Modulation of Aquaporins by Dietary Patterns and Plant Bioactive Compounds

Author(s): Ilaria Cataldo, Anna Maggio, Patrizia Gena, Ornella de bari, Grazia Tamma, Piero Portincasa, Giuseppe Calamita*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 19 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Healthful dietary patterns and bioactive compounds supplementation can be adopted as simple and easy intervention to prevent, attenuate or cure clinical disorders, especially when it comes to degenerative and chronic diseases. In the recent years, a growing body of evidence indicates Aquaporins (AQPs), a family of membrane channel proteins widely expressed in the human body, among the targets underlying the beneficial action played by some food nutrients and phytochemical compounds. Here, we provide an overview of what is known regarding the AQP modulation exerted by healthful dietary patterns and plant polyphenols.

Keywords: Nutraceuticals, polyphenols, functional food, metabolic syndrome, gut microbiota, aquaporins.

[1]
Agre, P. Aquaporin water channels (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2004, 43(33), 4278-4290.
[http://dx.doi.org/10.1002/anie.200460804] [PMID: 15368374]
[2]
Almasalmeh, A.; Krenc, D.; Wu, B.; Beitz, E. Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J., 2014, 281(3), 647-656.
[http://dx.doi.org/10.1111/febs.12653] [PMID: 24286224]
[3]
Gena, P.; Pellegrini-Calace, M.; Biasco, A.; Svelto, M.; Calamita, G. Aquaporin membrane channels: biophysics, classification, functions and possible biotechnological applications. Food Biophys., 2011, 6, 241-249.
[http://dx.doi.org/10.1007/s11483-010-9193-9]
[4]
Calamita, G.; Portincasa, P. The power of science diplomacy, a lesson from the Nobel laureate Peter Agre. Eur. J. Clin. Invest., 2016, 46(5), 491-493.
[http://dx.doi.org/10.1111/eci.12621] [PMID: 26999374]
[5]
Verkman, A.S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci., 2005, 118(Pt 15), 3225-3232.
[http://dx.doi.org/10.1242/jcs.02519] [PMID: 16079275]
[6]
Galán-Cobo, A.; Ramírez-Lorca, R.; Echevarría, M. Role of aquaporins in cell proliferation: what else beyond water permeability? Channels (Austin), 2016, 10(3), 185-201.
[http://dx.doi.org/10.1080/19336950.2016.1139250] [PMID: 26752515]
[7]
Fiorentini, D.; Zambonin, L.; Dalla Sega, F.V.; Hrelia, S. Polyphenols as modulators of aquaporin family in health and disease. Oxid. Med. Cell. Longev., 2015.2015196914
[http://dx.doi.org/10.1155/2015/196914] [PMID: 26346093]
[8]
Boyanapalli, S.S.S.; Kong, A.T. “Curcumin, the king of spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr. Pharmacol. Rep., 2015, 1(2), 129-139.
[http://dx.doi.org/10.1007/s40495-015-0018-x] [PMID: 26457241]
[9]
Zhang, X.; Chen, Q.; Wang, Y.; Peng, W.; Cai, H. Effects of curcumin on ion channels and transporters. Front. Physiol., 2014, 5, 94.
[http://dx.doi.org/10.3389/fphys.2014.00094] [PMID: 24653706]
[10]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[11]
Laird, M.D.; Sukumari-Ramesh, S.; Swift, A.E.B.; Meiler, S.E.; Vender, J.R.; Dhandapani, K.M. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J. Neurochem., 2010, 113(3), 637-648.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06630.x] [PMID: 20132469]
[12]
Yu, L.S.; Fan, Y.Y.; Ye, G.; Li, J.; Feng, X.P.; Lin, K.; Dong, M.; Wang, Z. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage. Exp. Ther. Med., 2016, 11(3), 709-716.
[http://dx.doi.org/10.3892/etm.2016.3022] [PMID: 26997983]
[13]
Zu, J.; Wang, Y.; Xu, G.; Zhuang, J.; Gong, H.; Yan, J. Curcumin improves the recovery of motor function and reduces spinal cord edema in a rat acute spinal cord injury model by inhibiting the JAK/STAT signaling pathway. Acta Histochem., 2014, 116(8), 1331-1336.
[http://dx.doi.org/10.1016/j.acthis.2014.08.004] [PMID: 25201116]
[14]
Nabiuni, M.; Nazari, Z.; Safaeinejad, Z.; Delfan, B.; Miyan, J.A. Curcumin downregulates aquaporin-1 expression in cultured rat choroid plexus cells. J. Med. Food, 2013, 16(6), 504-510.
[http://dx.doi.org/10.1089/jmf.2012.0208] [PMID: 23735000]
[15]
Oshio, K.; Watanabe, H.; Song, Y.; Verkman, A.S.; Manley, G.T. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J., 2005, 19(1), 76-78.
[http://dx.doi.org/10.1096/fj.04-1711fje] [PMID: 15533949]
[16]
Zador, Z.; Bloch, O.; Yao, X.; Manley, G.T. Aquaporins: role in cerebral edema and brain water balance. Prog. Brain Res., 2007, 161, 185-194.
