Therapeutic Proteins for Treatment of Corneal Epithelial Defects

Author(s): Evgeni Yu. Zernii* , Viktoriia E. Baksheeva , Elena V. Yani , Pavel P. Philippov , Ivan I. Senin* .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 3 , 2019

  Journal Home
Translate in Chinese

Abstract:

Corneal epithelial disorders take pride of place in modern ophthalmology. Defects of corneal epithelium are commonly accompanied by blurry vision, photophobia and tearing. Since cornea is the most densely innervated tissue of organisms, its disruption leads to development of a severe pain syndrome. Mild corneal erosions commonly undergo quick spontaneous recovery. Suppression of corneal wound healing due to various pathological causes results in development of severe recurrent erosions and persistent corneal defects. These pathological events can in turn lead to corneal scarring, opacification, and ulceration of cornea, and ultimately to the permanent vision impairment. The etiology of the underlying corneal diseases that commonly involves inflammatory, neurotrophic and systemic factors, should be considered for treating such defects. Therefore, the research focus has been shifted to establish therapeutics based on proteins and peptides. Due to varied mechanisms of action, proteinbased pharmaceuticals can be involved in the protection of corneal surface, mimicking tear components, stimulation of corneal wound healing, regeneration of corneal innervation, suppressing oxidative stress, inflammation and neovascularization. The active components can be naturally occurring (blood- or tear-derived) or be created de novo and optimized in order to achieve the level of activity required. Such pharmaceuticals are characterized by low toxicity and absence of systemic side-effects due to their low absorption into the bloodstream, if administrated topically. This review summarizes existing data on protein-based drugs for treatment of corneal epithelial defects that are currently under preclinical development or testing in clinical trials, or approved for medical use.

Keywords: Therapeutic proteins, corneal defects, dry eye disease, corneal wound healing, neurodegeneration, oxidative stress, inflammation, neovascularization.

[1]
Whitcher, J.P.; Srinivasan, M.; Upadhyay, M.P. Corneal blindness: A global perspective. Bull. World Health Organ., 2001, 79(3), 214-221.
[2]
Shields, T.; Sloane, P.D. A comparison of eye problems in primary care and ophthalmology practices. Fam. Med., 1991, 23(7), 544-546.
[3]
Ramamurthi, S.; Rahman, M.Q.; Dutton, G.N.; Ramaesh, K. Pathogenesis, clinical features and management of recurrent corneal erosions. Eye (Lond.), 2006, 20(6), 635-644.
[4]
Moss, S.E.; Klein, R.; Klein, B.E. Prevalence of and risk factors for dry eye syndrome. Arch. Ophthalmol., 2000, 118(9), 1264-1268.
[5]
Chia, E.M.; Mitchell, P.; Rochtchina, E.; Lee, A.J.; Maroun, R.; Wang, J.J. Prevalence and associations of dry eye syndrome in an older population: The Blue Mountains Eye Study. Clin. Experiment. Ophthalmol., 2003, 31(3), 229-232.
[6]
External disease and cornea 2011.
[7]
Wipperman, J.L.; Dorsch, J.N. Evaluation and management of corneal abrasions. Am. Fam. Physician, 2013, 87(2), 114-120.
[8]
Wirostko, B.; Rafii, M.; Sullivan, D.A.; Morelli, J.; Ding, J. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone The ocular surface, 2015, 13 (3), 204-212 e201.
[9]
Nishida, T.; Inui, M.; Nomizu, M. Peptide therapies for ocular surface disturbances based on fibronectin-integrin interactions. Prog. Retin. Eye Res., 2015, 47, 38-63.
[10]
Hovanesian, J.A.; Shah, S.S.; Maloney, R.K. Symptoms of dry eye and recurrent erosion syndrome after refractive surgery. J. Cataract Refract. Surg., 2001, 27(4), 577-584.
[11]
Whipple, K.M.; Lim, L.H.; Korn, B.S.; Kikkawa, D.O. Blepharoplasty complications: Prevention and management. Clin. Plast. Surg., 2013, 40(1), 213-224.
[12]
Rumelt, S.; Bersudsky, V.; Blum-Hareuveni, T.; Rehany, U. Persistent epithelial defects and ulcers in repeated corneal transplantation: incidence, causative agents, predisposing factors and treatment outcomes. Graefes Arch. Clin. Exp. Ophthalmol., 2008, 246(8), 1139-1145.
[13]
Reiter, C.; Wimmer, S.; Schultheiss, A.; Klink, T.; Grehn, F.; Geerling, G. [Corneal epitheliopathy following trabeculectomy with postoperative adjunctive 5-fluorouracil]. Klin. Monatsbl. Augenheilkd., 2010, 227(11), 887-891.
[14]
Kang, S.W.; Ahn, K.; Ham, D.I. Types of macular hole closure and their clinical implications. Br. J. Ophthalmol., 2003, 87(8), 1015-1019.
[15]
Skarbez, K.; Priestley, Y.; Hoepf, M.; Koevary, S.B. Comprehensive review of the effects of diabetes on ocular health. Expert Rev. Ophthalmol., 2010, 5(4), 557-577.
[16]
Levitt, A.E.; Galor, A.; Weiss, J.S.; Felix, E.R.; Martin, E.R.; Patin, D.J.; Sarantopoulos, K.D.; Levitt, R.C. Chronic dry eye symptoms after LASIK: Parallels and lessons to be learned from other persistent post-operative pain disorders. Mol. Pain, 2015, 11, 21.
[17]
Zernii, E.Y.; Golovastova, M.O.; Baksheeva, V.E.; Kabanova, E.I.; Ishutina, I.E.; Gancharova, O.S.; Gusev, A.E.; Savchenko, M.S.; Loboda, A.P.; Sotnikova, L.F.; Zamyatnin, A.A., Jr; Philippov, P.P.; Senin, I.I. Zamyat- nin, A.A.; Philippov, P.P.; Senin, I.I. Alterations in tear biochemistry associated with postanesthetic chronic dry eye syndrome. Biochemistry (Mosc.), 2016, 81(12), 1549-1557.
[18]
Zernii, E.Y.; Gancharova, O.S.; Ishutina, I.E.; Baksheeva, V.E.; Golovastova, M.O.; Kabanova, E.I.; Savchenko, M.S.; Serebryakova, M.V.; Sotnikova, L.F.; Zamyatnin, A.A., Jr; Philippov, P.P. Senin, II.[Mechanisms of pe- rioperative corneal abrasions: alterations in tear film pro- teome]. Biomed. Khim., 2016, 62(6), 683-690.
[19]
Moos, D.D.; Lind, D.M. Detection and treatment of perioperative corneal abrasions. J. Perianesth. Nurs, 2006, 21 (5), 332-338. quiz 339-341
[20]
Shaheen, B.S.; Bakir, M.; Jain, S. Corneal nerves in health and disease. Surv. Ophthalmol., 2014, 59(3), 263-285.
[21]
Kim, K.M.; Shin, Y.T.; Kim, H.K. Effect of autologous platelet-rich plasma on persistent corneal epithelial defect after infectious keratitis. Jpn. J. Ophthalmol., 2012, 56(6), 544-550.
[22]
Pajoohesh-Ganji, A.; Stepp, M.A. In search of markers for the stem cells of the corneal epithelium. Biol. Cell, 2005, 97(4), 265-276.
[23]
Lekhanont, K.; Jongkhajornpong, P.; Anothaisintawee, T.; Chuckpaiwong, V. undiluted serum eye drops for the treatment of persistent corneal epitheilal defects. Sci. Rep., 2016, 6, 38143.
[24]
Katzman, L.R.; Jeng, B.H. Management strategies for per- sistent epithelial defects of the cornea. Saudi J. Ophthalmol., 2014, 28(3), 168-172.
[25]
Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J., 2010, 12(3), 348-360.
[26]
Hanna, C.; Bicknell, D.S.; O’Brien, J.E. Cell turnover in the adult human eye. Arch. Ophthalmol., 1961, 65, 695-698.
[27]
Dua, H.S.; Saini, J.S.; Azuara-Blanco, A.; Gupta, P. Limbal stem cell deficiency: Concept, aetiology, clinical presentation, diagnosis and management. Indian J. Ophthalmol., 2000, 48(2), 83-92.
[28]
Fini, M.E. Keratocyte and fibroblast phenotypes in the repairing cornea. Prog. Retin. Eye Res., 1999, 18(4), 529-551.
[29]
Choong, P.F.; Mok, P.L.; Cheong, S.K.; Then, K.Y. Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy, 2007, 9(3), 252-258.
[30]
Wilson, S.E.; He, Y.G.; Weng, J.; Li, Q.; McDowall, A.W.; Vital, M.; Chwang, E.L. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp. Eye Res., 1996, 62(4), 325-327.
[31]
Yu, F.S.; Yin, J.; Xu, K.; Huang, J. Growth factors and corneal epithelial wound healing. Brain Res. Bull., 2010, 81(2-3), 229-235.
[32]
Imanishi, J.; Kamiyama, K.; Iguchi, I.; Kita, M.; Sotozono, C.; Kinoshita, S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog. Retin. Eye Res., 2000, 19(1), 113-129.
[33]
Wilson, S.E.; Walker, J.W.; Chwang, E.L.; He, Y.G. Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea. Invest. Ophthalmol. Vis. Sci., 1993, 34(8), 2544-2561.
[34]
Li, D.Q.; Tseng, S.C. Differential regulation of keratinocyte growth factor and hepatocyte growth factor/scatter factor by different cytokines in human corneal and limbal fibroblasts. J. Cell. Physiol., 1997, 172(3), 361-372.
[35]
Zheng, W.; Ma, M.; Du, E.; Zhang, Z.; Jiang, K.; Gu, Q.; Ke, B. Therapeutic efficacy of fibroblast growth factor 10 in a rabbit model of dry eye. Mol. Med. Rep., 2015, 12(5), 7344-7350.
[36]
Yanai, R.; Yamada, N.; Inui, M.; Nishida, T. Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells. Exp. Eye Res., 2006, 83(1), 76-83.
[37]
Sosne, G.; Szliter, E.A.; Barrett, R.; Kernacki, K.A.; Kleinman, H.; Hazlett, L.D. Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp. Eye Res., 2002, 74(2), 293-299.
[38]
Sosne, G.; Christopherson, P.L.; Barrett, R.P.; Fridman, R. Thymosin-beta4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest. Ophthalmol. Vis. Sci., 2005, 46(7), 2388-2395.
