Natural Product Gossypol and its Derivatives in Precision Cancer Medicine

Author(s): Yun Zeng , Jingwen Ma , Liang Xu* , Daocheng Wu* .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 10 , 2019

  Journal Home
Translate in Chinese

Abstract:

Gossypol, a natural product extracted from the seed, roots, and stem of cotton, was initially used as a male contraceptive but was subsequently investigated as a novel antitumor agent. This review depicts the current status of gossypol and its derivatives as novel antitumor agents as well as presents their preparation and characteristics, especially of some gossypol Schiff bases, through quantitative and structural analysis. The main attractive target sites of gossypol and its derivatives are Bcl-2 family proteins containing the anti-apoptosis proteins Bcl-2 and Bcl-XL. The molecular mechanism of gossypol analogs not only involves cell apoptosis but also autophagy, cell cycle arrest, and other abnormal cellular phenomena. Gossypol and its derivatives exert antitumor effects on different cancer types in vitro and in vivo, and demonstrate synergistic effects with other chemo- and radio- therapeutic treatments. In addition, several nanocarriers have been designed to load gossypol or its derivatives in order to expand the range of their applications and evaluate their combination effects with other anti-tumor agents. This review may serve as a reference for the rational application of gossypol analogs as anti-tumor agents.

Keywords: Anti-tumor effects, apoptosis, autophagy, Bcl-2 family proteins, gossypol, nanocarriers, synergistic effects.

[1]
Dowd, M.K.; Pelitire, S.M. Recovery of gossypol acetic acid from cottonseed soapstock. Ind. Crops Prod., 2001, 14(2), 113-123.
[2]
Jia, G.; Zhan, Y.; Wu, D.; Meng, Y.; Xu, L. An improved ultrasound-assisted extraction process of gossypol acetic acid from cottonseed soapstock. AIChE J., 2009, 55(3), 797-806.
[3]
Chamkasem, N. Gossypol analysis in cottonseed oil by HPLC. J. Am. Oil Chem. Soc., 1988, 65(10), 1601-1604.
[4]
Cai, F.; Zhang, H.; Zeng, Y.; Mo, J.; Bao, J.; Miao, C.; Bai, J.; Yan, F.; Chen, F. An optimized gossypol high-performance liquid chromatography assay and its application in evaluation of different gland genotypes of cotton. J. Biosci., 2004, 29(1), 67-71.
[5]
Lee, K.; Dabrowski, K. High-performance liquid chromatographic determination of gossypol and gossypolone enantiomers in fish tissues using simultaneous electrochemical and ultraviolet detectors. J. Chromatogr. B, 2002, 779(2), 313-319.
[6]
Meyer, R.; Vorster, S.; Dubery, I.A. Identification and quantification of gossypol in cotton by using packed micro-tips columns in combination with HPLC. Anal. Bioanal. Chem., 2004, 380(4), 719-724.
[7]
Hua, L.; Zhou, J.; Han, H. Direct electrochemiluminescence of CdTe quantum dots based on room temperature ionic liquid film and high sensitivity sensing of gossypol. Electrochim. Acta, 2010, 55(3), 1265-1271.
[8]
Zhao, C.; Wu, D. Rapid detection assay for the molecular imprinting of gossypol using a two-layer PMAA/SiO2 bulk structure with a piezoelectric imprinting sensor. Sens. Actuators B Chem., 2013, 181, 104-113.
[9]
Vshivkov, S.; Pshenichnov, E.; Golubenko, Z.; Akhunov, A.; Namazov, S.; Stipanovic, R.D. Capillary electrophoresis to quantitate gossypol enantiomers in cotton flower petals and seed. J. Chromatogr. B, 2012, 908(11), 94-97.
[10]
Cass, Q.B.; Oliveira, R.V.; De Pietro, A.C. Determination of gossypol enantiomer ratio in cotton plants by chiral higher-performance liquid chromatography. J. Agric. Food Chem., 2004, 52(19), 5822-5827.
[11]
Sampath, D.S.; Balaram, P. A rapid procedure for the resolution of racemic gossypol. J. Chem. Soc. Chem. Commun., 1986, 9(9), 649-650.
[12]
Matlin, S.A.; Zhou, R. Resolution of gossypol: analytical and preparative HPLC. J. High Resolut. Chromatogr., 1984, 7(11), 629-631.
[13]
Matlin, S.A.; Belenguer, A.; Tyson, R.G.; Tyson, B. Brookes, A. Resolution of gossypol: analytical and large-scale preparative HPLC on non-chiral phases. J. High Resol. Chromatogr. Commun., 1987, 10(2), 86-91.
[14]
Cass, Q.B.; Bassi, A.L.; Matlin, S.A. First direct resolution of gossypol enantiomers on a chiral high-performance liquid chromatography phase. Chirality, 1999, 11(1), 46-49.
