia, 2008, 79(7-8), 548-556.
[http://dx.doi.org/10.1016/j.fitote.2008.06.010] [PMID: 18687388]
[15]
Hu, K.; Kobayashi, H.; Dong, A.; Jing, Y.; Iwasaki, S.; Yao, X. Antineoplastic agents. III: Steroidal glycosides from Solanum nigrum. Planta Med., 1999, 65(1), 35-38.
[http://dx.doi.org/10.1055/s-1999-13958] [PMID: 10083842]
[16]
Son, Y.O.; Kim, J.; Lim, J.C.; Chung, Y.; Chung, G.H.; Lee, J.C. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem. Toxicol., 2003, 41(10), 1421-1428.
[http://dx.doi.org/10.1016/S0278-6915(03)00161-3] [PMID: 12909277]
[17]
Saijo, R.; Murakami, K.; Nohara, T.; Tomimatsu, T.; Sato, A.; Matsuoka, K. [Studies on the constituents of Solanum plants. II. On the constituents of the immature berries of Solanum nigrum L. (author’s transl) Yakugaku Zasshi, 1982, 102(3), 300-305.
[http://dx.doi.org/10.1248/yakushi1947.102.3_300] [PMID: 7108762]
[18]
Ikeda, T.; Tsumagari, H.; Nohara, T. Steroidal oligoglycosides from Solanum nigrum. Chem. Pharm. Bull. (Tokyo), 2000, 48(7), 1062-1064.
[http://dx.doi.org/10.1248/cpb.48.1062] [PMID: 10923841]
[19]
Li, J.; Li, Q.; Peng, Y.; Zhao, R.; Han, Z.; Gao, D. Protective effects of fraction 1a of polysaccharides isolated from Solanum nigrum Linne on thymus in tumor-bearing mice. J. Ethnopharmacol., 2010, 129(3), 350-356.
[http://dx.doi.org/10.1016/j.jep.2010.03.033] [PMID: 20371278]
[20]
Ikekawa, T. Beneficial effects of mushrooms, edible and medicinal, on health care. Int. J. Med. Mushrooms, 2001, 3(2-3), 1.
[http://dx.doi.org/10.1615/IntJMedMushr.v3.i2-3.30]
[21]
Jeong, M-H.; Lee, C-M.; Lee, S-W.; Seo, S-Y.; Seo, M-J.; Kang, B-W.; Jeong, Y-K.; Choi, Y-J.; Yang, K-M.; Jo, W-S. Cordycepin-enriched Cordyceps militaris induces immunomodulation and tumor growth delay in mouse-derived breast cancer. Oncol. Rep., 2013, 30(4), 1996-2002.
[http://dx.doi.org/10.3892/or.2013.2660] [PMID: 23921598]
[22]
Lee, H.; Kim, Y.J.; Kim, H.W.; Lee, D.H.; Sung, M-K.; Park, T. Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol. Pharm. Bull., 2006, 29(4), 670-674.
[http://dx.doi.org/10.1248/bpb.29.670] [PMID: 16595897]
[23]
Yoo, H-S.; Shin, J-W.; Cho, J-H.; Son, C-G.; Lee, Y-W.; Park, S-Y.; Cho, C-K. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol. Sin., 2004, 25(5), 657-665.
[PMID: 15132834]
[24]
Ou, C.-C.; Hsiao, Y.-M.; Hou, T.-Y.; Wu, M.-F.; Ko, J.-L. Fungal immunomodulatory proteins alleviate docetaxel induced adverse effects. J. Funct. Foods., 2015, 19(Part A), 451-463.
[25]
Li, W.; Chen, C.; Saud, S.M.; Geng, L.; Zhang, G.; Liu, R.; Hua, B. Fei-Liu-Ping ointment inhibits lung cancer growth and invasion by suppressing tumor inflammatory microenvironment. BMC Complement. Altern. Med., 2014, 14, 153-153.
[http://dx.doi.org/10.1186/1472-6882-14-153] [PMID: 24885825]
[26]
Ingalhalli, R.S.; Patel, K.J. Cordyceps militaris (L.: Fr.) Link - An important medicinal mushroom. J Pharmacog. Phytochemistry, 2013, 2, 315-319.
[27]
Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res., 2008, 22(6), 709-724.
[http://dx.doi.org/10.1002/ptr.2362] [PMID: 18446848]
[28]
Li, X.; Chen, D.; Mai, Y.; Wen, B.; Wang, X. Concordance between antioxidant activities in vitro and chemical components of Radix Astragali (Huangqi). Nat. Prod. Res., 2012, 26(11), 1050-1053.
[http://dx.doi.org/10.1080/14786419.2010.551771] [PMID: 21978321]
[29]
Jee, H-S.; Chang, K-H.; Park, S-H.; Kim, K-T.; Paik, H-D. Morphological characterization, chemical components, and biofunctional activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng roots: A comparative study. Food Rev. Int., 2014, 30(2), 91-111.
[http://dx.doi.org/10.1080/87559129.2014.883631]
[30]
Duan, C-L.; Jiang, Y.; Jiang, Y.; Lin, C-R.; Liu, J-X.; Tu, P-F. Liposoluble chemical constituents from the fibrous root of Ohiopogon japonicas. J. Chin. Pharm. Sci., 2009, 18(3), 236-239.
[31]
Hiraoka, N.; Chang, J-I.; Bohm, L.R.; Bohm, B.A. Furanocoumarin and polyacetylenic compound composition of wild Glehnia littoralis in North America. Biochem. Syst. Ecol., 2002, 30(4), 321-325.
[http://dx.doi.org/10.1016/S0305-1978(01)00104-1]
[32]
Liu, W-J.; Hou, X-Q.; Chen, H.; Liang, J-Y.; Sun, J-B. Chemical constituents from Agrimonia pilosa Ledeb. and their chemotaxonomic significance. Nat. Prod. Res., 2016, 30(21), 2495-2499.
[http://dx.doi.org/10.1080/14786419.2016.1198351] [PMID: 27313126]
[33]
Voronkova, M.S.; Vysochina, G.I. The Bistorta Scop. (Polygonaceae) genus: chemical composition and biological activity. Khim. Inter. Ustoichivogo Razvit., 2014, 22(3), 209-215.
[34]
Peng, J.Y.; Fan, G.R.; Wu, Y.T. Isolation and structure identification of chemical constituents from Patrinia villosa. Yao Xue Xue Bao, 2006, 41(3), 236-240.
[PMID: 16758995]
[35]
Cao, X.; Zhang, M.; Li, J.; Xiao, P.; Chen, S.; Chen, S. Alkaloid constituents of Fritillaria cirrhosa. Zhongcaoyao, 2009, 40(1), 15-17.
[36]
Belge, B.; Llovera, M.; Comabella, E.; Graell, J.; Lara, I. Fruit cuticle composition of a melting and a nonmelting peach cultivar. J. Agric. Food Chem., 2014, 62(15), 3488-3495.
[http://dx.doi.org/10.1021/jf5003528] [PMID: 24673591]
[37]
Raj, V.; Jain, A.; Chaudhary, J. Prunus armeniaca (Apricot): an overview. J. Pharm. Res., 2012, 5(8), 3964-3966.
[38]
Zhou, S-K.; Zhang, R-L.; Xu, Y-F.; Bi, T-N. Antioxidant and immunity activities of Fufang Kushen injection liquid. Molecules, 2012, 17(6), 6481-6490.
[http://dx.doi.org/10.3390/molecules17066481] [PMID: 22728348]
[39]
Zhang, C.; Ma, Y.; Gao, H-M.; Zhang, Q-W.; Wang, Z-M. Advance on chemical constituents in Sophora flavescens. Zhongguo Shiyan Fangjixue Zazhi, 2014, 20(4), 205-214.
[40]
Gan, G.; Yu, W.; Liu, Y. Chemical constituents of Smilax china L. Shizhen Guoyi Guoyao, 2007, 18(6), 1404-1405.
