Dynamics of Bacteria-Inspired Micro-Swimmers

Author(s): Ali Shah Mohammadi Azar, Mahdi Moghimi Zand*.

Journal Name: Recent Patents on Mechanical Engineering

Volume 10 , Issue 3 , 2017

Become EABM
Become Reviewer


Background: Many swimming micro-robots inspired by bacteria, could be used for different medical applications including Nano-drugs delivery, micro surgery and minimally invasive diagnostic. More patents on micro-robots for medical applications should be invented. Some research teams work to design and produce micro-swimming-robots inspired by bacteria.

Objective: The purpose of this study was to simulate flagella motion. Also for better designs, the effects of the geometrical ratios of flagellum on the non-dimensional propulsive force and nondimensional velocity have been studied.

Methods: Bacterium as a kind of micro-organisms has an appropriate propulsive mechanism to be inspired in medical applications. Flagella's helical motion creates a propulsive force and thus causes the motion. We have simulated the dynamic of the propulsion mechanism of flagella using finite element method. Flagella have been simulated in a long tube with a finite radius.

Results: For future patents design, the effects of the geometrical ratios of flagellum on the nondimensional propulsive force and non-dimensional velocity have been studied. We have validated our results with the results from experiment and Slender Body Theory.

Conclusion: In future, swimming micro-robots will be important tools in medicine. There are some patents in this field. It was concluded that to reach maximum propulsive force, optimized ratios of geometrical parameters should be used.

Keywords: Bacteria, flagella, helical motion, micro-organism, nano-drug delivery, propulsive force, swimming micro-robot.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2017
Page: [252 - 258]
Pages: 7
DOI: 10.2174/2212797610666170620074732
Price: $58

Article Metrics

PDF: 7