[15]
Cass, Q.B.; Oliveira, R.V. Separation of milligram quantities of gossypol enantiomers on polysaccharide-based stationary phases. J. Chromatogr. Relat. Technol., 2002, 25(5), 819-829.
[16]
Dowd, M.K.; Pelitire, S.M. HPLC preparation of the chiral forms of 6-methoxy-gossypol and 6,6`-dimethoxy-gossypol. J. Chromatogr. B, 2008, 867(1), 69-77.
[17]
Jiang, H.; Cao, X.; Huang, H.; Jiang, B. An expedient route for the practical preparation of optically active (-)-gossypol. Tetrahedron Asymmetry, 2007, 18(20), 2437-2441.
[18]
Adams, R.; Geissman, T.; Edwards, J. Gossypol, a pigment of cottonseed. Chem. Rev., 1960, 60(6), 555-574.
[19]
Adams, R.; Morris, R.; Geissman, T.; Butterbaugh, D.; Kirkpatrick, E. Structure of gossypol. XV. 1 an interpretation of its reactions. J. Am. Chem. Soc., 1938, 60(9), 2193-2204.
[20]
Adams, R.; Geissman, T.; Morris, R. Structure of gossypol. XVI. reduction products of gossypolone tetramethyl ether and gossypolonic acid tetramethyl ether1. J. Am. Chem. Soc., 1938, 60(12), 2967-2970.
[21]
Adams, R.; Dial, W. Structure of gossypol. XXII. gossypol ethers and their reduction products. J. Am. Chem. Soc., 1939, 61(8), 2077-2082.
[22]
Clark, E. Studies on gossypol. V. the action of chromic acid upon some gossypol derivatives. J. Am. Chem. Soc., 1929, 51(5), 1475-1478.
[23]
Adams, R.; Morris, R.; Kirkpatrick, E. Structure of gossypol. IX. 1 oxidation and degradation of gossypol hexamethyl ether; gossic acid. J. Am. Chem. Soc., 1938, 60(9), 2170-2174.
[24]
Haas, R.H.; Shirley, D.A. The oxidation of gossypol. II. formation of gossypolone with ferric chloride. J. Org. Chem., 1965, 30(12), 4111-4113.
[25]
Scheiffele, E.W.; Shirley, D.A. The oxidation of gossypol. I. early stages in the reaction of gossypol and oxygen. J. Org. Chem., 1964, 29(12), 3617-3620.
[26]
Wei, J.; Rega, M.F.; Kitada, S.; Yuan, H.; Zhai, D.; Risbood, P.; Seltzman, H.H.; Twine, C.E.; Reed, J.C.; Pellecchia, M. Synthesis and evaluation of Apogossypol atropisomers as potential Bcl-XL antagonists. Cancer Lett., 2009, 273(1), 107-113.
[27]
Zhan, Y.; Jia, G.; Wu, D.; Xu, Y.; Xu, L. Design and synthesis of a gossypol derivative with improved antitumor activities. Arch. Pharm., 2009, 342(4), 223-229.
[28]
Przybylski, P.; Schilf, W.; Kamieński, B.; Brzezinski, B.; Bartl, F. 13C, 15N CP-MAS, FT-IR and PM5 studies of some Schiff bases of gossypol in solid. J. Mol. Struct., 2005, 748(1), 111-117.
[29]
Przybylski, P.; Schilf, W.; Brzezinski, B. 13C, 15N NMR and CP-MAS as well as FT-IR and PM5 studies of Schiff base of gossypol with l-phenylalanine methyl ester in solution and solid. J. Mol. Struct., 2005, 734(1), 123-128.
[30]
Przybylski, P.; Bejcar, G.; Schroeder, G.; Brzezinski, B. Complexes of Schiff base of gossypol with 5-hydroxy-3-oxapentylamine and some monovalent cations studied by ESI MS as well as PM5 semiempirical methods. J. Mol. Struct., 2003, 654(1), 245-252.
[31]
Przybylski, P.; Schroeder, G.; Pankiewicz, R.; Brzezinski, B.; Bartl, F. Complexes of Schiff base of gossypol with n-butylamine and some monovalent or bivalent cations studied by ESI MS, NMR, FT-IR as well as PM5 semiempirical methods. J. Mol. Struct., 2003, 658(3), 193-205.
[32]
That, Q.T.; Nguyen, K.P.P.; Hansen, P.E. Schiff bases of gossypol: an NMR and DFT study. Magn. Reson. Chem., 2005, 43(4), 302-308.
[33]
Przybylski, P.; Ratajczak-Sitarz, M.; Katrusiak, A.; Schilf, W.; Wojciechowski, G.; Brzezinski, B. Crystal structure of Schiff base derivative of gossypol with 3, 6, 9-trioxa-decylamine. J. Mol. Struct., 2003, 655(2), 293-300.