[41]
Pan, B.; Cheng, T.; Nan, K-J.; Qiu, G-Q.; Sun, X-C. Effect of Fuzheng Yiliu decoction combined with chemotherapy on patients with intermediate and late stage gastrointestinal cancer. World J. Gastroenterol., 2005, 11(3), 439-442.
[http://dx.doi.org/10.3748/wjg.v11.i3.439] [PMID: 15637764]
[42]
Liu, D-L.; Bao, H-Y.; Liu, Y. Progress on chemical constituents and pharmacological effects of Astragali Radix in recent five years. Shipin Yu Yaopin, 2014, 16(1), 68-70.
[43]
Yan, Ye. Chou, G-X.; Hui Wang; Chu, J-H.; Fong, W-F.; Yu, Z-L. Effects of sesquiterpenes isolated from largehead atractylodes rhizome on growth, migration, and differentiation of B16 melanoma cells. Integr. Cancer Ther., 2011, 10(1), 92-100.
[http://dx.doi.org/10.1177/1534735410378660] [PMID: 20713377]
[44]
Dong, T.T.X.; Cui, X.M.; Ma, X.Q.; Tsim, K.W.K. Chemical comparison of Radix Notoginseng (Sanqi) from different regions of China. Anal. Sci., 2001, 17, (asia), a467-a470.
[45]
Liang, S.; Chen, F.; Tang, Q.; Luo, J.; Zeng, Y. Study of chemical constituents from Herba Hedyotis Diffusae. Zhongyao Xinyao Yu Linchuang Yaoli, 2012, 23(6), 655-657.
[46]
Chen, P.; Sun, J.; Xie, N.; Shi, Y. Chemical constituents of dayecai (Selaginella doederleinii). Zhongcaoyao, 1995, 26(8), 397-399.
[47]
Cao, Z-Y.; Chen, X-Z.; Liao, L-M.; Peng, J.; Hu, H-X.; Liu, Z-Z.; Du, J. Fuzheng Yiliu Granule inhibits the growth of hepatocellular cancer by regulating immune function and inducing apoptosis in vivo and in vitro. Chin. J. Integr. Med., 2011, 17(9), 691-697.
[http://dx.doi.org/10.1007/s11655-011-0847-3] [PMID: 21910071]
[48]
Wu, X-H.; Liu, Z-D.; Yang, E-L.; Li, M.; Di, F.; Lin, W-H. Research progress in extraction process and quality control of major chemical components in Ligustrum lucidum. Zhongyiyao Xuebao, 2014, 42(5), 101-103.
[49]
Wang, Y.; Liu, Y.; Yin, J. Progress in studies of Rhizoma dioscoreae septemlobae. Shenyang Yaoke Daxue Xuebao, 2007, 24(6), 374-379.
[50]
Li, X.; Chen, D.; Mai, Y.; Wen, B.; Wang, X. Concordance between antioxidant activities in vitro and chemical components of Radix Astragali (Huangqi). Nat. Prod. Res., 2012, 26(11), 1050-1053.
[http://dx.doi.org/10.1080/14786419.2010.551771] [PMID: 21978321]
[51]
Schäfer, G.; Kaschula, C.H. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer. Agents Med. Chem., 2014, 14(2), 233-240.
[http://dx.doi.org/10.2174/18715206113136660370] [PMID: 24237225]
[52]
Fleischauer, A.T.; Arab, L. Garlic and cancer: a critical review of the epidemiologic literature. J. Nutr., 2001, 131(3s), 1032S-1040S.
[http://dx.doi.org/10.1093/jn/131.3.1032S] [PMID: 11238811]
[53]
Lamm, D.L.; Riggs, D.R. Enhanced immunocompetence by garlic: role in bladder cancer and other malignancies. J. Nutr., 2001, 131(3s), 1067S-1070S.
[http://dx.doi.org/10.1093/jn/131.3.1067S] [PMID: 11238818]
[54]
Kyo, E.; Uda, N.; Kasuga, S.; Itakura, Y. Immunomodulatory effects of aged garlic extract. J. Nutr., 2001, 131(3s), 1075S-1079S.
[http://dx.doi.org/10.1093/jn/131.3.1075S] [PMID: 11238820]
[55]
Kyo, E.; Uda, N.; Suzuki, A.; Kakimoto, M.; Ushijima, M.; Kasuga, S.; Itakura, Y. Immunomodulation and antitumor activities of aged garlic extract. Phytomedicine, 1998, 5(4), 259-267.
[http://dx.doi.org/10.1016/S0944-7113(98)80064-0] [PMID: 23195897]
[56]
Ishikawa, H.; Saeki, T.; Otani, T.; Suzuki, T.; Shimozuma, K.; Nishino, H.; Fukuda, S.; Morimoto, K. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J. Nutr., 2006, 136(3)(Suppl.), 816S-820S.
[http://dx.doi.org/10.1093/jn/136.3.816S] [PMID: 16484572]
[57]
Kuttan, G. Immunomodulatory effect of some naturally occuring sulphur-containing compounds. J. Ethnopharmacol., 2000, 72(1-2), 93-99.
[http://dx.doi.org/10.1016/S0378-8741(00)00211-7] [PMID: 10967459]
[58]
Chang, H-P.; Huang, S-Y.; Chen, Y-H. Modulation of cytokine secretion by garlic oil derivatives is associated with suppressed nitric oxide production in stimulated macrophages. J. Agric. Food Chem., 2005, 53(7), 2530-2534.
[http://dx.doi.org/10.1021/jf048601n] [PMID: 15796590]
[59]
Chang, H-P.; Chen, Y-H. Differential effects of organosulfur compounds from garlic oil on nitric oxide and prostaglandin E2 in stimulated macrophages. Nutrition, 2005, 21(4), 530-536.
[http://dx.doi.org/10.1016/j.nut.2004.07.018] [PMID: 15811776]
[60]
Singh, S.M.; Singh, N.; Singh, V. Immunomodulatory and anti-tumor actions of Tinospora cordifolia (Guduchi); From Natural Products, 2009, pp. 114-136.
[61]
Singh, S.S.; Pandey, S.C.; Srivastava, S.; Gupta, V.S.; Patro, B.; Ghosh, A.C. Chemistry and medicinal properties of Tinospora cordifolia (Guduchi). Indian J. Pharmacol., 2003, 35(2), 83-91.
[62]
Mizuno, T.; Wasa, T.; Ito, H.; Suzuki, C.; Ukai, N. Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called yamabushitake or houtou. Biosci. Biotechnol. Biochem., 1992, 56(2), 347-348.
[http://dx.doi.org/10.1271/bbb.56.347] [PMID: 1368310]
[63]
Son, C.G.; Shin, J.W.; Cho, J.H.; Cho, C.K.; Yun, C-H.; Chung, W.; Han, S.H. Macrophage activation and nitric oxide production by water soluble components of Hericium erinaceum. Int. Immunopharmacol., 2006, 6(8), 1363-1369.
[http://dx.doi.org/10.1016/j.intimp.2006.03.005] [PMID: 16782550]
[64]
Son, C-G.; Shin, J-W.; Cho, J-H.; Cho, C-K.; Yun, C-H.; Han, S-H. Induction of murine interleukin-1 beta expression by water-soluble components from Hericium erinaceum. Acta Pharmacol. Sin., 2006, 27(8), 1058-1064.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00321.x] [PMID: 16867259]
[65]
Ji, D-B.; Ye, J.; Jiang, Y-M.; Qian, B-W. Anti-tumor effect of Liqi, a traditional Chinese medicine prescription, in tumor bearing mice. BMC Complement. Altern. Med., 2009, 9(1), 20.
[http://dx.doi.org/10.1186/1472-6882-9-20] [PMID: 19570195]
[66]
Xu, G-H.; Kim, J-A.; Kim, S-Y.; Ryu, J-C.; Kim, Y-S.; Jung, S-H.; Kim, M-K.; Lee, S-H. Terpenoids and coumarins isolated from the fruits of Poncirus trifoliata. Chem. Pharm. Bull. (Tokyo), 2008, 56(6), 839-842.