[39]
Musselmann, K.; Alexandrou, B.; Kane, B.; Hassell, J.R. Maintenance of the keratocyte phenotype during cell proliferation stimulated by insulin. J. Biol. Chem., 2005, 280(38), 32634-32639.
[40]
Suda, T.; Nishida, T.; Ohashi, Y.; Nakagawa, S.; Manabe, R. Fibronectin appears at the site of corneal stromal wound in rabbits. Curr. Eye Res., 1981-1982, 1(9), 553-556.
[41]
Watanabe, M.; Kondo, S.; Mizuno, K.; Yano, W.; Nakao, H.; Hattori, Y.; Kimura, K.; Nishida, T. Promotion of corneal epithelial wound healing in vitro and in vivo by annexin A5. Invest. Ophthalmol. Vis. Sci., 2006, 47(5), 1862-1868.
[42]
Jester, J.V.; Barry-Lane, P.A.; Petroll, W.M.; Olsen, D.R.; Cavanagh, H.D. Inhibition of corneal fibrosis by topical application of blocking antibodies to TGF beta in the rabbit. Cornea, 1997, 16(2), 177-187.
[43]
Shah, M.; Foreman, D.M.; Ferguson, M.W. Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet, 1992, 339(8787), 213-214.
[44]
Karamichos, D.; Hutcheon, A.; Zieske, J. ransforming growth factor-β3 regulates assembly of a non-fibrotic matrix in a 3D corneal model. J. Tissue Eng. Regen. Med., 2011, 5(8), e228-e238.
[45]
Wilson, S.E.; Mohan, R.R.; Mohan, R.R.; Ambrósio, R., Jr; Hong, J.; Lee, J. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog. Retin. Eye Res., 2001, 20(5), 625-637.
[46]
Rhett, J.M.; Jourdan, J.; Gourdie, R.G. Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol. Biol. Cell, 2011, 22(9), 1516-1528.
[47]
Moore, K.; Ghatnekar, G.; Gourdie, R.G.; Potts, J.D. Impact of the controlled release of a connexin 43 peptide on corneal wound closure in an STZ model of type I diabetes. PLoS One, 2014, 9(1), e86570.
[48]
Spanakis, S.G.; Petridou, S.; Masur, S.K. Functional gap junctions in corneal fibroblasts and myofibroblasts. Invest. Ophthalmol. Vis. Sci., 1998, 39(8), 1320-1328.
[49]
Becker, D.L.; Thrasivoulou, C.; Phillips, A.R. Connexins in wound healing; perspectives in diabetic patients. Biochim. Biophys. Acta, 2012, 1818(8), 2068-2075.
[50]
Huang, A.J.; Tseng, S.C. Corneal epithelial wound healing in the absence of limbal epithelium. Invest. Ophthalmol. Vis. Sci., 1991, 32(1), 96-105.
[51]
Lavker, R.M.; Tseng, S.C.; Sun, T.T. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp. Eye Res., 2004, 78(3), 433-446.
[52]
Pflugfelder, S.C.; Jones, D.; Ji, Z.; Afonso, A.; Monroy, D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr. Eye Res., 1999, 19(3), 201-211.
[53]
Saghizadeh, M.; Chwa, M.; Aoki, A.; Lin, B.; Pirouzmanesh, A.; Brown, D.J.; Ljubimov, A.V.; Kenney, M.C. Altered expression of growth factors and cytokines in keratoconus, bullous keratopathy and diabetic human corneas. Exp. Eye Res., 2001, 73(2), 179-189.
[54]
Gatzioufas, Z.; Charalambous, P.; Thanos, S. Reduced expression of the gap junction protein Connexin 43 in keratoconus. Eye (Lond.), 2008, 22(2), 294-299.
[55]
Ohashi, Y.; Ishida, R.; Kojima, T.; Goto, E.; Matsumoto, Y.; Watanabe, K.; Ishida, N.; Nakata, K.; Takeuchi, T.; Tsubota, K. Abnormal protein profiles in tears with dry eye syndrome. Am. J. Ophthalmol., 2003, 136(2), 291-299.
[56]
Bradley, J.C.; Bradley, R.H.; McCartney, D.L.; Mannis, M.J. Serum growth factor analysis in dry eye syndrome. Clin. Experiment. Ophthalmol., 2008, 36(8), 717-720.
[57]
Listed, N. The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye work shop. Ocul. Surf., 2007, 5(2), 75-92.
[58]
Baudouin, C. The pathology of dry eye. Surv. Ophthalmol., 2001, 45(Suppl. 2), S211-S220.
[59]
Samudre, S.; Lattanzio, F.A., Jr; Lossen, V.; Hosseini, A.; Sheppard, J.D., Jr; McKown, R.L.; Laurie, G.W.; Williams, P.B. Lacritin, a novel human tear glycoprotein, promotes sustained basal tearing and is well tolerated. Invest. Ophthalmol. Vis. Sci., 2011, 52(9), 6265-6270.
[60]
Ma, K.; Yan, N.; Huang, Y.; Cao, G.; Deng, J.; Deng, Y. Effects of nerve growth factor on nerve regeneration after corneal nerve damage. Int. J. Clin. Exp. Med., 2014, 7(11), 4584-4589.
[61]
Stern, M.E.; Beuerman, R.W.; Fox, R.I.; Gao, J.; Mircheff, A.K.; Pflugfelder, S.C. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea, 1998, 17(6), 584-589.
[62]
Gipson, I.K.; Argüeso, P. Role of mucins in the function of the corneal and conjunctival epithelia. Int. Rev. Cytol., 2003, 231, 1-49.
[63]
Sullivan, D.A.; Wickham, L.A.; Rocha, E.M.; Krenzer, K.L.; Sullivan, B.D.; Steagall, R.; Cermak, J.M.; Dana, M.R.; Ullman, M.D.; Sato, E.H.; Gao, J.; Rocha, F.J.; Ono, M.; Silveira, L.A.; Lambert, R.W.; Kelleher, R.S.; Tolls, D.B.; Toda, I. Androgens and dry eye in Sjögren’s syndrome. Ann. N. Y. Acad. Sci., 1999, 876(1), 312-324.
[64]
Mader, T.H.; Stulting, R.D. Keratoconjunctivitis sicca caused by diphenoxylate hydrochloride with atropine sulfate (Lomotil). Am. J. Ophthalmol., 1991, 111(3), 377-378.
[65]
Xiong, C.; Chen, D.; Liu, J.; Liu, B.; Li, N.; Zhou, Y.; Liang, X.; Ma, P.; Ye, C.; Ge, J.; Wang, Z. A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride. Invest. Ophthalmol. Vis. Sci., 2008, 49(5), 1850-1856.
[66]
De Paiva, C.S.; Chen, Z.; Koch, D.D.; Hamill, M.B.; Manuel, F.K.; Hassan, S.S.; Wilhelmus, K.R.; Pflugfelder, S.C. The incidence and risk factors for developing dry eye after myopic LASIK. Am. J. Ophthalmol., 2006, 141(3), 438-445.
[67]
Niederkorn, J.Y. Corneal immune privilege. Ocul. Surf., 2005, 3(4)(Suppl.), S158-S160.
[68]
He, Y.G.; Niederkorn, J.Y. Depletion of donor-derived Langerhans cells promotes corneal allograft survival. Cornea, 1996, 15(1), 82-89.
[69]
Stevenson, W.; Cheng, S.F.; Dastjerdi, M.H.; Ferrari, G.; Dana, R. Corneal neovascularization and the utility of topical VEGF inhibition: Ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul. Surf., 2012, 10(2), 67-83.
[70]
Chen, L.; Hamrah, P.; Cursiefen, C.; Zhang, Q.; Pytowski, B.; Streilein, J.W.; Dana, M.R. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat. Med., 2004, 10(8), 813-815.
[71]
Avisar, I.; Weinberger, D.; Kremer, I. Effect of subconjunctival and intraocular bevacizumab injections on corneal neovascularization in a mouse model. Curr. Eye Res., 2010, 35(2), 108-115.
[72]
Lee, S.H.; Leem, H.S.; Jeong, S.M.; Lee, K. Bevacizumab accelerates corneal wound healing by inhibiting TGF-beta2 expression in alkali-burned mouse cornea. BMB Rep., 2009, 42(12), 800-805.
[73]
Cursiefen, C. Immune privilege and angiogenic privilege of the cornea. Chem. Immunol. Allergy, 2007, 92, 50-57.
[74]
Bora, N.S.; Gobleman, C.L.; Atkinson, J.P.; Pepose, J.S.; Kaplan, H.J. Differential expression of the complement regulatory proteins in the human eye. Invest. Ophthalmol. Vis. Sci., 1993, 34(13), 3579-3584.
[75]
Lass, J.H.; Walter, E.I.; Burris, T.E.; Grossniklaus, H.E.; Roat, M.I.; Skelnik, D.L.; Needham, L.; Singer, M.; Medof, M.E. Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest. Ophthalmol. Vis. Sci., 1990, 31(6), 1136-1148.
[76]
Wilson, S.E.; Mohan, R.R.; Mohan, R.R.; Ambrósio, R., Jr; Hong, J.; Lee, J. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog. Retin. Eye Res., 2001, 20(5), 625-637.
[77]
Li, Z.; Burns, A.R.; Miller, S.B.; Smith, C.W. CCL20, γδ T cells, and IL-22 in corneal epithelial healing. FASEB J., 2011, 25(8), 2659-2668.
[78]
Ferrari, G.; Bignami, F.; Giacomini, C.; Franchini, S.; Rama, P. Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest. Ophthalmol. Vis. Sci., 2013, 54(3), 1680-1688.
[79]
Satici, A.; Guzey, M.; Dogan, Z.; Kilic, A. Relationship between Tear TNF-alpha, TGF-beta1, and EGF levels and severity of conjunctival cicatrization in patients with inactive trachoma. Ophthalmic Res., 2003, 35(6), 301-305.
[80]
Pflugfelder, S.C.; Jones, D.; Ji, Z.; Afonso, A.; Monroy, D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr. Eye Res., 1999, 19(3), 201-211.
[81]
Higuchi, A.; Kawakita, T.; Tsubota, K. IL-6 induction in desiccated corneal epithelium in vitro and in vivo. Mol. Vis., 2011, 17, 2400-2406.