[34]
Przybylski, P.; Włodarz, M.; Schroeder, G.; Pankiewicz, R.; Brzezinski, B.; Bartl, F. ESI MS and PM5 semiempirical studies of gossypol schiff base with (R)-tetrahydrofurfurylamine complexes and monovalent cations. J. Mol. Struct., 2004, 693(1), 95-102.
[35]
Przybylski, P.; Bejcar, G.; Huczyński, A.; Schroeder, G.; Brzezinski, B.; Bartl, F. 1H-and 13C-NMR, FTIR, UV-VIS, ESI-MS, and PM5 studies as well as emission properties of a new Schiff base of gossypol with 5-methoxytryptamine and a new hydrazone of gossypol with dansylhydrazine. Biopolymers, 2006, 82(5), 521-535.
[36]
Przybylski, P.; Małuszyńska, M.; Brzezinski, B. Spectroscopic and semiempirical studies of new Schiff base of gossypol with allylamine in solution. J. Mol. Struct., 2005, 750(1), 152-157.
[37]
Przybylski, P.; Brzezinski, B. Spectroscopic studies and PM3 semiempirical calculations of Schiff bases of gossypol with L-amino acid methyl esters. Biopolymers, 2002, 67(1), 61-69.
[38]
Przybylski, P.; Jasiński, K.; Brzezinski, B.; Bartl, F. Spectroscopic studies and PM5 semiempirical calculations of new Schiff bases of gossypol with amino derivatives of crown ethers. J. Mol. Struct., 2002, 611(1), 193-201.
[39]
Przybylski, P.; Włodarz, M.; Brzezinski, B.; Bartl, F. Spectroscopic studies and PM5 semiempirical calculations of tautomeric forms of gossypol schiff base with (R)-tetrahydrofurfurylamine. J. Mol. Struct., 2004, 691(1), 227-234.
[40]
Przybylski, P.; Pyta, K.; Wicher, B.; Gdaniec, M.; Brzezinski, B. Structure of a new Schiff base of gossypol with 1-(3-aminopropyl)-2-pyrrolidinone studied by the X-ray, FT-IR, NMR, ESI-MS and PM5 methods. J. Mol. Struct., 2008, 889(1), 332-343.
[41]
Przybylski, P.; Pyta, K.; Czupryniak, J.; Wicher, B.; Gdaniec, M.; Ossowski, T.; Brzezinski, B. The influence of protonation on molecular structure and physico-chemical properties of gossypol Schiff bases. Org. Biomol. Chem., 2010, 8(24), 5511-5518.
[42]
Li, L.; Li, Z.; Wang, K.; Zhao, S.; Feng, J.; Li, J.; Yang, P.; Liu, Y.; Wang, L.; Li, Y.; Shang, H.; Wang, Q. Design, synthesis, and biological activities of aromatic gossypol schiff base derivatives. J. Agric. Food Chem., 2014, 62(46), 11080-11088.
[43]
Leblanc, M.L.; Russo, J.; Kudelka, A.P.; Smith, J.A. An in vitro study of inhibitory activity of gossypol, a cottonseed extract, in human carcinoma cell lines. Pharmacol. Res., 2002, 46(6), 551-555.
[44]
Huang, Y.; Wang, L.; Dowd, M.K.; Wan, P.; Lin, Y. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells. Anticancer Res., 2009, 29(6), 2179-2188.
[45]
Wolter, K.G.; Wang, S.; Henson, B.S.; Wang, S.; Griffith, K.A.; Kumar, B.; Chen, J.; Carey, T.E.; Bradford, C.R.; D’Silva, N.J. (-)-Gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma in vivo. Neoplasia, 2006, 8(3), 163-172.
[46]
Bauer, J.A.; Trask, D.K.; Kumar, B.; Los, G.; Castro, J.; Lee, J.S.; Chen, J.; Wang, S.; Bradford, C.R.; Carey, T.E. Reversal of cisplatin resistance with a BH3 mimetic, (-)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-XL. Mol. Cancer Ther., 2005, 4(7), 1096-1104.
[47]
Adams, J.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
[48]
Cory, S.; Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9), 647-656.
[49]
Meng, Y.; Tang, W.; Dai, Y.; Wu, X.; Liu, M.; Ji, Q.; Ji, M.; Pienta, K.; Lawrence, T.; Xu, L. Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-XL inhibition accompanied by increase of Puma and Noxa. Mol. Cancer Ther., 2008, 7(7), 2192-2202.
[50]
Oliver, C.L.; Miranda, M.B.; Shangary, S.; Land, S.; Wang, S.; Johnson, D.E. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2-and Bcl-XL-mediated apoptosis resistance. Mol. Cancer Ther., 2005, 4(1), 23-31.