[http://dx.doi.org/10.1248/cpb.56.839] [PMID: 18520091]
[67]
Mimaki, Y.; Kuroda, M.; Yokosuka, A.; Harada, H.; Fukushima, M.; Sashida, Y. Triterpenes and triterpene saponins from the stems of Akebia trifoliata. Chem. Pharm. Bull. (Tokyo), 2003, 51(8), 960-965.
[http://dx.doi.org/10.1248/cpb.51.960] [PMID: 12913236]
[68]
Gao, Y.; Huang, H.; Xu, H.; Diao, Y.; Dong, Z. [Studies on the chemical constituents of Citrus medica var. sarcodactylis Zhong Yao Cai, 2002, 25(9), 639-640.
[PMID: 12451974]
[69]
Talwar, K.K.; Singh, I.P.; Kalsi, P.S. A sesquiterpenoid with plant growth regulatory activity from Saussurea lappa. Phytochemistry, 1992, 31(1), 336-338.
[http://dx.doi.org/10.1016/0031-9422(91)83069-W]
[70]
Aikemu, A.; Xiaerfuding, X.; Shiwenhui, C.; Abudureyimu, M.; Maimaitiyiming, D. Immunomodulatory and anti-tumor effects of Nigella glandulifera freyn and sint seeds on ehrlich ascites carcinoma in mouse model. Pharmacogn. Mag., 2013, 9(35), 187-191.
[http://dx.doi.org/10.4103/0973-1296.113258] [PMID: 23929999]
[71]
Li, Y.; Hu, Y.; Shi, S.; Jiang, L. Evaluation of antioxidant and immuno-enhancing activities of purslane polysaccharides in gastric cancer rats. Int. J. Biol. Macromol., 2014, 68, 113-116.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.038] [PMID: 24768972]
[72]
YouGuo. C.; ZongJi, S.; XiaoPing, C. Evaluation of free radicals scavenging and immunity-modulatory activities of purslane polysaccharides. Int. J. Biol. Macromol., 2009, 45(5), 448-452.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.07.009] [PMID: 19643128]
[73]
Zhao, R.; Gao, X.; Cai, Y.; Shao, X.; Jia, G.; Huang, Y.; Qin, X.; Wang, J.; Zheng, X. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr. Polym., 2013, 96(2), 376-383.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.023] [PMID: 23768576]
[74]
Shen, H.; Tang, G.; Zeng, G.; Yang, Y.; Cai, X.; Li, D.; Liu, H.; Zhou, N. Purification and characterization of an antitumor polysaccharide from Portulaca oleracea L. Carbohydr. Polym., 2013, 93(2), 395-400.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.107] [PMID: 23499074]
[75]
Suh, S.O.; Kroh, M.; Kim, N.R.; Joh, Y.G.; Cho, M.Y. Effects of red ginseng upon postoperative immunity and survival in patients with stage III gastric cancer. Am. J. Chin. Med., 2002, 30(4), 483-494.
[http://dx.doi.org/10.1142/S0192415X02000661] [PMID: 12568276]
[76]
Lin, Z-B.; Zhang, H-N. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol. Sin., 2004, 25(11), 1387-1395.
[PMID: 15525457]
[77]
Lin, Z.B.; Zhang, Z.L.; Ruan, Y.; Wu, Y.C.; Cong, Z. The pharmacological study of Ganoderma lucidum. part VI: Effects of different extract fractions from Ganoderma lucidum fruiting bodies on the phagocytic activity of mouse peritoneal macrophages. Edib Fungi, 1980, 3, 5-6.
[78]
Feng, L.; Yuan, L.; Du, M.; Chen, Y.; Zhang, M-H.; Gu, J-F.; He, J-J.; Wang, Y.; Cao, W. Anti-lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from Ganoderma luncidum (Leyss. ex Fr.) Karst. Molecules, 2013, 18(8), 9966-9981.
[http://dx.doi.org/10.3390/molecules18089966] [PMID: 23966082]
[79]
Xu, Z.; Chen, X.; Zhong, Z.; Chen, L.; Wang, Y. Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am. J. Chin. Med., 2011, 39(1), 15-27.
[http://dx.doi.org/10.1142/S0192415X11008610] [PMID: 21213395]
[80]
Dedong, C.; Huilin, X.; Anbing, H.; Ximing, X.; Wei, G. Ge, w. The effect of ShenQi FuZheng injection in combination with chemotherapy versus chemotherapy alone on the improvement of efficacy and immune function in patients with advanced non-small cell lung cancer: a meta-analysis. PLoS One, 2016, 11(3), e0152270.
[http://dx.doi.org/10.1371/journal.pone.0152270] [PMID: 27015629]
[81]
Li, J.; Wang, J-C.; Ma, B.; Gao, W.; Chen, P.; Sun, R.; Yang, K-H. Shenqi Fuzheng Injection for advanced gastric cancer: a systematic review of randomized controlled trials. Chin. J. Integr. Med., 2015, 21(1), 71-79.
[http://dx.doi.org/10.1007/s11655-014-1768-8] [PMID: 25246138]
[82]
Jing, W. Clinical analysis of ShenQi FuZheng injection on hematopoietic function and immune function of chemotherapeutic patients with advanced non-small cell lung cancer. Guide of China Medicine, 2013, 11(27), 503-504.
[83]
Ding, C-J.; Yang, L. Influence of ShenQi FuZheng injection on immune function of chemotherapeutic patients with advanced non-small cell lung cancer. Gansu J. Traditional Chin.Med., 2012, 25(1), 7-9.
[84]
Le, R. Effect of Shenqi Fuzheng Injection on the immunologic and hematopoietic function in patients with advanced non-small cell lung cancer treated with chemotherapy. Chin. J. Clin. Oncol. Rehab., 2014, 4, 463-465.
[85]
Man, A.; Xiangrao, L.; Chengyi, L.; Qingshan, L. Influence of ShenQi FuZheng Injection on hematopoietic function and immune function of chemotherapeutic patients with lung cancer. Shandong Yiyao, 2012, 52(3), 60-61.
[86]
Sun, C.; Zhong, W.; Liu, D.; Diao, H.; Wang, W. Influence of Shenqifuzheng Injection on radiotherapy effect and immune function in elderly patients with non-small cell lung cancer. Zhongguo Laonianxue Zazhi, 2014, 34(13), 3636-3638.
[87]
Wang, J.; Tong, X.; Li, P.; Liu, M.; Peng, W.; Cao, H.; Su, W. Bioactive components on immuno-enhancement effects in the traditional Chinese medicine Shenqi Fuzheng Injection based on relevance analysis between chemical HPLC fingerprints and in vivo biological effects. J. Ethnopharmacol., 2014, 155(1), 405-415.
[http://dx.doi.org/10.1016/j.jep.2014.05.038] [PMID: 24950446]
[88]
Tanaka, K.; Ishikawa, S.; Matsui, Y.; Tamesada, M.; Harashima, N.; Harada, M. Oral ingestion of Lentinula edodes mycelia extract inhibits B16 melanoma growth via mitigation of regulatory T cell-mediated immunosuppression. Cancer Sci., 2011, 102(3), 516-521.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01841.x] [PMID: 21261790]
[89]
Yamaguchi, Y.; Miyahara, E.; Hihara, J. Efficacy and safety of orally administered Lentinula edodes mycelia extract for patients undergoing cancer chemotherapy: a pilot study. Am. J. Chin. Med., 2011, 39(3), 451-459.
[http://dx.doi.org/10.1142/S0192415X11008956] [PMID: 21598414]
[90]
Sugano, N.; Choji, Y.; Hibino, Y.; Yasumura, S.; Maeda, H. Anticarcinogenic action of an alcohol-insoluble fraction (LAP1) from culture medium of Lentinus edodes mycelia. Cancer Lett. (Shannon, Irel.)., 1985, 27(1), 1-6.
[91]
Sugano, N.; Hibino, Y.; Choji, Y.; Maeda, H. Anticarcinogenic actions of water-soluble and alcohol-insoluble fractions from culture medium of Lentinus edodes mycelia. Cancer Lett., 1982, 17(2), 109-114.