[82]
Yoo, A.R.; Chung, S.K. Effects of subconjunctival tocilizumab versus bevacizumab in treatment of corneal neovascularization in rabbits. Cornea, 2014, 33(10), 1088-1094.
[83]
Nakamura, M.; Nishida, T. Differential effects of epidermal growth factor and interleukin 6 on corneal epithelial cells and vascular endothelial cells. Cornea, 1999, 18(4), 452-458.
[84]
Kumagai, N.; Fukuda, K.; Fujitsu, Y.; Seki, K.; Nishida, T. Treatment of corneal lesions in individuals with vernal keratoconjunctivitis. Allergol. Int., 2005, 54(1), 51-59.
[85]
Buddi, R.; Lin, B.; Atilano, S.R.; Zorapapel, N.C.; Kenney, M.C.; Brown, D.J. Evidence of oxidative stress in human corneal diseases. J. Histochem. Cytochem., 2002, 50(3), 341-351.
[86]
Tervo, K.; Tervo, T.; Palkama, A. Pre- and postnatal development of catecholamine-containing and cholinesterasepositive nerves of the rat cornea and iris Anatomy and embryology, 1978, 154 (3), 253-265.
[87]
Tervo, T.; Palkama, A. Innervation of the rabbit cornea. A histochemical and electron-microscopic study. Acta Anat. (Basel), 1978, 102(2), 164-175.
[88]
Marfurt, C.F.; Kingsley, R.E.; Echtenkamp, S.E. Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. Invest. Ophthalmol. Vis. Sci., 1989, 30(3), 461-472.
[89]
Suuronen, E.J.; Nakamura, M.; Watsky, M.A.; Stys, P.K.; Müller, L.J.; Munger, R.; Shinozaki, N.; Griffith, M. Innervated human corneal equivalents as in vitro models for nerve-target cell interactions. FASEB J., 2004, 18(1), 170-172.
[90]
Müller, L.J.; Marfurt, C.F.; Kruse, F.; Tervo, T.M. Corneal nerves: structure, contents and function. Exp. Eye Res., 2003, 76(5), 521-542.
[91]
Acosta, M.C.; Tan, M.E.; Belmonte, C.; Gallar, J. Sensations evoked by selective mechanical, chemical, and thermal stimulation of the conjunctiva and cornea. Invest. Ophthalmol. Vis. Sci., 2001, 42(9), 2063-2067.
[92]
Mikulec, A.A.; Tanelian, D.L. CGRP increases the rate of corneal re-epithelialization in an in vitro whole mount preparation. J. Ocul. Pharmacol. Ther., 1996, 12(4), 417-423.
[93]
Reid, T.W.; Murphy, C.J.; Iwahashi, C.K.; Foster, B.A.; Mannis, M.J. Stimulation of epithelial cell growth by the neuropeptide substance P. J. Cell. Biochem., 1993, 52(4), 476-485.
[94]
Sacchetti, M.; Lambiase, A. Diagnosis and management of neurotrophic keratitis. Clin. Ophthalmol., 2014, 8, 571-579.
[95]
Sacchetti, M.; Lambiase, A. Diagnosis and management of neurotrophic keratitis. Clin. Ophthalmol., 2014, 8, 571-579.
[96]
Ueno, H.; Ferrari, G.; Hattori, T.; Saban, D.R.; Katikireddy, K.R.; Chauhan, S.K.; Dana, R. Dependence of corneal stem/progenitor cells on ocular surface innervation. Invest. Ophthalmol. Vis. Sci., 2012, 53(2), 867-872.
[97]
Ruskell, G.L. Changes in nerve terminals and acini of the lacrimal gland and changes in secretion induced by autonomic denervation. Z. Zellforsch. Mikrosk. Anat., 1969, 94(2), 261-281.
[98]
LeDoux, M.S.; Zhou, Q.; Murphy, R.B.; Greene, M.L.; Ryan, P. Parasympathetic innervation of the meibomian glands in rats. Invest. Ophthalmol. Vis. Sci., 2001, 42(11), 2434-2441.
[99]
De Haas, E.H. Desiccation of cornea and conjunctiva after sensory denervation: Significance of desiccation for pathogenesis of neuroparalytic keratitis. Arch. Ophthalmol., 1962, 67(4), 439-452.
[100]
Alsuhaibani, A.H. Facial nerve palsy: Providing eye comfort and cosmesis. Middle East Afr. J. Ophthalmol., 2010, 17(2), 142-147.
[101]
Goins, K.M. New insights into the diagnosis and treatment of neurotrophic keratopathy. Ocul. Surf., 2005, 3(2), 96-110.
[102]
Yamada, C.; King, K.E.; Ness, P.M. Autologous serum eyedrops: Literature review and implications for transfusion medicine specialists. Transfusion, 2008, 48(6), 1245-1255.
[103]
Higuchi, A.; Shimmura, S.; Takeuchi, T.; Suematsu, M.; Tsubota, K. Elucidation of apoptosis induced by serum deprivation in cultured conjunctival epithelial cells. Br. J. Ophthalmol., 2006, 90(6), 760-764.
[104]
Tsubota, K.; Higuchi, A. Serum application for the treatment of ocular surface disorders. Int. Ophthalmol. Clin., 2000, 40(4), 113-122.
[105]
Tsubota, K.; Goto, E.; Fujita, H.; Ono, M.; Inoue, H.; Saito, I.; Shimmura, S. Treatment of dry eye by autologous serum application in Sjögren’s syndrome. Br. J. Ophthalmol., 1999, 83(4), 390-395.
[106]
Esquenazi, S.; He, J.; Bazan, H.E.; Bazan, N.G. Use of autologous serum in corneal epithelial defects post-lamellar surgery. Cornea, 2005, 24(8), 992-997.
[107]
Kojima, T.; Higuchi, A.; Goto, E.; Matsumoto, Y.; Dogru, M.; Tsubota, K. Autologous serum eye drops for the treatment of dry eye diseases. Cornea, 2008, 27(Suppl. 1), S25-S30.
[108]
Matsumoto, Y.; Dogru, M.; Goto, E.; Ohashi, Y.; Kojima, T.; Ishida, R.; Tsubota, K. Autologous serum application in the treatment of neurotrophic keratopathy. Ophthalmology, 2004, 111(6), 1115-1120.
[109]
Schulze, S.D.; Sekundo, W.; Kroll, P. Autologous serum for the treatment of corneal epithelial abrasions in diabetic patients undergoing vitrectomy. Am. J. Ophthalmol., 2006, 142(2), 207-211.
[110]
del Castillo, J.M.B.; de la Casa, J.M.M.; Sardiña, R.C.; Fernández, R.M.; Feijoo, J.G.; Gómez, A.C.; Rodero, M.M.; Sánchez, J.G. Treatment of recurrent corneal erosions using autologous serum. Cornea, 2002, 21(8), 781-783.
[111]
Tsubota, K.; Goto, E.; Shimmura, S.; Shimazaki, J. Treatment of persistent corneal epithelial defect by autologous serum application. Ophthalmology, 1999, 106(10), 1984-1989.
[112]
Young, A.L.; Cheng, A.C.; Ng, H.K.; Cheng, L.L.; Leung, G.Y.; Lam, D.S. The use of autologous serum tears in persistent corneal epithelial defects. Eye (Lond.), 2004, 18(6), 609-614.
[113]
Goto, E.; Shimmura, S.; Shimazaki, J.; Tsubota, K. Treatment of superior limbic keratoconjunctivitis by application of autologous serum. Cornea, 2001, 20(8), 807-810.
[114]
Kojima, T.; Ishida, R.; Dogru, M.; Goto, E.; Matsumoto, Y.; Kaido, M.; Tsubota, K. The effect of autologous serum eyedrops in the treatment of severe dry eye disease: A prospective randomized case-control study. Am. J. Ophthalmol., 2005, 139(2), 242-246.
[115]
Noble, B.A.; Loh, R.S.; MacLennan, S.; Pesudovs, K.; Reynolds, A.; Bridges, L.R.; Burr, J.; Stewart, O.; Quereshi, S. Comparison of autologous serum eye drops with conventional therapy in a randomised controlled crossover trial for ocular surface disease. Br. J. Ophthalmol., 2004, 88(5), 647-652.
[116]
Ogawa, Y.; Okamoto, S.; Mori, T.; Yamada, M.; Mashima, Y.; Watanabe, R.; Kuwana, M.; Tsubota, K.; Ikeda, Y.; Oguchi, Y. Autologous serum eye drops for the treatment of severe dry eye in patients with chronic graft-versus-host disease. Bone Marrow Transplant., 2003, 31(7), 579-583.
[117]
Anitua, E.; de la Fuente, M.; Muruzabal, F.; Riestra, A.; Merayo-Lloves, J.; Orive, G. Plasma rich in growth factors (PRGF) eye drops stimulates scarless regeneration compared to autologous serum in the ocular surface stromal fibroblasts. Exp. Eye Res., 2015, 135, 118-126.
[118]
Soni, N.G.; Jeng, B.H. Blood-derived topical therapy for ocular surface diseases. Br. J. Ophthalmol., 2016, 100(1), 22-27.
[119]
Yoon, K-C.; Heo, H.; Jeong, I-Y.; Park, Y-G. Therapeutic effect of umbilical cord serum eyedrops for persistent corneal epithelial defect. Korean J. Ophthalmol., 2005, 19(3), 174-178.
[120]
Yoon, K-C. Im, S.K.; Park, Y.G.; Jung, Y.D.; Yang, S.Y.; Choi, J. Application of umbilical cord serum eyedrops for the treatment of dry eye syndrome. Cornea, 2006, 25(3), 268-272.
[121]
Yoon, K-C.; You, I-C. Application of umbilical cord serum eyedrops for the treatment of neurotrophic keratitis Ophthalmology, 2007, 114 (9), 1637-1642. e1632
[122]
Yoon, K.C. Use of umbilical cord serum in ophthalmology. Chonnam Med. J., 2014, 50(3), 82-85.
[123]
Vajpayee, R.B.; Mukerji, N.; Tandon, R.; Sharma, N.; Pandey, R.M.; Biswas, N.R.; Malhotra, N.; Melki, S.A. Evaluation of umbilical cord serum therapy for persistent corneal epithelial defects. Br. J. Ophthalmol., 2003, 87(11), 1312-1316.
