Ultrasound Fetal Image Segmentation Techniques: A Review

Author(s): S. Jayanthi Sree*, C. Vasanthanayaki.

Journal Name: Current Medical Imaging

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: This paper reviews segmentation techniques for 2D ultrasound fetal images. Fetal anatomy measurements derived from the segmentation results are used to monitor the growth of the fetus.

Discussion: The segmentation of fetal ultrasound images is a difficult task due to inherent artifacts and degradation of image quality with gestational age. There are segmentation techniques for particular biological structures such as head, stomach, and femur. The whole fetal segmentation algorithms are only very few.

Conclusion: This paper presents a review of these segmentation techniques and the metrics used to evaluate them are summarized.

Keywords: Segmentation, fetal, ultrasound, review, anatomy, femur length, biometric measurements, quality metrics.

[1]
Zalud I, Good S, Carneiro G, et al. Fetal biometry: A comparison between experienced sonographers, and automated measurements. J Mater- Fetal. Neonatal Med 2009; 22(1): 43-50.
[2]
Rueda S, Fathima S, Knight CL, et al. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: A grand challenge. IEEE Trans Med Imaging 2013; 33(4): 10.
[3]
Rueda S, Knight CL, Aris T, Papageorghiou J, Noble A. Feature-based fuzzy connectedness segmentation of ultrasound images with an object completion step. Med Image Anal 2015; 26(1): 30-46.
[4]
Pathak SD, Chalana V, Kim Y. Interactive automatic fetal head measurements from ultrasound images using multimedia computer technology. Ultrasound Med Biol 1997; 23(5): 665-73.
[5]
Hanna CW, Youssef AB. Automatic measurements in Obstetrics ultrasound images. In: Proceedings of international conference on image processing 1997 IEEE Santa Barbara, CA, USA.
[6]
Lu W, Tan J. Segmentation of ultrasound fetal images. In: Proceedings of SPIE 4203, Biological quality and precision agriculture II. Environmental and industrial sensing 2000. Boston, MA: USA
[7]
Lu W, Tan J, Floyd RC. Fetal head detection and measurement in ultrasound images by an iterative randomized Hough transform. Ultrasound Med Biol 2005; 31(7): 929-36.
[8]
Lu W, Tan J, Floyd RC. Fetal head detection and measurement in ultrasound images by a direct inverse randomized Hough transform.In: Proceedings of SPIE 5747, medical imaging 2005. San Diego; California: USA
[9]
Foi A, Maggioni M, Pepe A, Tohka J. Head contour extraction from fetal ultrasound images by difference of gaussians revolved along elliptical paths. In: Proceedings of challenge US: Biometric measurements from fetal ultrasound images. ISBI 2012; pp. 1-3.
[10]
Stebbing RV, Manigle JE. A boundary fragment model for head segmentation in fetal ultrasound. In: Proceedings of challenge US: Biometric measurements from fetal ultrasound images. ISBI 2012; pp. 9-11.
[11]
Sun C. Automatic fetal head measurement from ultrasound images using circular shortest paths. In: Proceedings of challenge US: Biometric measurements from fetal ultrasound images. ISBI 2012; pp. 13-5.
[12]
Namburete AIL, Nobel JA. Fetal cranial segmentation in 2D ultrasound images using shape properties of pixel clusters. In: 2013 IEEE 10th International symposium on biomedical imaging. IEEE; San Francisco, CA: USA
[13]
Mathews M, Deepa J. Tonu James, Shari Thomas. Segmentation of head from ultrasound fetal image using chamfer matching and Hough transform based approaches. Int J Eng ResTechnol IJERT 2014; 3(5): 1232-5.
[14]
Anto EA, Amoah B, Crimi A. Segmentation of ultrasound images of fetal anatomic structures using random forest for low cost settings. Conf Proc IEEE Eng Med Biol Soc 2015; 6: 793-6.
[15]
Thomas JG, Peters II R.A., Jeanty P. Automatic segmentation of ultrasound images using morphological operators. IEEE Trans Med Imaging 1991; 10(2): 180-6.