[http://dx.doi.org/10.1016/0304-3835(82)90022-2] [PMID: 6891904]
[92]
Nagashima, Y.; Maeda, N.; Yamamoto, S.; Yoshino, S.; Oka, M. Evaluation of host quality of life and immune function in breast cancer patients treated with combination of adjuvant chemotherapy and oral administration of Lentinula edodes mycelia extract. OncoTargets Ther., 2013, 6, 853-859.
[http://dx.doi.org/10.2147/OTT.S44169] [PMID: 23874107]
[93]
Zee-Cheng, R.K. Shi-quan-da-bu-tang (ten significant tonic decoction), SQT. A potent Chinese biological response modifier in cancer immunotherapy, potentiation and detoxification of anticancer drugs. Methods Find. Exp. Clin. Pharmacol., 1992, 14(9), 725-736.
[PMID: 1294861]
[94]
Kitagawa, I.; Fukuda, Y.; Taniyama, T.; Yoshikawa, M. Chemical studies on crude drug processing. VII. On the constituents of Rehmanniae Radix. (1): Absolute stereostructures of rehmaglutins A, B, and D isolated from Chinese Rehmanniae Radix, the dried root of Rehmannia glutinosa LIBOSCH. Chem. Pharm. Bull. (Tokyo), 1991, 39(5), 1171-1176.
[http://dx.doi.org/10.1248/cpb.39.1171]
[95]
Kitagawa, I.; Fukuda, Y.; Taniyama, T.; Yoshikawa, M. Chemical studies on crude drug processing. VIII. On the constituents of Rehmanniae Radix. (2): Absolute stereostructures of rehmaglutin C and glutinoside isolated from Chinese Rehmanniae Radix, the dried root of Rehmannia glutinosa LIBOSCH. Chem. Pharm. Bull. (Tokyo), 1995, 43(7), 1096-1100.
[http://dx.doi.org/10.1248/cpb.43.1096]
[96]
Zhu, S.; Yu, X.; Wu, Y.; Shiraishi, F.; Kawahara, N.; Komatsu, K. Genetic and chemical characterization of white and red peony root derived from Paeonia lactiflora. J. Nat. Med., 2015, 69(1), 35-45.
[http://dx.doi.org/10.1007/s11418-014-0857-5] [PMID: 25151277]
[97]
Deng, S.; Wang, Y.; Inui, T.; Chen, S-N.; Farnsworth, N.R.; Cho, S.; Franzblau, S.G.; Pauli, G.F. Anti-TB polyynes from the roots of Angelica sinensis. Phytother. Res., 2008, 22(7), 878-882.
[http://dx.doi.org/10.1002/ptr.2303] [PMID: 18567055]
[98]
Feng, J.; Liu, Z. Antagonistic effect of angelica Sinesis diels lactone (ASDL) on immunosuppressive response induced by cyclosporin A, hydrocortisone and antitumor agents. Zhongguo Mianyixue Zazhi, 2000, 16(1), 22-24.
[99]
Sun, Y. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. Int. J. Biol. Macromol., 2014, 68, 131-134.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.010] [PMID: 24751506]
[100]
Duan, Q.; Xu, D.; Liu, C.; Li, C. Research advances on Rhizoma Atractylodis Macrocephalae. Zhongcaoyao, 2008, 39(5), App4-App6.
[101]
He, S.; Jiang, Y.; Tu, P-F. Chemical constituents from Cinnamomum cassia. Zhongguo Zhongyao Zazhi, 2015, 40(18), 3598-3602.
[PMID: 26983207]
[102]
Yuan, A.; Qin, L.; Jiang, D. Studies on the chemical constituents of Cinnamomum cassia. Yaoxue Tongbao, 1981, 16(10), 631.
[103]
Li, J.; Xie, M.; Gan, Y. [Effect of Xiaochaihu decoction and different herbal formulation of component on inhibiting H22 liver cancer in mice and enhancing immune function Zhongguo Zhongyao Zazhi, 2008, 33(9), 1039-1044.
[PMID: 18652353]
[104]
Zheng, N.; Dai, J.; Cao, H.; Sun, S.; Fang, J.; Li, Q.; Su, S.; Zhang, Y.; Qiu, M.; Huang, S. Current understanding on antihepatocarcinoma effects of xiao chai hu tang and its constituents. Evid. Based Complement. Alternat. Med., 2013, 2013, 529458.
[http://dx.doi.org/10.1155/2013/529458] [PMID: 23853661]
[105]
Bai, L.; Zhang, H.; Liu, Q.; Zhao, Y.; Cui, X.; Guo, S.; Zhang, L.; Ho, C-T.; Bai, N. Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujuba. Food Funct., 2016, 7(6), 2870-2877.
[http://dx.doi.org/10.1039/C6FO00613B] [PMID: 27232543]
[106]
Wu, Y-Y.; Huang, X-X.; Zhang, M-Y.; Zhou, L.; Li, D-Q.; Cheng, Z-Y.; Li, L-Z.; Peng, Y.; Song, S-J. Chemical constituents from the tubers of Pinellia ternata (Araceae) and their chemotaxonomic interest. Biochem. Syst. Ecol., 2015, 62, 236-240.
[http://dx.doi.org/10.1016/j.bse.2015.09.002]
[107]
Ooi, V.E.C.; Liu, F. A review of pharmacological activities of mushroom polysaccharides. Int. J. Med. Mushrooms, 1999, 1(3), 195-206.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v1.i3.10]
[108]
Chen, J.; Seviour, R. Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol. Res., 2007, 111(6), 635-652.
[http://dx.doi.org/10.1016/j.mycres.2007.02.011] [PMID: 17590323]
[109]
Chen, J.; Zhang, X.D.; Jiang, Z. The application of fungal β-glucans for the treatment of colon cancer. Anticancer. Agents Med. Chem., 2013, 13(5), 725-730.
[http://dx.doi.org/10.2174/1871520611313050007] [PMID: 23293888]
[110]
Yoon, T.J.; Koppula, S.; Lee, K.H. The effects of β-glucans on cancer metastasis. Anticancer. Agents Med. Chem., 2013, 13(5), 699-708.
[http://dx.doi.org/10.2174/1871520611313050004] [PMID: 23140352]
[111]
Chan, G.C-F.; Chan, W.K.; Sze, D.M-Y. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol., 2009, 2(1), 25.
[http://dx.doi.org/10.1186/1756-8722-2-25] [PMID: 19515245]
[112]
Aleem, E. β-Glucans and their applications in cancer therapy: focus on human studies. Anticancer. Agents Med. Chem., 2013, 13(5), 709-719.
[http://dx.doi.org/10.2174/1871520611313050005] [PMID: 23140353]
[113]
Albeituni, S.H.; Yan, J. The effects of β-glucans on dendritic cells and implications for cancer therapy. Anticancer. Agents Med. Chem., 2013, 13(5), 689-698.
[http://dx.doi.org/10.2174/1871520611313050003] [PMID: 23092290]
[114]
Xiang, D.; Sharma, V.R.; Freter, C.E.; Yan, J. Anti-tumor monoclonal antibodies in conjunction with β-glucans: a novel anti-cancer immunotherapy. Curr. Med. Chem., 2012, 19(25), 4298-4305.
[http://dx.doi.org/10.2174/092986712802884303] [PMID: 22834812]
[115]
Ina, K.; Kataoka, T.; Ando, T. The use of lentinan for treating gastric cancer. Anticancer. Agents Med. Chem., 2013, 13(5), 681-688.
[http://dx.doi.org/10.2174/1871520611313050002] [PMID: 23092289]
[116]
Wang, D.; Sun, S-Q.; Wu, W-Z.; Yang, S-L.; Tan, J-M. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydr. Polym., 2014, 105, 127-134.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.085] [PMID: 24708961]
[117]
Bohn, J.A. BeMiller, J.N. (1→3)-β- D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym., 1995, 28(1), 3-14.
[http://dx.doi.org/10.1016/0144-8617(95)00076-3]
[118]
Sarangi, I.; Ghosh, D.; Bhutia, S.K.; Mallick, S.K.; Maiti, T.K. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int. Immunopharmacol., 2006, 6(8), 1287-1297.