[124]
Yoon, K-C.; Heo, H. Comparison of autologous serum and umbilical cord serum eye drops for dry eye syndrome 2007. 144(1), 86-92. e82
[125]
Oh, H-J.; Jang, J-Y.; Li, Z.; Park, S-H.; Yoon, K-C. Effects of umbilical cord serum eye drops in a mouse model of ocular chemical burn. Curr. Eye Res., 2012, 37(12), 1084-1090.
[126]
Sharma, N.; Goel, M.; Velpandian, T.; Titiyal, J.S.; Tandon, R.; Vajpayee, R.B. Evaluation of umbilical cord serum therapy in acute ocular chemical burns. Invest. Ophthalmol. Vis. Sci., 2011, 52(2), 1087-1092.
[127]
Yoon, K.C.; Jeong, I.Y.; Im, S.K.; Park, Y.G.; Kim, H.J.; Choi, J. Therapeutic effect of umbilical cord serum eyedrops for the treatment of dry eye associated with graft-versus-host disease. Bone Marrow Transplant., 2007, 39(4), 231-235.
[128]
Yoon, K-C.; Choi, W.; You, I-C.; Choi, J. Application of umbilical cord serum eyedrops for recurrent corneal erosions. Cornea, 2011, 30(7), 744-748.
[129]
Yoon, K.C.; Oh, H.J.; Park, J.W.; Choi, J. Application of umbilical cord serum eyedrops after laser epithelial keratomileusis. Acta Ophthalmol., 2013, 91(1), e22-e28.
[130]
Kamble, N.; Sharma, N.; Maharana, P.K.; Bandivadekar, P.; Nagpal, R.; Agarwal, T.; Velpandian, T.; Mittal, S.; Vajpayee, R.B. Evaluation of the role of umbilical cord serum and autologous serum therapy in reepithelialization after keratoplasty: A Randomized Controlled Clinical Trial. Eye Contact Lens, 2016.
[131]
Erices, A.; Conget, P.; Minguell, J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol., 2000, 109(1), 235-242.
[132]
Alio, J.L.; Arnalich-Montiel, F.; Rodriguez, A.E. The role of “eye platelet rich plasma” (E-PRP) for wound healing in ophthalmology. Curr. Pharm. Biotechnol., 2012, 13(7), 1257-1265.
[133]
Nurden, A.T. Platelets, inflammation and tissue regeneration. Thromb. Haemost., 2011, 105(Suppl. 1), S13-S33.
[134]
Ronci, C.; Ferraro, A.S.; Lanti, A.; Missiroli, F.; Sinopoli, S.; Del Proposto, G.; Cipriani, C.; De Felici, C.; Ricci, F.; Ciotti, M.; Cudillo, L.; Arcese, W.; Adorno, G. Platelet-rich plasma as treatment for persistent ocular epithelial defects. Transfus. Apheresis Sci., 2015, 52(3), 300-304.
[135]
Avila, M.Y. Restoration of human lacrimal function following platelet-rich plasma injection. Cornea, 2014, 33(1), 18-21.
[136]
Alio, J.L.; Colecha, J.R.; Pastor, S.; Rodriguez, A.; Artola, A. Symptomatic dry eye treatment with autologous platelet-rich plasma. Ophthalmic Res., 2007, 39(3), 124-129.
[137]
Javaloy, J.; Alió, J.L.; Rodriguez, A.E.; Vega, A.; Muñoz, G. Effect of platelet-rich plasma in nerve regeneration after LASIK. J. Refract. Surg., 2013, 29(3), 213-219.
[138]
Alio, J.L.; Pastor, S.; Ruiz-Colecha, J.; Rodriguez, A.; Artola, A. Treatment of ocular surface syndrome after LASIK with autologous platelet-rich plasma. J. Refract. Surg., 2007, 23(6), 617-619.
[139]
Panda, A.; Jain, M.; Vanathi, M.; Velpandian, T.; Khokhar, S.; Dada, T. Topical autologous platelet-rich plasma eyedrops for acute corneal chemical injury. Cornea, 2012, 31(9), 989-993.
[140]
Alio, J.L.; Abad, M.; Artola, A.; Rodriguez-Prats, J.L.; Pastor, S.; Ruiz-Colecha, J. Use of autologous platelet-rich plasma in the treatment of dormant corneal ulcers Ophthalmology, 2007, 114 (7), 1286-1293. e1281
[141]
Anitua, E.; Muruzabal, F.; de la Fuente, M.; Riestra, A.; Merayo-Lloves, J.; Orive, G. PRGF exerts more potent proliferative and anti-inflammatory effects than autologous serum on a cell culture inflammatory model. Exp. Eye Res., 2016, 151, 115-121.
[142]
Anitua, E.; Sanchez, M.; Merayo-Lloves, J.; De la Fuente, M.; Muruzabal, F.; Orive, G. Plasma rich in growth factors (PRGF-Endoret) stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-beta1-induced myodifferentiation. Invest. Ophthalmol. Vis. Sci., 2011, 52(9), 6066-6073.
[143]
Anitua, E.; Muruzabal, F.; De la Fuente, M.; Merayo-Lloves, J.; Orive, G. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop. Exp. Eye Res., 2014, 119, 27-34.
[144]
Freire, V.; Andollo, N.; Etxebarria, J.; Durán, J.A.; Morales, M-C. In vitro effects of three blood derivatives on human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 2012, 53(9), 5571-5578.
[145]
Merayo-Lloves, J.; Sanchez, R.M.; Riestra, A.C.; Anitua, E.; Begoña, L.; Orive, G.; Fernandez-Vega, L. Autologous plasma rich in growth factors eyedrops in refractory cases of ocular surface disorders. Ophthalmic Res., 2015, 55(2), 53-61.
[146]
Pezzotta, S.; Del Fante, C.; Scudeller, L.; Cervio, M. Anto- niazzi, E.; Perotti, C., Autologous platelet lysate for treatment of refractory ocular GVHD. Bone Marrow Transplant., 2012, 47(12), 1558-1563.
[147]
López-Plandolit, S.; Morales, M-C.; Freire, V.; Grau, A.E.; Durán, J.A. Efficacy of plasma rich in growth factors for the treatment of dry eye. Cornea, 2011, 30(12), 1312-1317.
[148]
López-Plandolit, S.; Morales, M-C.; Freire, V.; Etxebarría, J.; Durán, J.A. Plasma rich in growth factors as a therapeutic agent for persistent corneal epithelial defects. Cornea, 2010, 29(8), 843-848.
[149]
Geremicca, W.; Fonte, C.; Vecchio, S. Blood components for topical use in tissue regeneration: Evaluation of corneal lesions treated with platelet lysate and considerations on repair mechanisms. Blood Transfus., 2010, 8(2), 107-112.
[150]
Wilson, S.; Li, Q.; Mohan, R.; Tervo, T.; Vesaluoma, M.; Bennett, G.; Schwall, R.; Tabor, K.; Kim, J.; Hargrave, S. Lacrimal gland growth factors and receptors: lacrimal fibroblastic cells are a source of tear HGF. Adv. Exp. Med. Biol., 1998, 438, 625-628.
[151]
Wang, X.; Zhou, X.; Ma, J.; Tian, H.; Jiao, Y.; Zhang, R.; Huang, Z.; Xiao, J.; Zhao, B.; Qian, H.; Li, X. Effects of keratinocyte growth factor-2 on corneal epithelial wound healing in a rabbit model of carbon dioxide laser injury. Biol. Pharm. Bull., 2010, 33(6), 971-976.
[152]
Sotozono, C.; Inatomi, T.; Nakamura, M.; Kinoshita, S. Keratinocyte growth factor accelerates corneal epithelial wound healing in vivo. Invest. Ophthalmol. Vis. Sci., 1995, 36(8), 1524-1529.
[153]
Teranishi, S.; Kimura, K.; Kawamoto, K.; Nishida, T. Protection of human corneal epithelial cells from hypoxia-induced disruption of barrier function by keratinocyte growth factor. Invest. Ophthalmol. Vis. Sci., 2008, 49(6), 2432-2437.
[154]
Imayasu, M.; Shimada, S. Phosphorylation of MAP kinase in corneal epithelial cells during wound healing. Curr. Eye Res., 2003, 27(3), 133-141.
[155]
Liang, Q.; Mohan, R.R.; Chen, L.; Wilson, S.E. Signaling by HGF and KGF in corneal epithelial cells: Ras/MAP kinase and Jak-STAT pathways. Invest. Ophthalmol. Vis. Sci., 1998, 39(8), 1329-1338.
[156]
Liu, L.; Li, Y.; Huang, S.; Lin, J.; Zhang, W. Keratinocyte growth factor-2 on the proliferation of corneal epithelial stem cells in rabbit alkali burned cornea. Yan Ke Xue Bao, 2007, 23(2), 107-116.
[157]
Dedova, I.V.; Nikolaeva, O.P.; Safer, D.; De La Cruz, E.M.; dos Remedios, C.G. Thymosin beta4 induces a conformational change in actin monomers. Biophys. J., 2006, 90(3), 985-992.
[158]
Qiu, P.; Wheater, M.K.; Qiu, Y.; Sosne, G. Thymosin beta4 inhibits TNF-alpha-induced NF-kappaB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. FASEB J., 2011, 25(6), 1815-1826.
[159]
Sosne, G.; Siddiqi, A.; Kurpakus-Wheater, M. Thymosin-beta4 inhibits corneal epithelial cell apoptosis after ethanol exposure in vitro. Invest. Ophthalmol. Vis. Sci., 2004, 45(4), 1095-1100.
[160]
Dunn, S.P.; Heidemann, D.G.; Chow, C.Y.; Crockford, D.; Turjman, N.; Angel, J.; Allan, C.B.; Sosne, G. Treatment of chronic nonhealing neurotrophic corneal epithelial defects with thymosin beta4. Ann. N. Y. Acad. Sci., 2010, 1194(1), 199-206.
[161]
Ho, J.H.; Su, Y.; Chen, K-H.; Lee, O.K. Protection of thymosin beta-4 on corneal endothelial cells from UVB-induced apoptosis. Chin. J. Physiol., 2010, 53(3), 190-195.
[162]
Sosne, G.; Rimmer, D.; Kleinman, H.K.; Ousler, G. Thymosin Beta 4: A potential novel therapy for neurotrophic keratopathy, dry eye, and ocular surface diseases. Vitam. Horm., 2016, 102, 277-306.