[16]
Shan BP, Madheswaran M. Extraction of fetal biometrics using class separable shape sensitive approach for gestational age estimation. In: Proceedings of international conference on computer technology and development 2009 IEEE; Kota Kinabalu, Malaysia.
[17]
Shrimali V, Anand RS, Kumar V. Improved segmentation of ultrasound images for fetal biometry using morphological operators. In: Proceedings of international conference of IEEE engineering in medicine and biology 2009 IEEE; Minneapolis, MN, USA.
[18]
Wang C-W, Chen H-C, Peng C-W, Hung C-M. Automatic femur segmentation and length measurement from fetal ultrasound images. In: Proceedings of challenge US: Biometric measurements from fetal ultrasound images2012; ISBI.
[19]
Wang CW. Automatic entropy based femur segmentation and fast length measurement for fetal ultrasound images. In: Proceedings of international conference on advanced robotics and intelligent systems 2014: pp 1-5.
[20]
Amoah B, Anto EA, Crimi A. Automatic fetal measurements for low cost settings by using local phase bone detection. In: International conference of IEEE engineering in medicine and biology society 2015; IEEE.
[21]
Ponomarev GV, Gelfand MS, Kazanov MD. A multilevel thresholding combined with edge detection and shape based recognition for segmentation of fetal ultrasound images. In: Proceedings of challenge US: Biometric measurements from fetal ultrasound images 2012; ISBI.
[22]
Jardim SVB, Figueiredo MAT. Automatic contour estimation in fetal ultrasound images. ICIP 2003; 2(2): 1065-8.
[23]
Zang L, Ye X, Lambrou T, Duan W, Allinson N, Dudley NJ. A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2 D ultrasound images. Phys Med Biol 2016; 61: 1095-115.
[24]
Yu J, Wang YY, Chen P, Shen Y. Fetal abdominal contour extraction and measurement in ultrasound images. Ultrasound Med Biol 2008; 3(4): 169-82.
[25]
Nithya J, Madheswaran M. Detection of intrauterine growth retardation using fetal abdominal circumference. In: Proceedings of international conference on computer technology and development 2009; IEEE.
[26]
Ciurte A, Bresson X, Cuadra MB. A semi-supervised patch-based approach for segmentation of fetal ultrasound imaging. In: proceedings of challenge US: Biometric measurements from fetal ultrasound images 2012; ISB
[27]
Ciurte A, Rueda S, Bresson X, et al. Ultrasound Image Segmentation of the fetal Abdomen: A semi supervised patch based approachMICCAI workshop on Paediatric and Perinatal Imaging, 2012.
[28]
Carneiro G, Georgescu B, Good S, Comaniciu D. Detection and measurement of fetal anatomies from ultrasound images using constrained probabilistic boosting tree. IEEE Trans Med Imaging 2008; 27(9): 1342-55.
[29]
Gupta L, Sisodia RS, Pallavi V, Firtion C, Ramachandran G. Segmentation of 2D fetal ultrasound images by exploiting context information using conditional random fields. In: Proceedings of International conference of IEEE engineering in medicine and biology 2011; IEEE.
[30]
Choong MY, Seng MC, Kiring A, Yang SS, Teo KZK. Variational level set algorithm in image segmentation for feotus ultrasound imaging system. Int J Simul: Sys. Sci Technol 2013; 13(3b): 17-22.
[31]
Perni SC, Chervenak FA, Kalish RB, et al. Intraobserver and interobserver reproducibility of fetal biometry. Ultrasound Obstet Gynecol 2004; 24: 654-8.
[32]
Alasaarela E, Koivukangas J. Evaluation of image quality of ultrasound scanners in medical diagnostics. J Ultrasound Med 1990; 9: 23-4.
[33]
Piˇzurica A. Wink AM, Vansteenkiste EV, Philips W, Roerdink JBTM. A review of wavelet denoising in MRI and ultrasound brain imaging. Curr Med Imaging Rev 2006; 2(2): 247-60.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [52 - 60]
Pages: 9
DOI: 10.2174/1573405613666170622115527
Price: $58

Article Metrics

PDF: 15
HTML: 1