[51]
Zhang, M.; Liu, H.; Tian, Z.; Griffith, B.N.; Ji, M.; Li, Q. Gossypol induces apoptosis in human PC-3 prostate cancer cells by modulating caspase-dependent and caspase-independent cell death pathways. Life Sci., 2007, 80(8), 767-774.
[52]
Etxebarria, A.; Landeta, O.; Antonsson, B.; Basañez, G. Regulation of antiapoptotic MCL-1 function by gossypol: mechanistic insights from in vitro reconstituted systems. Biochem. Pharmacol., 2008, 76(11), 1563-1576.
[53]
Kline, M.P.; Rajkumar, S.V.; Timm, M.M.; Kimlinger, T.K.; Haug, J.L.; Lust, J.A.R. -(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells. Exp. Hematol., 2008, 36(5), 568-576.
[54]
Oliver, C.L.; Bauer, J.A.; Wolter, K.G.; Ubell, M.L.; Narayan, A.; O’Connell, K.M.; Fisher, S.G.; Wang, S.; Wu, X.; Ji, M.; Carey, T.E.; Bradford, C.R. In vitro effects of the BH3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. Clin. Cancer Res., 2004, 10(22), 7757-7763.
[55]
Lei, X.; Chen, Y.; Du, G.; Yu, W.; Wang, X.; Qu, H.; Xia, B.; He, H.; Mao, J.; Zong, W.; Liao, X.; Mehrpour, M.; Hao, X.; Chen, Q. Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J., 2006, 20(12), 2147-2149.
[56]
Zhang, M.; Liu, H.; Guo, R.; Ling, Y.; Wu, X.; Li, B.H.; Roller, P.P.; Wang, S.; Yang, D. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochem. Pharmacol., 2003, 66(1), 93-103.
[57]
Huang, Y.; Wang, L.; Chang, H.; Ye, W.; Dowd, M.K.; Wan, P.; Lin, Y. Molecular mechanisms of (-)-gossypol-induced apoptosis in human prostate cancer cells. Anticancer Res., 2006, 26(3A), 1925-1933.
[58]
Mohammad, R.M.; Wang, S.; Aboukameel, A.; Chen, B.; Wu, X.; Chen, J.; Al-Katib, A. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL [(−)-gossypol] against diffuse large cell lymphoma. Mol. Cancer Ther., 2005, 4(1), 13-21.
[59]
Macoska, J.A.; Adsule, S.; Tantivejkul, K.; Wang, S.; Pienta, K.J.; Lee, C.T. -(-) Gossypol promotes the apoptosis of bladder cancer cells in vitro. Pharmacol. Res., 2008, 58(5), 323-331.
[60]
Soderquist, R.S.; Danilov, A.V.; Eastman, A. Gossypol increases expression of the pro-apoptotic BH3-only protein NOXA through a novel mechanism involving phospholipase A2, cytoplasmic calcium, and endoplasmic reticulum stress. J. Biol. Chem., 2014, 289(23), 16190-16199.
[61]
Kaza, N.; Kohli, L.; Graham, C.D.; Klocke, B.J.; Carroll, S.L.; Roth, K.A. BNIP3 regulates AT101 [(−)-gossypol] induced death in malignant peripheral nerve sheath tumor cells. PLoS One, 2014, 9(5)e96733
[62]
Hou, D.; Uto, T.; Tong, X.; Takeshita, T.; Tanigawa, S.; Imamura, I.; Ose, T.; Fujii, M. Involvement of reactive oxygen species-independent mitochondrial pathway in gossypol-induced apoptosis. Arch. Biochem. Biophys., 2004, 428(2), 179-187.
[63]
Loberg, R.D.; McGregor, N.; Ying, C.; Sargent, E.; Pienta, K.J. In vivo evaluation of AT-101 (R-(−)-gossypol acetic acid) in androgen-independent growth of VCaP prostate cancer cells in combination with surgical castration. Neoplasia, 2007, 9(12), 1030-1037.
[64]
Balakrishnan, K.; Wierda, W.G.; Keating, M.J.; Gandhi, V. Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood, 2008, 112(5), 1971-1980.
[65]
Zhang, X.; Huang, X.; Mu, S.; An, Q.; Xia, A.; Chen, R.; Wu, D. Inhibition of proliferation of prostate cancer cell line, PC-3, in vitro and in vivo using (−)-gossypol. Asian J. Androl., 2010, 12(3), 390-399.
[66]
Paoluzzi, L.; Gonen, M.; Gardner, J.R.; Mastrella, J.; Yang, D.; Holmlund, J.; Sorensen, M.; Leopold, L.; Manova, K.; Marcucci, G.; Heaney, M.L.; O’Connor, O.A. Targeting Bcl-2 family members with the BH3 mimetic AT-101 markedly enhances the therapeutic effects of chemotherapeutic agents in in vitro and in vivo models of B-cell lymphoma. Blood, 2008, 111(11), 5350-5358.