[163]
Sosne, G.; Dunn, S.P.; Kim, C. Thymosin β4 significantly improves signs and symptoms of severe dry eye in a phase 2 randomized trial. Cornea, 2015, 34(5), 491-496.
[164]
Pigault, C.; Follenius-Wund, A.; Schmutz, M.; Freyssinet, J-M.; Brisson, A. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J. Mol. Biol., 1994, 236(1), 199-208.
[165]
Oling, F.; Bergsma-Schutter, W.; Brisson, A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin a5 two-dimensional crystals. J. Struct. Biol., 2001, 133(1), 55-63.
[166]
Bouter, A.; Gounou, C.; Bérat, R.; Tan, S.; Gallois, B.; Granier, T.; d’Estaintot, B.L.; Pöschl, E.; Brachvogel, B.; Brisson, A.R. Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat. Commun., 2011, 2, 270.
[167]
Maurer, L.M.; Ma, W.; Mosher, D.F. Dynamic structure of plasma fibronectin. Crit. Rev. Biochem. Mol. Biol., 2015, 51(4), 213-227.
[168]
Stepp, M.A.; Spurr-Michaud, S.; Gipson, I.K. Integrins in the wounded and unwounded stratified squamous epithelium of the cornea. Invest. Ophthalmol. Vis. Sci., 1993, 34(5), 1829-1844.
[169]
Nishida, T.; Ohashi, Y.; Awata, T.; Manabe, R. Fibronectin. A new therapy for corneal trophic ulcer. Arch. Ophthalmol., 1983, 101(7), 1046-1048.
[170]
Nishida, T.; Nakagawa, S.; Manabe, R. Clinical evaluation of fibronectin eyedrops on epithelial disorders after herpetic keratitis. Ophthalmology, 1985, 92(2), 213-216.
[171]
Fukuda, K.; Yamada, N.; Nishida, T. Case report of restoration of the corneal epithelium in a patient with atopic keratoconjunctivitis resulting in amelioration of ocular allergic inflammation. Allergol. Int., 2010, 59(3), 309-312.
[172]
Morita, Y.; Chikama, T.; Yamada, N.; Morishige, N.; Sonoda, K-H.; Nishida, T. New mode of treatment for lattice corneal dystrophy type I: Corneal epithelial debridement and fibronectin eye drops. Jpn. J. Ophthalmol., 2012, 56(1), 26-30.
[173]
Kim, K.S.; Oh, J.S.; Kim, I.S.; Jo, J.S. Topical fibronectin treatment in persistent corneal epithelial defects and corneal ulcers. Korean J. Ophthalmol., 1990, 4(1), 5-11.
[174]
McCulley, J.P.; Horowitz, B.; Husseini, Z.M.; Horowitz, M. Topical fibronectin therapy of persistent corneal epithelial defects. Trans. Am. Ophthalmol. Soc., 1993, 91, 367-386.
[175]
Phan, T-M.M.; Foster, C.S.; Boruchoff, S.A.; Zagachin, L.M.; Colvin, R.B. Topical fibronectin in the treatment of persistent corneal epithelial defects and trophic ulcers. Am. J. Ophthalmol., 1987, 104(5), 494-501.
[176]
Gordon, J.F.; Johnson, P.; Musch, D.C.; Group, C.V.F.S. Topical fibronectin ophthalmic solution in the treatment of persistent defects of the corneal epithelium. Am. J. Ophthalmol., 1995, 119(3), 281-287.
[177]
Völgyi, B.; Kovács-Oller, T.; Atlasz, T.; Wilhelm, M.; Gábriel, R. Gap junctional coupling in the vertebrate retina: Variations on one theme? Prog. Retin. Eye Res., 2013, 34, 1-18.
[178]
Grek, C.L.; Rhett, J.M.; Ghatnekar, G.S. Cardiac to cancer: Connecting connexins to clinical opportunity. FEBS Lett., 2014, 588(8), 1349-1364.
[179]
Zhai, J.; Wang, Q.; Tao, L. Connexin expression patterns in diseased human corneas. Exp. Ther. Med., 2014, 7(4), 791-798.
[180]
Laux-Fenton, W.T.; Donaldson, P.J.; Kistler, J.; Green, C.R. Connexin expression patterns in the rat cornea: Molecular evidence for communication compartments. Cornea, 2003, 22(5), 457-464.
[181]
Moore, K.; Bryant, Z.J.; Ghatnekar, G.; Singh, U.P.; Gourdie, R.G.; Potts, J.D. A synthetic connexin 43 mimetic peptide augments corneal wound healing. Exp. Eye Res., 2013, 115, 178-188.
[182]
Nishida, K.; Kinoshita, S.; Yokoi, N.; Kaneda, M. Hashi- moto, K.; Yamamoto, S., Immunohistochemical localiza- tion of transforming growth factor-beta 1,-beta 2, and-beta 3 latency-associated peptide in human cornea. Invest. Ophthalmol. Vis. Sci., 1994, 35(8), 3289-3294.
[183]
Andresen, J.L.; Ledet, T.; Ehlers, N. Keratocyte migration and peptide growth factors: the effect of PDGF, bFGF, EGF, IGF-I, aFGF and TGF-beta on human keratocyte migration in a collagen gel. Curr. Eye Res., 1997, 16(6), 605-613.
[184]
Haber, M.; Cao, Z.; Panjwani, N.; Bedenice, D.; Li, W.W.; Provost, P.J. Effects of growth factors (EGF, PDGF-BB and TGF-beta 1) on cultured equine epithelial cells and keratocytes: Implications for wound healing. Vet. Ophthalmol., 2003, 6(3), 211-217.
[185]
Pancholi, S.; Tullo, A.; Khaliq, A.; Foreman, D.; Boulton, M. The effects of growth factors and conditioned media on the proliferation of human corneal epithelial cells and keratocytes. Graefes Arch. Clin. Exp. Ophthalmol., 1998, 236(1), 1-8.
[186]
Y.; NISHIDA, K.; SOTOZONO, C.; KINO- SHITA, S., Effect of Transforming Growth Factor-β1 and- β2 onin vitroRabbit Corneal Epithelial Cell Proliferation Promoted by Epidermal Growth Factor, Keratinocyte Growth Factor, or Hepatocyte Growth Factor. Exp. Eye Res., 1997, 65(3), 391-396.
[187]
Er, H.; Uzmez, E. Effects of transforming growth factor-beta 2, interleukin 6 and fibronectin on corneal epithelial wound healing. Eur. J. Ophthalmol., 1998, 8(4), 224-229.
[188]
Møller-Pedersen, T.; Cavanagh, H.D.; Petroll, W.M.; Jester, J.V. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr. Eye Res., 1998, 17(7), 736-747.
[189]
Sanghi, S.; Kumar, R.; Lumsden, A.; Dickinson, D.; Klepeis, V.; Trinkaus-Randall, V.; Frierson, H.F., Jr; Laurie, G.W. cDNA and genomic cloning of lacritin, a novel secretion enhancing factor from the human lacrimal gland. J. Mol. Biol., 2001, 310(1), 127-139.
[190]
Tsai, P.S.; Evans, J.E.; Green, K.M.; Sullivan, R.M.; Schaumberg, D.A.; Richards, S.M.; Dana, M.R.; Sullivan, D.A. Proteomic analysis of human meibomian gland secretions. Br. J. Ophthalmol., 2006, 90(3), 372-377.
[191]
Karnati, R.; Talla, V.; Peterson, K.; Laurie, G.W. Lacritin and other autophagy associated proteins in ocular surface health. Exp. Eye Res., 2016, 144, 4-13.
[192]
Vijmasi, T.; Chen, F.Y.; Balasubbu, S.; Gallup, M.; McKown, R.L.; Laurie, G.W.; McNamara, N.A. Topical administration of lacritin is a novel therapy for aqueous-deficient dry eye disease. Invest. Ophthalmol. Vis. Sci., 2014, 55(8), 5401-5409.
[193]
Wang, W.; Jashnani, A.; Aluri, S.R.; Gustafson, J.A.; Hsueh, P-Y.; Yarber, F.; McKown, R.L.; Laurie, G.W.; Hamm-Alvarez, S.F.; MacKay, J.A. A thermo-responsive protein treatment for dry eyes. J. Control. Release, 2015, 199, 156-167.
[194]
Samudre, S.; Lattanzio, F.A., Jr; Lossen, V.; Hosseini, A.; Sheppard, J.D., Jr; McKown, R.L.; Laurie, G.W.; Williams, P.B. Lacritin, a novel human tear glycoprotein, promotes sustained basal tearing and is well tolerated. Invest. Ophthalmol. Vis. Sci., 2011, 52(9), 6265-6270.
[195]
Fujii, A.; Morimoto-Tochigi, A.; Walkup, R.D.; Shearer, T.R.; Azuma, M. Lacritin-induced secretion of tear proteins from cultured monkey lacrimal acinar cellslac- ritin-induced secretion of tear proteins. Invest. Ophthalmol. Vis. Sci., 2013, 54(4), 2533-2540.
[196]
Wang, J.; Wang, N.; Xie, J.; Walton, S.C.; McKown, R.L.; Raab, R.W.; Ma, P.; Beck, S.L.; Coffman, G.L.; Hussaini, I.M.; Laurie, G.W. Restricted epithelial proliferation by lacritin via PKCalpha-dependent NFAT and mTOR pathways. J. Cell Biol., 2006, 174(5), 689-700.
[197]
Wang, N.; Zimmerman, K.; Raab, R.W.; McKown, R.L.; Hutnik, C.M.; Talla, V.; Tyler, M.F., IV; Lee, J.K.; Laurie, G.W. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J. Biol. Chem., 2013, 288(25), 18146-18161.
[198]
Lambiase, A.; Micera, A.; Pellegrini, G.; Merlo, D.; Rama, P.; De Luca, M.; Bonini, S.; Bonini, S. In vitro evidence of nerve growth factor effects on human conjunctival epithelial cell differentiation and mucin gene expression. Invest. Ophthalmol. Vis. Sci., 2009, 50(10), 4622-4630.
[199]
Jain, P.; Li, R.; Lama, T.; Saragovi, H.U.; Cumberlidge, G.; Meerovitch, K. An NGF mimetic, MIM-D3, stimulates conjunctival cell glycoconjugate secretion and demonstrates therapeutic efficacy in a rat model of dry eye. Exp. Eye Res., 2011, 93(4), 503-512.