[http://dx.doi.org/10.1016/j.intimp.2006.04.002] [PMID: 16782541]
[119]
Cheng, J.; Zhou, Z-W.; Sheng, H-P.; He, L-J.; Fan, X-W.; He, Z-X.; Sun, T.; Zhang, X.; Zhao, R.J.; Gu, L.; Cao, C.; Zhou, S-F. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des. Devel. Ther., 2014, 9, 33-78.
[PMID: 25552899]
[120]
Mizuno, T. Development of anti-tumor polysaccharides from mushroom fungi. Food Ingred J. Jpn., 1996, 167, 69-85.
[121]
Mizuno, T. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int. J. Med. Mushrooms, 1999, 1(1), 9-29.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v1.i1.20]
[122]
Mizuno, M.; Minato, K.; Ito, H.; Kawade, M.; Terai, H.; Tsuchida, H. Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem. Mol. Biol. Int., 1999, 47(4), 707-714.
[PMID: 10319424]
[123]
Falch, B.H.; Espevik, T.; Ryan, L.; Stokke, B.T. The cytokine stimulating activity of (1-->3)-β-D-glucans is dependent on the triple helix conformation. Carbohydr. Res., 2000, 329(3), 587-596.
[http://dx.doi.org/10.1016/S0008-6215(00)00222-6] [PMID: 11128587]
[124]
Chen, T.; Wang, J.; Li, Y.; Shen, J.; Zhao, T.; Zhang, H. Sulfated modification and cytotoxicity of Portulaca oleracea L. polysaccharides. Glycoconj. J., 2010, 27(6), 635-642.
[http://dx.doi.org/10.1007/s10719-010-9307-0] [PMID: 20820911]
[125]
Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol., 2002, 60(3), 258-274.
[http://dx.doi.org/10.1007/s00253-002-1076-7] [PMID: 12436306]
[126]
Xu, C.; Liu, Y.; Yuan, G.; Guan, M. The contribution of side chains to antitumor activity of a polysaccharide from Codonopsis pilosula. Int. J. Biol. Macromol., 2012, 50(4), 891-894.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.01.013] [PMID: 22285989]
[127]
Ebina, T.; Kohya, H.; Yamaguchi, T.; Ishida, N. Antimetastatic effect of biological response modifiers in the “double grafted tumor system”. Jpn. J. Cancer Res., 1986, 77(10), 1034-1042 [GANN].
[PMID: 3096919]
[128]
Fujimiya, Y.; Suzuki, Y.; Oshiman, K.; Kobori, H.; Moriguchi, K.; Nakashima, H.; Matumoto, Y.; Takahara, S.; Ebina, T.; Katakura, R. Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol. Immunother., 1998, 46(3), 147-159.
[http://dx.doi.org/10.1007/s002620050473] [PMID: 9625538]
[129]
Mizuno, M.; Morimoto, M.; Minato, K.; Tsuchida, H. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci. Biotechnol. Biochem., 1998, 62(3), 434-437.
[http://dx.doi.org/10.1271/bbb.62.434] [PMID: 9571772]
[130]
Park, B.; Shin, J-W.; Cho, J-H.; Son, C-G.; Lee, Y-W.; Yoo, H-S.; Lee, N-H.; Yun, D-H.; Cho, C-K. Effect of Armillaria Mellea extract on macrophage and NK cell sctivity. korean J. Orientac. Med., 2004, 25(4), 161-170.
[131]
Han, X.; Liu, A-J.; Zhao, X-H.; Li, Y-D.; Zheng, G-Q.; Zhang, G-R. Immunizing effects of cocultures of H22 hepatocarcinoma cells and cartilage polysaccharide on murine H22 hepatocarcinoma. J. Food Sci., 2010, 75(8), H265-H273.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01509.x] [PMID: 21535505]
[132]
Cui, J.; Chisti, Y. Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnol. Adv., 2003, 21(2), 109-122.
[http://dx.doi.org/10.1016/S0734-9750(03)00002-8] [PMID: 14499133]
[133]
Fisher, M.; Yang, L-X. Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Res., 2002, 22(3), 1737-1754.
[PMID: 12168863]
[134]
Cui, H.; Li, T.; Wang, L.; Su, Y.; Xian, C.J. Dioscorea bulbifera polysaccharide and cyclophosphamide combination enhances anti-cervical cancer effect and attenuates immunosuppression and oxidative stress in mice. Sci. Rep., 2016, 5, 19185.
[http://dx.doi.org/10.1038/srep19185] [PMID: 26753518]
[135]
Li, A.; Shuai, X.; Jia, Z.; Li, H.; Liang, X.; Su, D.; Guo, W. Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b. J. Transl. Med., 2015, 13, 100-110.
[http://dx.doi.org/10.1186/s12967-015-0465-5] [PMID: 25889022]
[136]
Zhang, J.; Tang, Q.; Zhou, C.; Jia, W.; Da Silva, L.; Nguyen, L.D.; Reutter, W.; Fan, H. GLIS, a bioactive proteoglycan fraction from Ganoderma lucidum, displays anti-tumour activity by increasing both humoral and cellular immune response. Life Sci., 2010, 87(19-22), 628-637.
[http://dx.doi.org/10.1016/j.lfs.2010.09.026] [PMID: 20888840]
[137]
Weng, C-J.; Yen, G-C. The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clin. Exp. Metastasis, 2010, 27(5), 361-369.
[http://dx.doi.org/10.1007/s10585-010-9334-z] [PMID: 20461449]
[138]
Zhou, X.; Lin, J.; Yin, Y.; Zhao, J.; Sun, X.; Tang, K. Ganodermataceae: natural products and their related pharmacological functions. Am. J. Chin. Med., 2007, 35(4), 559-574.
[http://dx.doi.org/10.1142/S0192415X07005065] [PMID: 17708623]
[139]
Zhu, X-L.; Chen, A-F.; Lin, Z-B. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J. Ethnopharmacol., 2007, 111(2), 219-226.
[http://dx.doi.org/10.1016/j.jep.2006.11.013] [PMID: 17182202]
[140]
Guo, L.; Xie, J.; Ruan, Y.; Zhou, L.; Zhu, H.; Yun, X.; Jiang, Y.; Lü, L.; Chen, K.; Min, Z.; Wen, Y.; Gu, J. Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int. Immunopharmacol., 2009, 9(10), 1175-1182.
[http://dx.doi.org/10.1016/j.intimp.2009.06.005] [PMID: 19540939]
[141]
Kim, S.K.; Son, C.G.; Yun, C-H.; Han, S.H. Hericium erinaceum induces maturation of dendritic cells derived from human peripheral blood monocytes. Phytother. Res., 2010, 24(1), 14-19.
[http://dx.doi.org/10.1002/ptr.2849] [PMID: 19441068]
[142]
Zhai, Q.; Li, X.; Yang, Y.; Yu, L.; Yao, Y. Antitumor activity of a polysaccharide fraction from Laminaria japonica on U14 cervical carcinoma-bearing mice. Tumour Biol., 2014, 35(1), 117-122.
[http://dx.doi.org/10.1007/s13277-013-1014-6] [PMID: 23922174]
[143]
Xue, C-H.; Fang, Y.; Lin, H.; Chen, L.; Li, Z-J.; Deng, D.; Lu, C-X. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J. Appl. Phycol., 2001, 13(1), 67-70.
[http://dx.doi.org/10.1023/A:1008103611522]
[144]
Peng, Z.; Liu, M.; Fang, Z.; Wu, J.; Zhang, Q. Composition and cytotoxicity of a novel polysaccharide from brown alga (Laminaria japonica). Carbohydr. Polym., 2012, 89(4), 1022-1026.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.043] [PMID: 24750908]
[145]
Ooi, V.E.; Liu, F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem., 2000, 7(7), 715-729.
[http://dx.doi.org/10.2174/0929867003374705] [PMID: 10702635]
[146]
Hamuro, J.; Röllinghoff, M.; Wagner, H. Induction of cytotoxic peritoneal exudate cells by T-cell immune adjuvants of the beta(1 leads to 3) glucan-type lentinan and its analogues. Immunology, 1980, 39(4), 551-559.