[67]
Wang, J.; Jin, L.; Li, X.; Deng, H.; Chen, Y.; Lian, Q.; Ge, R.; Deng, H. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. Mol. Biosyst., 2013, 9(6), 1489-1497.
[68]
Huang, Y.; Wang, L.; Chang, H.; Ye, W.; Sugimoto, Y.; Dowd, M.K.; Wan, P.; Lin, Y. Effects of serum on (−)-gossypol-suppressed growth in human prostate cancer cells. Anticancer Res., 2006, 26(5A), 3613-3620.
[69]
Jiang, J.; Sugimoto, Y.; Liu, S.; Chang, H.; Park, K.Y.; Kulp, S.K.; Lin, Y. The inhibitory effects of gossypol on human prostate cancer cells-PC3 are associated with transforming growth factor beta1 (TGFβ1) signal transduction pathway. Anticancer Res., 2004, 24(1), 91-100.
[70]
Van Poznak, C.; Seidman, A.D.; Reidenberg, M.M.; Moasser, M.M.; Sklarin, N.; Van Zee, K.; Borgen, P.; Gollub, M.; Bacotti, D.; Yao, T.J.; Bloch, R.; Ligueros, M.; Sonenbergm, M.; Norton, L.; Hudis, C. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res. Treat., 2001, 66(3), 239-248.
[71]
Jang, G.; Lee, M. BH3-mimetic gossypol-induced autophagic cell death in mutant BRAF melanoma cells with high expression of p21 Cip1. Life Sci., 2014, 102(1), 41-48.
[72]
Carruthers, N.J.; Dowd, M.K.; Stemmer, P.M. Gossypol inhibits calcineurin phosphatase activity at multiple sites. Eur. J. Pharmacol., 2007, 555(2), 106-114.
[73]
Moon, D.O.; Kim, M.O.; Lee, J.D.; Kim, G.Y. Gossypol suppresses NF-κB activity and NF-κB-related gene expression in human leukemia U937 cells. Cancer Lett., 2008, 264(2), 192-200.
[74]
Pang, X.; Wu, Y.; Wu, Y.; Lu, B.; Chen, J.; Wang, J.; Yi, Z.; Qu, W.; Liu, M. (−)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis. Mol. Cancer Ther., 2011, 10(5), 795-805.
[75]
Lian, J.; Karnak, D.; Xu, L. The Bcl-2-Beclin 1 interaction in (−)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy, 2010, 6, 1201-1203.
[76]
Gao, P.; Bauvy, C.; Souquère, S.; Tonelli, G.; Liu, L.; Zhu, Y.; Qiao, Z.; Bakula, D.; Cezanne, T.P.; Pierron, G.; Codogno, P.; Chen, Q.; Mehrpour, M. The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J. Biol. Chem., 2010, 285(33), 25570-25581.
[77]
Wang, B.; Chen, L.; Ni, Z.; Dai, X.; Qin, L.; Wu, Y.; Li, X.; Xu, L.; Lian, J.; He, F. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (−)-gossypol by suppressing ERK-mediated protective autophagy and McL-1 accumulation in hepatocellular carcinoma cells. Exp. Cell Res., 2014, 328(2), 379-387.
[78]
Ni, Z.; Dai, X.; Wang, B.; Ding, W.; Cheng, P.; Xu, L. Natural Bcl-2 inhibitor (−)–gossypol induces protective autophagy via reactive oxygen species-high mobility group box 1 pathway in Burkitt lymphoma. Leuk. Lymphoma, 2013, 54(10), 2263-2268.
[79]
Keller, P.A.; Birch, C.; Leach, S.P.; Tyssen, D.; Griffith, R. Novel pharmacophore-based methods reveal gossypol as a reverse transcriptase inhibitor. J. Mol. Graph. Model., 2003, 21(5), 365-373.
[80]
Mego, M. Telomerase inhibitors in anticancer therapy gossypol as a potential telomerase inhibitor. Bratisl. Lek Listy, 2002, 103(10), 378-381.
[81]
Moon, D.O.; Kim, M.O.; Choi, Y.H.; Lee, H.G.; Kim, N.D.; Kim, G.Y. Gossypol suppresses telomerase activity in human leukemia cells via regulating hTERT. FEBS Lett., 2008, 582(23-24), 3367-3373.
[82]
Wang, X.; Wang, J.; Wong, S.; Chow, L.S.; Nicholls, J.M.; Wong, Y.; Liu, Y.; Kwong, D.L.W.; Sham, J.S.T.; Tsao, S.W. Cytotoxic effect of gossypol on colon carcinoma cells. Life Sci., 2000, 67(22), 2663-2671.