[200]
Jay, G.D.; Waller, K.A. The biology of lubricin: Near frictionless joint motion. Matrix Biol., 2014, 39, 17-24.
[201]
Cheriyan, T.; Schmid, T.M.; Spector, M. Presence and distribution of the lubricating protein, lubricin, in the meibomian gland in rabbits. Mol. Vis., 2011, 17, 3055-3061.
[202]
Schmidt, T.A.; Sullivan, D.A.; Knop, E.; Richards, S.M.; Knop, N.; Liu, S.; Sahin, A.; Darabad, R.R.; Morrison, S.; Kam, W.R.; Sullivan, B.D. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface. JAMA Ophthalmol., 2013, 131(6), 766-776.
[203]
Samsom, M.L.; Morrison, S.; Masala, N.; Sullivan, B.D.; Sullivan, D.A.; Sheardown, H.; Schmidt, T.A. Characterization of full-length recombinant human Proteoglycan 4 as an ocular surface boundary lubricant. Exp. Eye Res., 2014, 127, 14-19.
[204]
Lambiase, A.; Sullivan, B.D.; Schmidt, T.A.; Sullivan, D.A.; Jay, G.D.; Truitt, E.R., III; Bruscolini, A.; Sacchetti, M.; Mantelli, F. Two-week, a. a two-week, randomized, double-masked study to evaluate safety and efficacy of lubricin (150 μg/ml) eye drops versus sodium hyaluronate (ha) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul. Surf., 2017, 15(1), 77-87.
[205]
Foulks, G.N. Topical cyclosporine for treatment of ocular surface disease. Int. Ophthalmol. Clin., 2006, 46(4), 105-122.
[206]
Li, S.; Gallup, M.; Chen, Y-T.; McNamara, N.A. Molecular mechanism of proinflammatory cytokine-mediated squamous metaplasia in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 2010, 51(5), 2466-2475.
[207]
Wang, Y.; Ogawa, Y.; Dogru, M.; Kawai, M.; Tatematsu, Y.; Uchino, M.; Okada, N.; Igarashi, A.; Kujira, A.; Fujishima, H.; Okamoto, S.; Shimazaki, J.; Tsubota, K. Ocular surface and tear functions after topical cyclosporine treatment in dry eye patients with chronic graft-versus-host disease. Bone Marrow Transplant., 2008, 41(3), 293-302.
[208]
Kymionis, G.D.; Bouzoukis, D.I.; Diakonis, V.F.; Siganos, C. Treatment of chronic dry eye: focus on cyclosporine. Clin. Ophthalmol., 2008, 2(4), 829-836.
[209]
Schechter, B.A.; Katz, R.S.; Friedman, L.S. Efficacy of topical cyclosporine for the treatment of ocular rosacea. Adv. Ther., 2009, 26(6), 651-659.
[210]
BenEzra, D.; Pe’er, J.; Brodsky, M.; Cohen, E. Cyclosporine eyedrops for the treatment of severe vernal keratoconjunctivitis. Am. J. Ophthalmol., 1986, 101(3), 278-282.
[211]
Spadavecchia, L.; Fanelli, P.; Tesse, R.; Brunetti, L. Cardi- nale, F.; Bellizzi, M.; Rizzo, G.; Procoli, U.; Bellizzi, G.; Armenio, L., Efficacy of 1.25% and 1% topical cyclosporine in the treatment of severe vernal keratoconjunctivitis in childhood. Pediatr. Allergy Immunol., 2006, 17(7), 527-532.
[212]
Price, M.O.; Price, F.W., Jr Efficacy of topical cyclosporine 0.05% for prevention of cornea transplant rejection episodes. Ophthalmology, 2006, 113(10), 1785-1790.
[213]
Lelli, G.J., Jr; Musch, D.C.; Gupta, A.; Farjo, Q.A.; Nairus, T.M.; Mian, S.I. Ophthalmic cyclosporine use in ocular GVHD. Cornea, 2006, 25(6), 635-638.
[214]
Sall, K.; Stevenson, O.D.; Mundorf, T.K.; Reis, B.L.; Group, C.P.S. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA Phase 3 Study Group. Ophthalmology, 2000, 107(4), 631-639.
[215]
Peyman, G.A.; Sanders, D.R.; Batlle, J.F.; Féliz, R.; Cabrera, G. Cyclosporine 0.05% ophthalmic preparation to aid recovery from loss of corneal sensitivity after LASIK. J. Refract. Surg., 2008, 24(4), 337-343.
[216]
Toker, E.; Asfuroğlu, E. Corneal and conjunctival sensitivity in patients with dry eye: The effect of topical cyclosporine therapy. Cornea, 2010, 29(2), 133-140.
[217]
Schultz, C. Safety and efficacy of cyclosporine in the treatment of chronic dry eye. Ophthalmol. Eye Dis., 2014, 6, 37-42.
[218]
Shiraishi, M.; Csete, M.; Yasunaga, C.; McDiarmid, S.V.; Vannice, J.L.; Busuttil, R.W.; Shaked, A. The inhibitor cytokine interleukin-1 receptor antagonist synergistically augments cyclosporine immunosuppression in a rat cardiac allograft model. J. Surg. Res., 1995, 58(5), 465-470.
[219]
Yamada, J.; Zhu, S.N.; Streilein, J.W.; Dana, M.R. Interleukin-1 receptor antagonist therapy and induction of anterior chamber-associated immune deviation-type tolerance after corneal transplantation. Invest. Ophthalmol. Vis. Sci., 2000, 41(13), 4203-4208.
[220]
Keane-Myers, A.M.; Miyazaki, D.; Liu, G.; Dekaris, I.; Ono, S.; Dana, M.R. Prevention of allergic eye disease by treatment with IL-1 receptor antagonist. Invest. Ophthalmol. Vis. Sci., 1999, 40(12), 3041-3046.
[221]
Yamada, J.; Dana, M.R.; Sotozono, C.; Kinoshita, S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp. Eye Res., 2003, 76(2), 161-167.
[222]
Thirumangalathu, R.; Krishnan, S.; Bondarenko, P. Speed- Ricci, M.; Randolph, T.W.; Carpenter, J.F.; Brems, D.N. Oxidation of methionine residues in recombinant human in- terleukin-1 receptor antagonist: Implications of conformational stability on protein oxidation kinetics. Biochemistry, 2007, 46(21), 6213-6224.
[223]
Vijmasi, T.; Chen, F.Y.; Chen, Y.T.; Gallup, M. Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease. Mol. Vis., 2013, 19, 1957-1965.
[224]
Amparo, F.; Dastjerdi, M.H.; Okanobo, A.; Ferrari, G.; Smaga, L.; Hamrah, P.; Jurkunas, U.; Schaumberg, D.A.; Dana, R. Topical interleukin 1 receptor antagonist for treatment of dry eye disease: A randomized clinical trial. JAMA Ophthalmol., 2013, 131(6), 715-723.
[225]
Hou, J.; Townson, S.A.; Kovalchin, J.T.; Masci, A.; Kiner, O.; Shu, Y.; King, B.M.; Schirmer, E.; Golden, K.; Thomas, C.; Garcia, K.C.; Zarbis-Papastoitsis, G.; Furfine, E.S.; Barnes, T.M. Design of a superior cytokine antagonist for topical ophthalmic use. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 3913-3918.
[226]
Goldstein, M.H.; Tubridy, K.L.; Agahigian, J.; Furfine, E.; Magill, M.; Kovalchin, J.; Golden, K.; Zarbis-Papastoitsis, G.; Soong, F.; Salapatek, A.M.; Sternberg, G.; Celniker, A. A phase II exploratory study of a novel interleukin-1 receptor inhibitor (EBI-005) in the treatment of moderate-to-severe allergic conjunctivitis. Eye Contact Lens, 2015, 41(3), 145-155.
[227]
Ferrari, G.; Bignami, F.; Rama, P. Tumor necrosis factor-α inhibitors as a treatment of corneal hemangiogenesis and lymphangiogenesis. Eye Contact Lens, 2015, 41(2), 72-76.
[228]
Saika, S. Yin and yang in cytokine regulation of corneal wound healing: roles of TNF-alpha. Cornea, 2007, 26(9)(Suppl. 1), S70-S74.
[229]
Cade, F.; Paschalis, E.I.; Regatieri, C.V.; Vavvas, D.G.; Dana, R.; Dohlman, C.H. Alkali burn to the eye: Protection using TNF-α inhibition. Cornea, 2014, 33(4), 382-389.
[230]
Fujita, S.; Saika, S.; Kao, W.W.; Fujita, K.; Miyamoto, T.; Ikeda, K.; Nakajima, Y.; Ohnishi, Y. Endogenous TNFalpha suppression of neovascularization in corneal stroma in mice. Invest. Ophthalmol. Vis. Sci., 2007, 48(7), 3051-3055.
[231]
Lu, P.; Li, L.; Liu, G.; Baba, T.; Ishida, Y.; Nosaka, M.; Kondo, T.; Zhang, X.; Mukaida, N. Critical role of TNF-α-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization. Invest. Ophthalmol. Vis. Sci., 2012, 53(7), 3516-3526.
[232]
Atzeni, F.; Sarzi-Puttini, P. Anti-cytokine antibodies for rheumatic diseases. Curr. Opin. Investig. Drugs, 2009, 10(11), 1204-1211.
[233]
Zhou, C.; Robert, M.C.; Kapoulea, V.; Lei, F.; Stagner, A.M.; Jakobiec, F.A.; Dohlman, C.H.; Paschalis, E.I. Sustained subconjunctival delivery of infliximab protects the cornea and retina following alkali burn to the eye. Invest. Ophthalmol. Vis. Sci., 2017, 58(1), 96-105.
[234]
Kim, J.W.; Chung, S.K. The effect of topical infliximab on corneal neovascularization in rabbits. Cornea, 2013, 32(2), 185-190.
[235]
Ozdemir, O.; Altintas, O.; Altintas, L.; Yildiz, D.K.; Sener, E.; Caglar, Y. Effects of subconjunctivally injected bevaci- zumab, etanercept, and the combination of both drugs on experimental corneal neovascularization. Can. J. Ophthalmol., 2013, 48(2), 115-120.
[236]
Sosne, G.; Qiu, P.; Christopherson, P.L.; Wheater, M.K. Thymosin beta 4 suppression of corneal NFkappaB: A potential anti-inflammatory pathway. Exp. Eye Res., 2007, 84(4), 663-669.