[PMID: 6966608]
[147]
Brown, G.D.; Gordon, S. Fungal β-glucans and mammalian immunity. Immunity, 2003, 19(3), 311-315.
[http://dx.doi.org/10.1016/S1074-7613(03)00233-4] [PMID: 14499107]
[148]
Nakano, H.; Namatame, K.; Nemoto, H.; Motohashi, H.; Nishiyama, K.; Kumada, K. A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: effect on prolongation of survival and improvement of quality of life. Hepatogastroenterology, 1999, 46(28), 2662-2668.
[PMID: 10522061]
[149]
Oba, K.; Kobayashi, M.; Matsui, T.; Kodera, Y.; Sakamoto, J. Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. Anticancer Res., 2009, 29(7), 2739-2745.
[PMID: 19596954]
[150]
Ina, K.; Furuta, R.; Kataoka, T.; Kayukawa, S.; Yoshida, T.; Miwa, T.; Yamamura, Y.; Takeuchi, Y. Lentinan prolonged survival in patients with gastric cancer receiving S-1-based chemotherapy. World J. Clin. Oncol., 2011, 2(10), 339-343.
[http://dx.doi.org/10.5306/wjco.v2.i10.339] [PMID: 21994907]
[151]
Chihara, G.; Maeda, Y.; Hamuro, J.; Sasaki, T.; Fukuoka, F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature, 1969, 222(5194), 687-688.
[http://dx.doi.org/10.1038/222687a0] [PMID: 5768289]
[152]
Chihara, G.; Hamuro, J.; Maeda, Y.; Arai, Y.; Fukuoka, F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res., 1970, 30(11), 2776-2781.
[PMID: 5530561]
[153]
Zhang, M.; Chen, H.; Huang, J.; Li, Z.; Zhu, C.; Zhang, S. Effect of Lycium barbarum polysaccharide on human hepatoma QGY7703 cells: inhibition of proliferation and induction of apoptosis. Life Sci., 2005, 76(18), 2115-2124.
[http://dx.doi.org/10.1016/j.lfs.2004.11.009] [PMID: 15826878]
[154]
Chen, Z.; Kwong Huat Tan, B.; Chan, S.H. Activation of T lymphocytes by polysaccharide-protein complex from Lycium barbarum L. Int. Immunopharmacol., 2008, 8(12), 1663-1671.
[http://dx.doi.org/10.1016/j.intimp.2008.07.019] [PMID: 18755300]
[155]
Gan, L.; Hua, Zhang. S.; Liang Yang, X.; Bi Xu, H. Immunomodulation and antitumor activity by a polysaccharide-protein complex from Lycium barbarum. Int. Immunopharmacol., 2004, 4(4), 563-569.
[http://dx.doi.org/10.1016/j.intimp.2004.01.023] [PMID: 15099534]
[156]
Gan, L.; Zhang, S-H.; Liu, Q.; Xu, H-B. A polysaccharide-protein complex from Lycium barbarum upregulates cytokine expression in human peripheral blood mononuclear cells. Eur. J. Pharmacol., 2003, 471(3), 217-222.
[http://dx.doi.org/10.1016/S0014-2999(03)01827-2] [PMID: 12826241]
[157]
Gong, H.; Shen, P.; Jin, L.; Xing, C.; Tang, F. Therapeutic effects of Lycium barbarum polysaccharide (LBP) on irradiation or chemotherapy-induced myelosuppressive mice. Cancer Biother. Radiopharm., 2005, 20(2), 155-162.
[http://dx.doi.org/10.1089/cbr.2005.20.155] [PMID: 15869449]
[158]
Hai-Yang, G.; Ping, S.; Li, J.I.; Chang-Hong, X.; Fu, T. Therapeutic effects of Lycium barbarum polysaccharide (LBP) on mitomycin C (MMC)-induced myelosuppressive mice. J. Exp. Ther. Oncol., 2004, 4(3), 181-187.
[PMID: 15724837]
[159]
Chao, J.C.J.; Chiang, S-W.; Wang, C-C.; Tsai, Y-H.; Wu, M-S. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells. World J. Gastroenterol., 2006, 12(28), 4478-4484.
[http://dx.doi.org/10.3748/wjg.v12.i28.4478] [PMID: 16874858]
[160]
Kodama, N.; Komuta, K.; Nanba, H. Effect of Maitake (Grifola frondosa) D-Fraction on the activation of NK cells in cancer patients. J. Med. Food, 2003, 6(4), 371-377.
[http://dx.doi.org/10.1089/109662003772519949] [PMID: 14977447]
[161]
Mizuno, T.; Ohsawa, K.; Hagiwara, N.; Kuboyama, R. Fractionation and characterization of antitumor polysaccharides from Maitake, Grifola frondosa. Agric. Biol. Chem., 1986, 50(7), 1679-1688.
[162]
Ohno, N.; Adachi, Y.; Suzuki, I.; Sato, K.; Oikawa, S.; Yadomae, T. Characterization of the antitumor glucan obtained from liquid-cultured Grifola frondosa. Chem. Pharm. Bull. (Tokyo), 1986, 34(4), 1709-1715.
[http://dx.doi.org/10.1248/cpb.34.1709] [PMID: 3719872]
[163]
Shigesue, K.; Kodama, N.; Nanba, H. Effects of maitake (Grifola frondosa) polysaccharide on collagen-induced arthritis in mice. Jpn. J. Pharmacol., 2000, 84(3), 293-300.
[http://dx.doi.org/10.1254/jjp.84.293] [PMID: 11138730]
[164]
Han, S-S.R.; Cho, C-K.; Lee, Y-W.; Yoo, H-S. Antimetastatic and immunomodulating effect of water extracts from various mushrooms. J. Acupunct. Meridian Stud., 2009, 2(3), 218-227.
[http://dx.doi.org/10.1016/S2005-2901(09)60058-3] [PMID: 20633495]
[165]
Chen, Q.; Zhang, S-Z.; Ying, H-Z.; Dai, X-Y.; Li, X-X.; Yu, C-H.; Ye, H-C. Chemical characterization and immunostimulatory effects of a polysaccharide from Polygoni Multiflori Radix Praeparata in cyclophosphamide-induced anemic mice. Carbohydr. Polym., 2012, 88(4), 1476-1482.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.055]
[166]
Cao, Y.; Jia, Z-P.; Zhang, R-X. Review on chemical constituents and pharmacological study of Rehmannia glutinosa. Zhongchengyao, 2006, 28(4), 609-611.
[167]
Smith, J.E.; Rowan, N.J.; Sullivan, R. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol. Lett., 2002, 24(22), 1839-1845.
[http://dx.doi.org/10.1023/A:1020994628109]
[168]
Kony, D.B.; Damm, W.; Stoll, S.; van Gunsteren, W.F.; Hünenberger, P.H. Explicit-solvent molecular dynamics simulations of the polysaccharide schizophyllan in water. Biophys. J., 2007, 93(2), 442-455.
[http://dx.doi.org/10.1529/biophysj.106.086116] [PMID: 17237195]
[169]
Kwak, J.K.; Park, S.W.; Koo, J.G.; Cho, M.G.; Buchholz, R.; Goetz, P. Enhancement of the non-specific defence activities in carp (Cyprinus carpio) and flounder (Paralichthys olivcaces) by oral administration of schizophyllan. Acta Biotechnol., 2003, 23(4), 359-371.
[http://dx.doi.org/10.1002/abio.200390046]
[170]
Wang, H.; Wang, M.; Chen, J.; Tang, Y.; Dou, J.; Yu, J.; Xi, T.; Zhou, C. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int. Immunopharmacol., 2011, 11(11), 1946-1953.
[http://dx.doi.org/10.1016/j.intimp.2011.06.006] [PMID: 21723424]
[171]
Wang, H.X.; Ng, T.B.; Ooi, V.E.; Liu, W.K.; Chang, S.T. A polysaccharide-peptide complex from cultured mycelia of the mushroom Tricholoma mongolicum with immunoenhancing and antitumor activities. Biochem. Cell Biol., 1996, 74(1), 95-100.