[83]
Quintana, P.J.; de Peyster, A.; Klatzke, S.; Park, H.J. Gossypol-induced DNA breaks in rat lymphocytes are secondary to cytotoxicity. Toxicol. Lett., 2000, 117(1), 85-94.
[84]
Kisim, A.; Atmaca, H.; Cakar, B.; Karabulut, B.; Sezgin, C.; Uzunoglu, S.; Uslu, R.; Karaca, B. Pretreatment with AT-101 enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of breast cancer cells by inducing death receptors 4 and 5 protein levels. J. Cancer Res. Clin. Oncol., 2012, 138(7), 1155-1163.
[85]
Qian, C.; Li, M.; Sui, J.; Ren, T.; Li, Z.; Zhang, L.; Zhou, L.; Cheng, Y.; Wang, D. Identification of a novel potential antitumor activity of gossypol as an APE1/Ref-1 inhibitor. Drug Des. Devel. Ther., 2014, 8, 485-496.
[86]
Chien, C.C.; Ko, C.H.; Shen, S.; Yang, L.; Chen, Y. The role of COX-2/PGE2 in gossypol-induced apoptosis of colorectal carcinoma cells. J. Cell. Physiol., 2012, 227(8), 3128-3137.
[87]
Lan, L.; Appelman, C.; Smith, A.R.; Yu, J.; Larsen, S.; Marquez, R.T.; Liu, H.; Wu, X.; Gao, P.; Roy, A.; Anbanandam, A.; Gowthaman, R.; Karanicolas, J.; De Guzman, R.N.; Rogers, S.; Aubé, J.; Ji, M.; Cohen, R.S.; Neufeld, K.L.; Xu, L. Natural product (−)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1. Mol. Oncol., 2015, 9(7), 1406-1420.
[88]
Kitada, S.; Kress, C.L.; Krajewska, M.; Jia, L.; Pellecchia, M.; Reed, J.C. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood, 2008, 111(6), 3211-3219.
[89]
Xin, J.; Zhan, Y.; Xia, L.; Zhu, H.; Nie, Y.; Liang, J.; Tian, J. ApoG2 as the most potent gossypol derivatives inhibits cell growth and induces apoptosis on gastric cancer cells. Biomed. Pharmacother., 2013, 67(1), 88-95.
[90]
Hu, Z.; Sun, J.; Zhu, X.; Yang, D.; Zeng, Y. ApoG2 induces cell cycle arrest of nasopharyngeal carcinoma cells by suppressing the c-Myc signaling pathway. J. Transl. Med., 2009, 7(1), 1-11.
[91]
Hu, Z.; Zhu, X.; Zhong, Z.; Sun, J.; Wang, J.; Yang, D. ApoG2, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces apoptosis and suppresses tumor growth in nasopharyngeal carcinoma xenografts. Int. J. Cancer, 2008, 123(10), 2418-2429.
[92]
Xin, J.; Zhan, Y.; Liu, M.; Hu, H.; Xia, L.; Nie, Y.; Wu, K.; Liang, J.; Tian, J. ApoG2 induces ER stress-dependent apoptosis in gastric cancer cells in vitro and its real-time evaluation by bioluminescence imaging in vivo. Cancer Lett., 2013, 336(2), 260-269.
[93]
Zhang, X.; Huang, X.; Mu, S.; Chen, R.; An, Q.; Xia, A.; Wu, D. Inhibitory effect of a new gossypol derivative apogossypolone (ApoG2) on xenograft of human prostate cancer cell line PC-3. J. Med. Coll. PLA, 2009, 24(5), 274-282.
[94]
Arnold, A.A.; Aboukameel, A.; Chen, J.; Yang, D.; Wang, S.; Al-Katib, A.; Mohammad, R.M. Preclinical studies of apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and McL-1 proteins in follicular small cleaved cell lymphoma model. Mol. Cancer, 2008, 7(1), 1-10.
[95]
Niu, X.; Li, S.; Wei, F.; Huang, J.; Wu, G.; Xu, L.; Xu, D.; Wang, S. Apogossypolone induces autophagy and apoptosis in breast cancer MCF-7 cells in vitro and in vivo. Breast Cancer, 2014, 21(2), 223-230.
[96]
Zhang, X.; Huang, X.; Hu, X.; Zhan, Y.; An, Q.; Yang, S.; Xia, A.; Yi, J.; Chen, R.; Mu, S.; Wu, D. Apogossypolone, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces autophagy of PC-3 and LNCaP prostate cancer cells in vitro. Asian J. Androl., 2010, 12(5), 697-708.