[237]
Yoon, K.C.; Jeong, I.Y.; Park, Y.G.; Yang, S.Y. Interleukin-6 and tumor necrosis factor-alpha levels in tears of patients with dry eye syndrome. Cornea, 2007, 26(4), 431-437.
[238]
Sakimoto, T. Potential Application of Biological Products for the Treatment of Ocular Surface Inflammation. Cornea, 2015, 34(Suppl. 11), S153-S157.
[239]
Sari, E.S.; Yazici, A.; Aksit, H.; Yay, A.; Sahin, G.; Yildiz, O.; Ermis, S.S.; Seyrek, K.; Yalcin, B. Inhibitory effect of sub-conjunctival tocilizumab on alkali burn induced corneal neovascularization in rats. Curr. Eye Res., 2015, 40(1), 48-55.
[240]
Chang, J.H.; Garg, N.K.; Lunde, E.; Han, K.Y.; Jain, S.; Azar, D.T. Corneal neovascularization: An anti-VEGF therapy review. Surv. Ophthalmol., 2012, 57(5), 415-429.
[241]
Joussen, A.M.; Poulaki, V.; Mitsiades, N.; Stechschulte, S.U.; Kirchhof, B.; Dartt, D.A.; Fong, G.H.; Rudge, J.; Wiegand, S.J.; Yancopoulos, G.D.; Adamis, A.P. VEGF-dependent conjunctivalization of the corneal surface. Invest. Ophthalmol. Vis. Sci., 2003, 44(1), 117-123.
[242]
Wu, Y.; Zhang, Q.; Ann, D.K.; Akhondzadeh, A.; Duong, H.S.; Messadi, D.V.; Le, A.D. Increased vascular endothelial growth factor may account for elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts. Am. J. Physiol. Cell Physiol., 2004, 286(4), C905-C912.
[243]
Watanabe, M.; Yano, W.; Kondo, S.; Hattori, Y.; Yamada, N.; Yanai, R.; Nishida, T. Up-regulation of urokinase-type plasminogen activator in corneal epithelial cells induced by wounding. Invest. Ophthalmol. Vis. Sci., 2003, 44(8), 3332-3338.
[244]
Irigoyen, J.P.; Munoz-Canoves, P.; Montero, L.; Koziczak, M.; Nagamine, Y. The plasminogen activator system: biology and regulation. Cellular and molecular life sciences. Cell. Mol. Life Sci., 1999, 56(1-2), 104-132.
[245]
Blasi, F. Proteolysis, cell adhesion, chemotaxis, and invasiveness are regulated by the u-PA-u-PAR-PAI-1 system. Thromb. Haemost., 1999, 82(2), 298-304.
[246]
Ratel, D.; Mihoubi, S.; Beaulieu, E.; Durocher, Y.; Rivard, G.E.; Gingras, D.; Béliveau, R. VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases. Thromb. Res., 2007, 121(2), 203-212.
[247]
Chaudhary, N.I.; Roth, G.J.; Hilberg, F. Muller- Quernheim, J.; Prasse, A.; Zissel, G.; Schnapp, A.; Park, J.E., Inhibition of PDGF, VEGF and FGF signalling attenu- ates fibrosis. Eur. Respir. J., 2007, 29(5), 976-985.
[248]
van Wijngaarden, P.; Coster, D.J.; Williams, K.A. Inhibitors of ocular neovascularization: Promises and potential problems. JAMA, 2005, 293(12), 1509-1513.
[249]
Lowe, J.; Araujo, J.; Yang, J.; Reich, M.; Oldendorp, A.; Shiu, V.; Quarmby, V.; Lowman, H.; Lien, S.; Gaudreault, J.; Maia, M. Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp. Eye Res., 2007, 85(4), 425-430.
[250]
Manzano, R.P.; Peyman, G.A.; Khan, P.; Carvounis, P.E.; Kivilcim, M.; Ren, M.; Lake, J.C.; Chévez-Barrios, P. Inhibition of experimental corneal neovascularisation by bevacizumab (Avastin). Br. J. Ophthalmol., 2007, 91(6), 804-807.
[251]
Saravia, M.; Zapata, G.; Ferraiolo, P.; Racca, L.; Berra, A. Anti-VEGF monoclonal antibody-induced regression of corneal neovascularization and inflammation in a rabbit model of herpetic stromal keratitis. Graefes Arch. Clin. Exp. Ophthalmol., 2009, 247(10), 1409-1416.
[252]
Ferrari, G.; Dastjerdi, M.H.; Okanobo, A.; Cheng, S-F.; Amparo, F.; Nallasamy, N.; Dana, R. Topical ranibizumab as a treatment of corneal neovascularization. Cornea, 2013, 32(7), 992-997.
[253]
Kim, E.K.; Kong, S.J.; Chung, S.K. Comparative study of ranibizumab and bevacizumab on corneal neovascularization in rabbits. Cornea, 2014, 33(1), 60-64.
[254]
Lin, C.T.; Hu, F.R.; Kuo, K.T.; Chen, Y.M.; Chu, H.S.; Lin, Y.H.; Chen, W.L. The different effects of early and late bevacizumab (Avastin) injection on inhibiting corneal neovascularization and conjunctivalization in rabbit limbal insufficiency. Invest. Ophthalmol. Vis. Sci., 2010, 51(12), 6277-6285.
[255]
DeStafeno, J.J.; Kim, T. Topical bevacizumab therapy for corneal neovascularization. Arch. Ophthalmol., 2007, 125(6), 834-836.
[256]
Perez-Santonja, J.J.; Campos-Mollo, E.; Lledo-Riquelme, M.; Javaloy, J.; Alio, J.L. Inhibition of corneal neovascularization by topical bevacizumab (Anti-VEGF) and Sunitinib (Anti-VEGF and Anti-PDGF) in an animal model Am. J. Ophthalmol, 2010, 150 (4), 519-528 e511
[257]
Wakamatsu, T.H.; Dogru, M.; Tsubota, K. Tearful relations: oxidative stress, inflammation and eye diseases. Arq. Bras. Oftalmol., 2008, 71(6)(Suppl.), 72-79.
[258]
Cejka, C.; Cejkova, J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxid. Med. Cell. Longev., 2015, 2015, 591530.
[259]
Zernii, E.Y.; Nazipova, A.A.; Gancharova, O.S.; Kazakov, A.S.; Serebryakova, M.V.; Zinchenko, D.V.; Tikhomirova, N.K.; Senin, I.I.; Philippov, P.P.; Permyakov, E.A.; Permyakov, S.E. Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radic. Biol. Med., 2015, 83, 283-295.
[260]
Zernii, E.Y.; Baksheeva, V.E.; Iomdina, E.N.; Averina, O.A.; Permyakov, S.E.; Philippov, P.P.; Zamyatnin, A.A.; Senin, I.I. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches. CNS Neurol. Disord. Drug Targets, 2016, 15(3), 267-291.
[261]
Leema, G.; Muralidharan, A.R.; Annadurai, T.; Kaliamurthy, J.; Geraldine, P.; Thomas, P.A. Oxidative stress in experimental rodent corneas infected with aflatoxigenic and nonaflatoxigenic Aspergillus flavus. Cornea, 2013, 32(6), 867-874.
[262]
Gogia, R.; Richer, S.P.; Rose, R.C. Tear fluid content of electrochemically active components including water soluble antioxidants. Curr. Eye Res., 1998, 17(3), 257-263.
[263]
Choy, C.K.; Cho, P.; Chung, W.Y.; Benzie, I.F. Water-soluble antioxidants in human tears: Effect of the collection method. Invest. Ophthalmol. Vis. Sci., 2001, 42(13), 3130-3134.
[264]
Chen, Y.; Mehta, G.; Vasiliou, V. Antioxidant defenses in the ocular surface. Ocul. Surf., 2009, 7(4), 176-185.
[265]
Peters, T. All about albumin: biochemistry, genetics, and medical applications., 1996.
[266]
Augustin, A.J.; Spitznas, M.; Kaviani, N.; Meller, D.; Koch, F.H.; Grus, F.; Gobbels, M.J. Oxidative reactions in the tear fluid of patients suffering from dry eyes Graefe's archive for clinical and experimental ophthalmology = Al- brecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 1995, 233 (11), 694-698.
[267]
Cejková, J.; Ardan, T.; Simonová, Z.; Cejka, C.; Malec, J.; Dotrelová, D.; Brunová, B. Decreased expression of antioxidant enzymes in the conjunctival epithelium of dry eye (Sjögren’s syndrome) and its possible contribution to the development of ocular surface oxidative injuries. Histol. Histopathol., 2008, 23(12), 1477-1483.
[268]
Geerling, G.; Unterlauft, J.D.; Kasper, K.; Schrader, S.; Opitz, A.; Hartwig, D. [Autologous serum and alternative blood products for the treatment of ocular surface disorders]. Ophthalmologe, 2008, 105(7), 623-631.
[269]
Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med., 1993, 14(3), 303-311.
[270]
Higuchi, A.; Ueno, R.; Shimmura, S.; Suematsu, M.; Dogru, M.; Tsubota, K. Albumin rescues ocular epithelial cells from cell death in dry eye. Curr. Eye Res., 2007, 32(2), 83-88.
[271]
Iglesias, J.; Abernethy, V.E.; Wang, Z.; Lieberthal, W.; Koh, J.S.; Levine, J.S. Albumin is a major serum survival factor for renal tubular cells and macrophages through scavenging of ROS. Am. J. Physiol., 1999, 277(5), F711-F722.
[272]
Shimmura, S.; Ueno, R.; Matsumoto, Y.; Goto, E.; Higuchi, A.; Shimazaki, J.; Tsubota, K. Albumin as a tear supplement in the treatment of severe dry eye. Br. J. Ophthalmol., 2003, 87(10), 1279-1283.
[273]
Schargus, M.; Kohlhaas, M.; Unterlauft, J.D. Treatment of severe ocular surface disorders with albumin eye drops. J. Ocul. Pharmacol. Ther., 2015, 31(5), 291-295.