[http://dx.doi.org/10.1139/o96-010] [PMID: 9035695]
[172]
Konoshima, T. Anti-tumor-promoting activities or triterpenoid glycosides; cancer chemoprevention by saponins. Adv. Exp. Med. Biol., 1996, 404, 87-100.
[http://dx.doi.org/10.1007/978-1-4899-1367-8_9] [PMID: 8957287]
[173]
Liby, K.T.; Yore, M.M.; Sporn, M.B. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat. Rev. Cancer, 2007, 7(5), 357-369.
[http://dx.doi.org/10.1038/nrc2129] [PMID: 17446857]
[174]
Parikh, N.R.; Mandal, A.; Bhatia, D.; Siveen, K.S.; Sethi, G.; Bishayee, A. Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives. Phytochem. Rev., 2014, 13(4), 793-810.
[http://dx.doi.org/10.1007/s11101-014-9337-5] [PMID: 25395898]
[175]
Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel), 2010, 2(10), 2428-2466.
[http://dx.doi.org/10.3390/toxins2102428] [PMID: 22069560]
[176]
Yasukawa, K. Cancer chemopreventive agents: natural pentacyclic triterpenoids; Pentacyclic Triterpenes as Promising Agents in Cancer, 2010, pp. 127-157.
[177]
Kuang, P.; Zhao, W.; Su, W.; Zhang, Z.; Zhang, L.; Liu, J.; Ren, G.; Yin, Z.; Wang, X. 18β-glycyrrhetinic acid inhibits hepatocellular carcinoma development by reversing hepatic stellate cell-mediated immunosuppression in mice. Int. J. Cancer, 2013, 132(8), 1831-1841.
[http://dx.doi.org/10.1002/ijc.27852] [PMID: 22991231]
[178]
Zhang, Y.B.; Peng, X.Y.; Sun, H.X. A new cytotoxic, apoptosis-inducing triterpenoid from the rhizomes of Astilbe chinensis. Chem. Biodivers., 2008, 5(1), 189-196.
[http://dx.doi.org/10.1002/cbdv.200890010] [PMID: 18205122]
[179]
Tu, J.; Sun, H-X.; Ye, Y-P. Immunomodulatory and antitumor activity of triterpenoid fractions from the rhizomes of Astilbe chinensis. J. Ethnopharmacol., 2008, 119(2), 266-271.
[http://dx.doi.org/10.1016/j.jep.2008.07.007] [PMID: 18692123]
[180]
Sun, H.; Zhang, J.; Ye, Y.; Pan, Y.; Shen, Y. Cytotoxic pentacyclic triterpenoids from the rhizome of Astilbe chinensis. Helv. Chim. Acta, 2003, 86(7), 2414-2423.
[http://dx.doi.org/10.1002/hlca.200390194]
[181]
Sun, H-X.; Ye, Y-P.; Pan, Y-J. Cytotoxic oleanane triterpenoids from the rhizomes of Astilbe chinensis (Maxim.) Franch. et Savat. J. Ethnopharmacol., 2004, 90(2-3), 261-265.
[http://dx.doi.org/10.1016/j.jep.2003.10.003] [PMID: 15013190]
[182]
Chen, N-H.; Liu, J-W.; Zhong, J-J. Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol. Rep., 2010, 62(1), 150-163.
[http://dx.doi.org/10.1016/S1734-1140(10)70252-8] [PMID: 20360625]
[183]
Chang, U-M.; Li, C-H.; Lin, L-I.; Huang, C-P.; Kan, L-S.; Lin, S-B. Ganoderiol F, a ganoderma triterpene, induces senescence in hepatoma HepG2 cells. Life Sci., 2006, 79(12), 1129-1139.
[http://dx.doi.org/10.1016/j.lfs.2006.03.027] [PMID: 16635496]
[184]
Lin, S-B.; Li, C-H.; Lee, S-S.; Kan, L-S. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sci., 2003, 72(21), 2381-2390.
[http://dx.doi.org/10.1016/S0024-3205(03)00124-3] [PMID: 12639703]
[185]
Yue, Q.X.; Song, X.Y.; Ma, C.; Feng, L.X.; Guan, S.H.; Wu, W.Y.; Yang, M.; Jiang, B.H.; Liu, X.; Cui, Y.J.; Guo, D.A. Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine, 2010, 17(8-9), 606-613.
[http://dx.doi.org/10.1016/j.phymed.2009.12.013] [PMID: 20092987]
[186]
Thyagarajan, A.; Jedinak, A.; Nguyen, H.; Terry, C.; Baldridge, L.A.; Jiang, J.; Sliva, D. Triterpenes from Ganoderma Lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK). Nutr. Cancer, 2010, 62(5), 630-640.
[http://dx.doi.org/10.1080/01635580903532390] [PMID: 20574924]
[187]
Lai, Y.; Shen, L.; Zhang, Z.; Liu, W.; Zhang, Y.; Ji, H.; Tian, J. Synthesis and biological evaluation of furoxan-based nitric oxide-releasing derivatives of glycyrrhetinic acid as anti-hepatocellular carcinoma agents. Bioorg. Med. Chem. Lett., 2010, 20(22), 6416-6420.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.070] [PMID: 20932754]
[188]
Satomi, Y.; Nishino, H.; Shibata, S. Glycyrrhetinic acid and related compounds induce G1 arrest and apoptosis in human hepatocellular carcinoma HepG2. Anticancer Res., 2005, 25(6B), 4043-4047.
[PMID: 16309197]
[189]
Shiota, G.; Harada, K.; Ishida, M.; Tomie, Y.; Okubo, M.; Katayama, S.; Ito, H.; Kawasaki, H. Inhibition of hepatocellular carcinoma by glycyrrhizin in diethylnitrosamine-treated mice. Carcinogenesis, 1999, 20(1), 59-63.
[http://dx.doi.org/10.1093/carcin/20.1.59] [PMID: 9934850]
[190]
Ullah, M.F.; Bhat, S.H.; Hussain, E.; Abu-Duhier, F.; Ahmad, A.; Hadi, S.M. Ascorbic acid in cancer chemoprevention: translational perspectives and efficacy. Curr. Drug Targets, 2012, 13(14), 1757-1771.
[http://dx.doi.org/10.2174/138945012804545669] [PMID: 23140287]
[191]
Banerjee, T.; Duhadaway, J.B.; Gaspari, P.; Sutanto-Ward, E.; Munn, D.H.; Mellor, A.L.; Malachowski, W.P.; Prendergast, G.C.; Muller, A.J. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene, 2008, 27(20), 2851-2857.
[http://dx.doi.org/10.1038/sj.onc.1210939] [PMID: 18026137]
[192]
Muller, A.J.; Scherle, P.A. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat. Rev. Cancer, 2006, 6(8), 613-625.
[http://dx.doi.org/10.1038/nrc1929] [PMID: 16862192]
[193]
Chen, X.; Du, Y.; Nan, J.; Zhang, X.; Qin, X.; Wang, Y.; Hou, J.; Wang, Q.; Yang, J. Brevilin A, a novel natural product, inhibits janus kinase sctivity and blocks STAT3 dignaling in cancer cells. PLoS One, 2013, 8(5), 1-11.
[http://dx.doi.org/10.1371/journal.pone.0063697]
[194]
Natarajan, K.; Singh, S.; Burke, T.R., Jr; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 9090-9095.
[http://dx.doi.org/10.1073/pnas.93.17.9090] [PMID: 8799159]
[195]
Ribeiro, U., Jr; Safatle-Ribeiro, A.V. Caffeic acid phenethyl ester (CAPE) may be a promising adjuvant treatment in gastric cancer. J. Clin. Gastroenterol., 2007, 41(10), 871-873.
[http://dx.doi.org/10.1097/MCG.0b013e31806b5938] [PMID: 18090154]
[196]
Li, J-T.; Zhang, J-L.; He, H.; Ma, Z-L.; Nie, Z-K.; Wang, Z-Z.; Xu, X-G. Apoptosis in human hepatoma HepG2 cells induced by corn peptides and its anti-tumor efficacy in H22 tumor bearing mice. Food Chem. Toxicol., 2013, 51, 297-305.