[97]
Cheng, P.; Ni, Z.; Dai, X.; Wang, B.; Ding, W.; Smith, A.R.; Xu, L.; Wu, D.; He, F.; Lian, J. The novel BH-3 mimetic apogossypolone induces Beclin-1-and ROS-mediated autophagy in human hepatocellular carcinoma cells. Cell Death Dis., 2013, 4(2)e489
[98]
Mi, J.; Wang, G.; Wang, H.; Sun, X.; Ni, X.; Zhang, X. Synergistic antitumoral activity and induction of apoptosis by novel pan Bcl-2 proteins inhibitor apogossypolone with adriamycin in human hepatocellular carcinoma. Acta Pharmacol. Sin., 2008, 29(12), 1467-1477.
[99]
Becattini, B.; Kitada, S.; Leone, M.; Monosov, E.; Chandler, S.; Zhai, D.; Kipps, T.J.; Reed, J.C.; Pellecchia, M. Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-XL. Chem. Biol., 2004, 11(3), 389-395.
[100]
Zubair, H.; Khan, H.Y.; Ullah, M.; Ahmad, A.; Wu, D.; Hadi, S. Apogossypolone, derivative of gossypol, mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage. Eur. J. Pharm. Sci., 2012, 47(1), 280-286.
[101]
Zubair, H.; Azim, S.; Khan, H.Y.; Ullah, M.F.; Wu, D.; Singh, A.P.; Hadi, S.M.; Ahmad, A. Mobilization of intracellular copper by gossypol and apogossypolone leads to reactive oxygen species-mediated cell death: putative anticancer mechanism. Int. J. Mol. Sci., 2016, 17(6), 973-985.
[102]
Wei, J.; Stebbins, J.L.; Kitada, S.; Dash, R.; Placzek, W.; Rega, M.F.; Wu, B.; Cellitti, J.; Zhai, D.; Yang, L.; Dahl, R.; Fisher, P.B.; Reed, J.C.; Pellecchia, M. BI-97C1, an optically pure Apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins. J. Med. Chem., 2010, 53(10), 4166-4176.
[103]
Yan, F.; Cao, X.; Jiang, H.; Zhao, X.; Wang, J.; Lin, Y.; Liu, Q.; Zhang, C.; Liang, B.; Guo, F. A novel water-soluble gossypol derivative increases chemotherapeutic sensitivity and promotes growth inhibition in colon cancer. J. Med. Chem., 2010, 53(15), 5502-5510.
[104]
Dao, V.; Gaspard, C.; Mayer, M.; Werner, G.H.; Nguyen, S.N.; Michelot, R.J. Synthesis and cytotoxicity of gossypol related compounds. Eur. J. Med. Chem., 2000, 35(9), 805-813.
[105]
Dao, V.; Dowd, M.K.; Martin, M.T.; Gaspard, C.; Mayer, M.; Michelot, R.J. Cytotoxicity of enantiomers of gossypol Schiff’s bases and optical stability of gossypolone. Eur. J. Med. Chem., 2004, 39(7), 619-624.
[106]
Zhang, L.; Jiang, H.; Cao, X.; Zhao, H.; Wang, F.; Cui, Y.; Jiang, B. Chiral gossypol derivatives: evaluation of their anticancer activity and molecular modeling. Eur. J. Med. Chem., 2009, 44(10), 3961-3972.
[107]
Dao, V.; Dowd, M.K.; Gaspard, C.; Martin, M.T.; Hémez, J.; Laprévote, O.; Mayer, M.; Michelot, R.J. New thioderivatives of gossypol and gossypolone, as prodrugs of cytotoxic agents. Bioorg. Med. Chem., 2003, 11(9), 2001-2006.
[108]
Yin, J.; Jin, L.; Chen, F.; Wang, X.; Kitaygorodskiy, A.; Jiang, Y. Novel O-glycosidic gossypol isomers and their bioactivities. Carbohydr. Res., 2011, 346(14), 2070-2074.
[109]
Wong, F.; Liem, N.; Xie, C.; Yan, F.; Wong, W.; Wang, L.; Yong, W. Combination therapy with gossypol reveals synergism against gemcitabine resistance in cancer cells with high BCL-2 expression. PLoS One, 2012, 7(12)e50786
[110]
Yuan, Y.; Tang, A.; Castoreno, A.; Kuo, S.; Wang, Q.; Kuballa, P.; Xavier, R.; Shamji, A.F.; Schreiber, S.L.; Wagner, B.K. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis., 2013, 4(6)e690
[111]
Lian, J.; Ni, Z.; Dai, X.; Su, C.; Smith, A.R.; Xu, L.; He, F. Sorafenib sensitizes (−)-gossypol-induced growth suppression in androgen-independent prostate cancer cells via McL-1 inhibition and Bak activation. Mol. Cancer Ther., 2012, 11(2), 416-426.
[112]
Xu, L.; Yang, D.; Wang, S.; Tang, W.; Liu, M.; Davis, M.; Chen, J.; Rae, J.M.; Lawrence, T.; Lippman, M.E. (−)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Mol. Cancer Ther., 2005, 4(2), 197-205.