[274]
Seki, J.T.; Sakurai, N.; Moldenhauer, S.; Dam, J.; Atenafu, E.G.; Yip, P.M.; Mazzulli, T.; Henderson, T.; Pendergrast, J.; Cserti, C.; Velazquez, J.P.; Simpson, R.; Felluga, G.; Messner, H.A.; Lipton, J.H. Human albumin eye drops as a therapeutic option for the management of keratoconjunctivitis sicca secondary to chronic graft-versus-host disease after stem-cell allografting. Curr. Oncol., 2015, 22(5), e357-e363.
[275]
Gillette, T.E.; Allansmith, M.R. Lactoferrin in human ocular tissues. Am. J. Ophthalmol., 1980, 90(1), 30-37.
[276]
Kijlstra, A.; Jeurissen, S.H.; Koning, K.M. Lactoferrin levels in normal human tears. Br. J. Ophthalmol., 1983, 67(3), 199-202.
[277]
Boukes, R.J.; Boonstra, A.; Breebaart, A.C.; Reits, D.; Glasius, E.; Luyendyk, L.; Kijlstra, A. Analysis of human tear protein profiles using high performance liquid chromatography (HPLC). Doc. Ophthalmol., 1987, 67(1-2), 105-113.
[278]
Kuwata, H.; Yip, T.T.; Tomita, M.; Hutchens, T.W. Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim. Biophys. Acta, 1998, 1429(1), 129-141.
[279]
Flanagan, J.L.; Willcox, M.D. Role of lactoferrin in the tear film. Biochimie, 2009, 91(1), 35-43.
[280]
Fujihara, T.; Nagano, T.; Endo, K.; Nakamura, M.; Nakata, K. Lactoferrin protects against UV-B irradiation-induced corneal epithelial damage in rats. Cornea, 2000, 19(2), 207-211.
[281]
Fujihara, T.; Nagano, T.; Nakamura, M.; Shirasawa, E. Lactoferrin suppresses loss of corneal epithelial integrity in a rabbit short-term dry eye model. J. Ocul. Pharmacol. Ther., 1998, 14(2), 99-107.
[282]
Behndig, A.; Svensson, B.; Marklund, S.L.; Karlsson, K. Superoxide dismutase isoenzymes in the human eye. Invest. Ophthalmol. Vis. Sci., 1998, 39(3), 471-475.
[283]
Alio, J.L.; Ayala, M.J.; Mulet, M.E.; Artola, A.; Ruiz, J.M.; Bellot, J. Antioxidant therapy in the treatment of experimental acute corneal inflammation. Ophthalmic Res., 1995, 27(3), 136-143.
[284]
Rocha, E.M.; Cunha, D.A.; Carneiro, E.M.; Boschero, A.C.; Saad, M.J.; Velloso, L.A. Identification of insulin in the tear film and insulin receptor and IGF-1 receptor on the human ocular surface. Invest. Ophthalmol. Vis. Sci., 2002, 43(4), 963-967.
[285]
Wu, Y.C.; Buckner, B.R.; Zhu, M.; Cavanagh, H.D.; Robertson, D.M. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. Ocul. Surf., 2012, 10(2), 100-107.
[286]
Lee, H.K.; Lee, J.H.; Kim, M.; Kariya, Y.; Miyazaki, K.; Kim, E.K. Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 2006, 47(3), 873-882.
[287]
Trosan, P.; Svobodova, E.; Chudickova, M.; Krulova, M.; Zajicova, A.; Holan, V. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells Dev., 2012, 21(18), 3341-3350.
[288]
Nishida, T.; Nakamura, M.; Ofuji, K.; Reid, T.W.; Mannis, M.J.; Murphy, C.J. Synergistic effects of substance P with insulin-like growth factor-1 on epithelial migration of the cornea. J. Cell. Physiol., 1996, 169(1), 159-166.
[289]
Nakamura, M.; Kawahara, M.; Morishige, N.; Chikama, T.; Nakata, K.; Nishida, T. Promotion of corneal epithelial wound healing in diabetic rats by the combination of a substance P-derived peptide (FGLM-NH2) and insulin-like growth factor-1. Diabetologia, 2003, 46(6), 839-842.
[290]
Nagano, T.; Nakamura, M.; Nakata, K.; Yamaguchi, T.; Takase, K.; Okahara, A.; Ikuse, T.; Nishida, T. Effects of substance P and IGF-1 in corneal epithelial barrier function and wound healing in a rat model of neurotrophic keratopathy. Invest. Ophthalmol. Vis. Sci., 2003, 44(9), 3810-3815.
[291]
Nishida, T.; Chikama, T.; Morishige, N.; Yanai, R.; Yamada, N.; Saito, J. Persistent epithelial defects due to neurotrophic keratopathy treated with a substance p-derived peptide and insulin-like growth factor 1. Jpn. J. Ophthalmol., 2007, 51(6), 442-447.
[292]
Yamada, N.; Matsuda, R.; Morishige, N.; Yanai, R.; Chikama, T.I.; Nishida, T.; Ishimitsu, T.; Kamiya, A. Open clinical study of eye-drops containing tetrapeptides derived from substance P and insulin-like growth factor-1 for treatment of persistent corneal epithelial defects associated with neurotrophic keratopathy. Br. J. Ophthalmol., 2008, 92(7), 896-900.
[293]
Pennefather, J.N.; Lecci, A.; Candenas, M.L.; Patak, E.; Pinto, F.M.; Maggi, C.A. Tachykinins and tachykinin receptors: a growing family. Life Sci., 2004, 74(12), 1445-1463.
[294]
Katsanos, G.S.; Anogeianaki, A.; Orso, C.; Tete, S.; Salini, V.; Antinolfi, P.L.; Sabatino, G. Impact of substance P on cellular immunity. J. Biol. Regul. Homeost. Agents, 2008, 22(2), 93-98.
[295]
Tervo, K.; Tervo, T.; Eränkö, L.; Vannas, A.; Cuello, A.C.; Eränkö, O. Substance P-immunoreactive nerves in the human cornea and iris. Invest. Ophthalmol. Vis. Sci., 1982, 23(5), 671-674.
[296]
Nakamura, M.; Ofuji, K.; Chikama, T.; Nishida, T. Combined effects of substance P and insulin-like growth factor-1 on corneal epithelial wound closure of rabbit in vivo. Curr. Eye Res., 1997, 16(3), 275-278.
[297]
Nakamura, M.; Chikama, T.; Nishida, T. Up-regulation of integrin alpha 5 expression by combination of substance P and insulin-like growth factor-1 in rabbit corneal epithelial cells. Biochem. Biophys. Res. Commun., 1998, 246(3), 777-782.
[298]
Chikama, T.; Nakamura, M.; Nishida, T. Up-regulation of integrin alpha5 by a C-terminus four-amino-acid sequence of substance P (phenylalanine-glycine-leucine-methionine- amide) synergistically with insulin-like growth factor-1 in SV-40 transformed human corneal epithelial cells. Biochem. Biophys. Res. Commun., 1999, 255(3), 692-697.
[299]
Yamada, N.; Yanai, R.; Nakamura, M.; Inui, M.; Nishida, T. Role of the C domain of IGFs in synergistic promotion, with a substance P-derived peptide, of rabbit corneal epithelial wound healing. Invest. Ophthalmol. Vis. Sci., 2004, 45(4), 1125-1131.
[300]
Landi, F.; Aloe, L.; Russo, A.; Cesari, M.; Onder, G.; Bonini, S.; Carbonin, P.U.; Bernabei, R. Topical treatment of pressure ulcers with nerve growth factor: A randomized clinical trial. Ann. Intern. Med., 2003, 139(8), 635-641.
[301]
Woo, H.M.; Bentley, E.; Campbell, S.F.; Marfurt, C.F.; Murphy, C.J. Nerve growth factor and corneal wound healing in dogs. Exp. Eye Res., 2005, 80(5), 633-642.
[302]
Esquenazi, S.; Bazan, H.E.; Bui, V.; He, J.; Kim, D.B.; Bazan, N.G. Topical combination of NGF and DHA increases rabbit corneal nerve regeneration after photorefractive keratectomy. Invest. Ophthalmol. Vis. Sci., 2005, 46(9), 3121-3127.
[303]
Lambiase, A.; Rama, P.; Aloe, L.; Bonini, S. Management of neurotrophic keratopathy. Curr. Opin. Ophthalmol., 1999, 10(4), 270-276.
[304]
Bonini, S.; Rama, P.; Olzi, D.; Lambiase, A. Neurotrophic keratitis. Eye (Lond.), 2003, 17(8), 989-995.
[305]
Lambiase, A.; Rama, P.; Bonini, S.; Caprioglio, G.; Aloe, L. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. N. Engl. J. Med., 1998, 338(17), 1174-1180.
[306]
Bonini, S.; Lambiase, A.; Rama, P.; Caprioglio, G.; Aloe, L. Topical treatment with nerve growth factor for neurotrophic keratitis Ophthalmology,, 2000, 107 (7), 1347-1351. discussion 1351-1342
[307]
Micera, A.; Lambiase, A.; Puxeddu, I.; Aloe, L.; Stampachiacchiere, B.; Levi-Schaffer, F.; Bonini, S.; Bonini, S. Nerve growth factor effect on human primary fibroblastic-keratocytes: Possible mechanism during corneal healing. Exp. Eye Res., 2006, 83(4), 747-757.
[308]
Lambiase, A.; Coassin, M.; Sposato, V.; Micera, A.; Sacchetti, M.; Bonini, S.; Aloe, L. NGF topical application in patients with corneal ulcer does not generate circulating NGF antibodies. Pharmacol. Res., 2007, 56(1), 65-69.
[309]
Aloe, L.; Tirassa, P.; Lambiase, A. The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacol. Res., 2008, 57(4), 253-258.
[310]
Maliartchouk, S.; Feng, Y.; Ivanisevic, L.; Debeir, T.; Cuello, A.C.; Burgess, K.; Saragovi, H.U. A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Mol. Pharmacol., 2000, 57(2), 385-391.
[311]
Mimetogen Pharmaceuticals Announces Topline Results of Its Second Clinical Study with MIM-D3 for the Treatment of Dry Eye Syndrome. . http://www.mimetogen.com/news- publications/press-releases/51-mimetogen-pharmaceuticals- announces-topline-results-of-its-second-clinical-study-with- mim-d3-for-the-treatment-of-dry-eye-syndrome.html


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 3
Year: 2019
Page: [517 - 545]
Pages: 29
DOI: 10.2174/0929867324666170609080920
Price: $58

Article Metrics

PDF: 34
HTML: 3
EPUB: 1
PRC: 1