[http://dx.doi.org/10.1016/j.fct.2012.09.038] [PMID: 23063592]
[197]
Jagetia, G.C.; Aggarwal, B.B. “Spicing up” of the immune system by curcumin. J. Clin. Immunol., 2007, 27(1), 19-35.
[http://dx.doi.org/10.1007/s10875-006-9066-7] [PMID: 17211725]
[198]
Varalakshmi, Ch.; Ali, A.M.; Pardhasaradhi, B.V.V.; Srivastava, R.M.; Singh, S.; Khar, A. Immunomodulatory effects of curcumin: in-vivo. Int. Immunopharmacol., 2008, 8(5), 688-700.
[http://dx.doi.org/10.1016/j.intimp.2008.01.008] [PMID: 18387511]
[199]
Khar, A.; Ali, A.M.; Pardhasaradhi, B.V.V.; Begum, Z.; Anjum, R. Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells. FEBS Lett., 1999, 445(1), 165-168.
[http://dx.doi.org/10.1016/S0014-5793(99)00114-3] [PMID: 10069393]
[200]
Bhaumik, S.; Jyothi, M.D.; Khar, A. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett., 2000, 483(1), 78-82.
[http://dx.doi.org/10.1016/S0014-5793(00)02089-5] [PMID: 11033360]
[201]
Merchant, K.; Kumi-Diaka, J.; Rathinavelu, A.; Esiobu, N.; Zoeller, R.; Hormann, V. Genistein modulation of immune-associated genes in LNCaP prostate cancer cell line. Open Prostate Cancer J., 2012, 5, 1-7.
[http://dx.doi.org/10.2174/1876822901205010001]
[202]
Lavigne, J.A.; Takahashi, Y.; Chandramouli, G.V.R.; Liu, H.; Perkins, S.N.; Hursting, S.D.; Wang, T.T.Y. Concentration-dependent effects of genistein on global gene expression in MCF-7 breast cancer cells: an oligo microarray study. Breast Cancer Res. Treat., 2008, 110(1), 85-98.
[http://dx.doi.org/10.1007/s10549-007-9705-6] [PMID: 17687646]
[203]
Guo, T.L.; McCay, J.A.; Zhang, L.X.; Brown, R.D.; You, L.; Karrow, N.A.; Germolec, D.R.; White, K.L., Jr Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice. J. Nutr., 2001, 131(12), 3251-3258.
[http://dx.doi.org/10.1093/jn/131.12.3251] [PMID: 11739876]
[204]
Pan, H.; Zhou, W.; He, W.; Liu, X.; Ding, Q.; Ling, L.; Zha, X.; Wang, S. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int. J. Mol. Med., 2012, 30(2), 337-343.
[http://dx.doi.org/10.3892/ijmm.2012.990] [PMID: 22580499]
[205]
Exon, J.H.; South, E.H. Dietary indole-3-carbinol alters immune functions in rats. J. Toxicol. Environ. Health A, 2000, 59(4), 271-279.
[http://dx.doi.org/10.1080/009841000156934] [PMID: 10706034]
[206]
Auborn, K.J.; Qi, M.; Yan, X.J.; Teichberg, S.; Chen, D.; Madaio, M.P.; Chiorazzi, N. Lifespan is prolonged in autoimmune-prone (NZB/NZW) F1 mice fed a diet supplemented with indole-3-carbinol. J. Nutr., 2003, 133(11), 3610-3613.
[http://dx.doi.org/10.1093/jn/133.11.3610] [PMID: 14608082]
[207]
Fujioka, N.; Fritz, V.; Upadhyaya, P.; Kassie, F.; Hecht, S.S. Research on cruciferous vegetables, indole-3-carbinol, and cancer prevention: A tribute to Lee W. Wattenberg. Mol. Nutr. Food Res., 2016, 60(6), 1228-1238.
[http://dx.doi.org/10.1002/mnfr.201500889] [PMID: 26840393]
[208]
Sun, G-P.; Wang, H.; Xu, S-P.; Shen, Y-X.; Wu, Q.; Chen, Z-D.; Wei, W. Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-α production. Eur. J. Pharmacol., 2008, 584(2-3), 246-252.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.016] [PMID: 18329639]
[209]
Deng, Y.; Chu, J.; Ren, Y.; Fan, Z.; Ji, X.; Mundy, B.; Yuan, S.; Hughes, T.; Zhang, J.; Cheema, B.; Camardo, A.T.; Xia, Y.; Wu, L.-C.; Wang, L.-S.; He, X.; Kinghorn, A.D.; Li, X.; Caligiuri, M.A.; Yu, J. The natural product phyllanthusmin C enhances IFN-γ pro-duction by human natural killer cells through upregulation of TLR-mediated NF-κB signaling. J. Immunol. (Baltimore, Md.: 1950), 2014, 193(6), 2994-3002.
[210]
Ren, Y.; Lantvit, D.D.; Deng, Y.; Kanagasabai, R.; Gallucci, J.C.; Ninh, T.N.; Chai, H-B.; Soejarto, D.D.; Fuchs, J.R.; Yalowich, J.C.; Yu, J.; Swanson, S.M.; Kinghorn, A.D. Potent cytotoxic arylnaphthalene lignan lactones from Phyllanthus poilanei. J. Nat. Prod., 2014, 77(6), 1494-1504.
[http://dx.doi.org/10.1021/np5002785] [PMID: 24937209]
[211]
Feng, Y-H.; Zhu, Y-N.; Liu, J.; Ren, Y-X.; Xu, J-Y.; Yang, Y-F.; Li, X-Y.; Zou, J-P. Differential regulation of resveratrol on lipopolysacchride-stimulated human macrophages with or without IFN-γ pre-priming. Int. Immunopharmacol., 2004, 4(6), 713-720.
[http://dx.doi.org/10.1016/j.intimp.2004.02.006] [PMID: 15135313]
[212]
Marier, J-F.; Chen, K.; Prince, P.; Scott, G.; del Castillo, J.R.E.; Vachon, P. Production of ex vivo lipopolysaccharide-induced tumor necrosis factor-α, interleukin-1β, and interleukin-6 is suppressed by trans-resveratrol in a concentration-dependent manner. Can. J. Vet. Res., 2005, 69(2), 151-154.
[PMID: 15971681]
[213]
Yang, X.; Li, X.; Ren, J. From French Paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anticancer. Agents Med. Chem., 2014, 14(6), 806-825.
[http://dx.doi.org/10.2174/1871520614666140521121722] [PMID: 24851878]
[214]
Forghani, P.; Khorramizadeh, M.R.; Waller, E.K. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Med., 2014, 3(2), 215-224.
[http://dx.doi.org/10.1002/cam4.186] [PMID: 24574320]
[215]
Citronberg, J.; Bostick, R.; Ahearn, T.; Turgeon, D.K.; Ruffin, M.T.; Djuric, Z.; Sen, A.; Brenner, D.E.; Zick, S.M. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial. Cancer Prev. Res. (Phila.), 2013, 6(4), 271-281.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0327] [PMID: 23303903]
[216]
Jiang, Y.; Turgeon, D.K.; Wright, B.D.; Sidahmed, E.; Ruffin, M.T.; Brenner, D.E.; Sen, A.; Zick, S.M. Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk for colorectal cancer. Eur. J. Cancer Prev., 2013, 22(5), 455-460.
[http://dx.doi.org/10.1097/CEJ.0b013e32835c829b] [PMID: 23222413]
[217]
Barton, D.L.; Liu, H.; Dakhil, S.R.; Linquist, B.; Sloan, J.A.; Nichols, C.R.; McGinn, T.W.; Stella, P.J.; Seeger, G.R.; Sood, A.; Loprinzi, C.L. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: a randomized, double-blind trial, N07C2. J. Natl. Cancer Inst., 2013, 105(16), 1230-1238.
[http://dx.doi.org/10.1093/jnci/djt181] [PMID: 23853057]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 17
Year: 2019
Page: [3042 - 3067]
Pages: 26
DOI: 10.2174/0929867324666170705112644
Price: $58

Article Metrics

PDF: 13
HTML: 2