[113]
Li, H.; Piao, L.; Xu, P.; Ye, W.; Zhong, S.; Lin, S.; Kulp, S.K.; Mao, Y.; Cho, Y.; Lee, L.; Lee, R.; Lin, Y. Liposomes containing (−)-gossypol-enriched cottonseed oil suppress Bcl-2 and Bcl-XL expression in breast cancer cells. Pharm. Res., 2011, 28(12), 3256-3264.
[114]
Zhai, G.; Wu, J.; Zhao, X.; Yu, B.; Li, H.; Lu, Y.; Ye, W.; Lin, Y.C.; Lee, R. A liposomal delivery vehicle for the anticancer agent gossypol. Anticancer Res., 2008, 28(5A), 2801-2805.
[115]
Shen, Y.; Yang, S.; Wu, L.; Ma, X. Study on structure and characterization of inclusion complex of gossypol/beta cyclodextrin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(6), 1025-1028.
[116]
Ignatova, M.; Manolova, N.; Toshkova, R.; Rashkov, I.; Gardeva, E.; Yossifova, L.; Alexandrov, M. Quaternized chitosan-coated nanofibrous materials containing gossypol: preparation by electrospinning, characterization and antiproliferative activity towards HeLa cells. Int. J. Pharm., 2012, 436(1), 10-24.
[117]
Ionov, M.; Gordiyenko, N.V.; Zukowska, I.; Tokhtaeva, E.; Mareninova, O.A.; Baram, N.; Ziyaev, K.; Rezhepov, K.; Zamaraeva, M. Stability and antioxidant activity of gossypol derivative immobilized on N-polyvinylpyrrolidone. Int. J. Biol. Macromol., 2012, 51(5), 908-914.
[118]
Ionov, M.; Gordiyenko, N.; Olchowik, E.; Baram, N.; Zijaev, K.; Salakhutdinov, B.; Bryszewaka, M.; Zamaraeva, M. The immobilization of gossypol derivative on N-polyvinylpyrrolidone increases its water solubility and modifies membrane-active properties. J. Med. Chem., 2009, 52(14), 4119-4125.
[119]
Liu, H.; Li, K.; Lan, L.; Ma, J.; Zeng, Y.; Xu, L.; Wu, D. Double-layered hyaluronic acid/stearic acid-modified polyethyleneimine nanoparticles encapsulating (−)-gossypol: a nanocarrier for chiral anticancer drugs. J. Mater. Chem. B, 2014, 2(32), 5238-5248.
[120]
Jin, C.; Chen, M.; Wang, Y.; Kang, X.; Han, G.; Xu, S. Preparation of novel (−)-gossypol nanoparticles and the effect on growth inhibition in human prostate cancer PC-3 cells in vitro. Exp. Ther. Med., 2015, 9(3), 675-678.
[121]
Ye, W.; Chang, H.; Wang, L.; Huang, Y.; Shu, S.; Dowd, M.K.; Wan, P.; Sugimoto, Y.; Lin, Y. Modulation of multidrug resistance gene expression in human breast cancer cells by (−)-gossypol-enriched cottonseed oil. Anticancer Res., 2007, 27(1A), 107-116.
[122]
Cho, H.; Lai, T.; Kwon, G.S. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J. Control. Release, 2013, 166(1), 1-9.
[123]
Heleg-Shabtai, V.; Aizen, R.; Orbach, R.; Aleman-Garcia, M.A.; Willner, I. Gossypol-cross-linked boronic acid-modified hydrogels: a functional matrix for the controlled release of an anticancer drug. Langmuir, 2015, 31(7), 2237-2242.
[124]
Heleg Shabtai, V.; Aizen, R.; Sharon, E.; Sohn, Y.S.; Trifonov, A.; Enkin, N.; Freage, L.; Nechushtai, R.; Willner, I. Gossypol-capped mitoxantrone-loaded mesoporous SiO2 NPs for the cooperative controlled release of two anti-cancer drugs. ACS Appl. Mater. Interfaces, 2016, 8(23), 14414-14422.
[125]
Li, K.; Liu, H.; Gao, W.; Chen, M.; Zeng, Y.; Liu, J.; Xu, L.; Wu, D. Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy. Biomaterials, 2015, 39, 131-144.
[126]
Moraru, C.; Vanea, E.; Magyari, K.; Tamasan, M.; Farcasanu, A.; Loghin, F.; Simon, S. Silica-gadolinium particles loaded with gossypol for simultaneous therapeutic effect and MRI contrast enhancement. J. Sol-Gel Sci. Technol., 2014, 72(3), 593-601.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 10
Year: 2019
Page: [1849 - 1873]
Pages: 25
DOI: 10.2174/0929867324666170523123655
Price: $58

Article Metrics

PDF: 25
HTML: 6