[http://dx.doi.org/10.1016/S0079-6123(06)61012-1]] [PMID: 17618977]
[17]
Foxley, S.; Zamora, M.; Hack, B.; Alexander, R.R.; Roman, B.; Quigg, R.J.; Alexander, J.J. Curcumin aggravates CNS pathology in experimental systemic lupus erythematosus. Brain Res., 2013, 1504, 85-96.
[http://dx.doi.org/10.1016/j.brainres.2013.01.040] [PMID: 23410788]
[18]
Gao, M.; Zhu, S-Y.; Tan, C.B.; Xu, B.; Zhang, W-C.; Du, G-H. Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats. J. Asian Nat. Prod. Res, 2010, 12(5), 407-418.
[http://dx.doi.org/10.1080/10286020.2010.485129] [PMID: 20496198]
[19]
Angeloni, C.; Leoncini, E.; Malaguti, M.; Angelini, S.; Hrelia, P.; Hrelia, S. Role of quercetin in modulating rat cardiomyocyte gene expression profile. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(3), H1233-H1243.
[http://dx.doi.org/10.1152/ajpheart.01091.2007] [PMID: 18178720]
[20]
Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A.; Srinivasan, B.P. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp. Eye Res., 2014, 125, 193-202.
[http://dx.doi.org/10.1016/j.exer.2014.06.009] [PMID: 24952278]
[21]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[22]
Takahashi, A.; Inoue, H.; Mishima, K.; Ide, F.; Nakayama, R.; Hasaka, A.; Ryo, K.; Ito, Y.; Sakurai, T.; Hasegawa, Y.; Saito, I. Evaluation of the effects of quercetin on damaged salivary secretion. PLoS One, 2015, 10(1)e0116008
[http://dx.doi.org/10.1371/journal.pone.0116008] [PMID: 25629520]
[23]
Yu, C.H.; Yu, W.Y.; Fang, J.; Zhang, H.H.; Ma, Y.; Yu, B.; Wu, F.; Wu, X.N. Mosla scabra flavonoids ameliorate the influenza A virus-induced lung injury and water transport abnormality via the inhibition of PRR and AQP signaling pathways in mice. J. Ethnopharmacol., 2016, 179, 146-155.
[http://dx.doi.org/10.1016/j.jep.2015.12.034] [PMID: 26719287]
[24]
Sutherland, B.A.; Rahman, R.M.A.; Appleton, I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J. Nutr. Biochem., 2006, 17(5), 291-306.
[http://dx.doi.org/10.1016/j.jnutbio.2005.10.005] [PMID: 16443357]
[25]
Ge, R.; Zhu, Y.; Diao, Y.; Tao, L.; Yuan, W.; Xiong, X-C. Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Res., 2013, 1527, 40-46.
[http://dx.doi.org/10.1016/j.brainres.2013.06.009] [PMID: 23831998]
[26]
Yan, C.; Yang, J.; Shen, L.; Chen, X. Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch. Gynecol. Obstet., 2012, 285(2), 459-467.
[http://dx.doi.org/10.1007/s00404-011-1942-6] [PMID: 21698451]
[27]
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 2015, 29(3), 323-331.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[28]
Kumar, B.; Gupta, S.K.; Srinivasan, B.P.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc. Res., 2013, 87, 65-74.
[http://dx.doi.org/10.1016/j.mvr.2013.01.002] [PMID: 23376836]
[29]
Erdogan, C.S.; Vang, O. Challenges in analyzing the biological effects of resveratrol. Nutrients, 2016, 8(6)E353
[http://dx.doi.org/10.3390/nu8060353] [PMID: 27294953]
[30]
Wu, Z.; Uchi, H.; Morino-Koga, S.; Shi, W.; Furue, M. Resveratrol inhibition of human keratinocyte proliferation via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J. Dermatol. Sci., 2014, 75(1), 16-23.
[http://dx.doi.org/10.1016/j.jdermsci.2014.03.004] [PMID: 24726500]
[31]
Cao, C.; Wan, S.; Jiang, Q.; Amaral, A.; Lu, S.; Hu, G.; Bi, Z.; Kouttab, N.; Chu, W.; Wan, Y. All-trans retinoic acid attenuates ultraviolet radiation-induced down-regulation of aquaporin-3 and water permeability in human keratinocytes. J. Cell. Physiol., 2008, 215(2), 506-516.
[http://dx.doi.org/10.1002/jcp.21336] [PMID: 18064629]
[32]
Li, W.; Tan, C.; Liu, Y.; Liu, X.; Wang, X.; Gui, Y.; Qin, L.; Deng, F.; Yu, Z.; Hu, C.; Chen, L. Resveratrol ameliorates oxidative stress and inhibits aquaporin 4 expression following rat cerebral ischemia-reperfusion injury. Mol. Med. Rep., 2015, 12(5), 7756-7762.
[http://dx.doi.org/10.3892/mmr.2015.4366] [PMID: 26458999]
[33]
Rana, S.; Bhushan, S. Apple phenolics as nutraceuticals: assessment, analysis and application. J. Food Sci. Technol., 2016, 53(4), 1727-1738.
[http://dx.doi.org/10.1007/s13197-015-2093-8] [PMID: 27413201]
[34]
Nakazato, K.; Song, H.; Waga, T. Effects of dietary apple polyphenol on adipose tissues weights in Wistar rats. Exp. Anim., 2006, 55(4), 383-389.
[http://dx.doi.org/10.1538/expanim.55.383] [PMID: 16880686]
[35]
Sugiyama, H.; Akazome, Y.; Shoji, T.; Yamaguchi, A.; Yasue, M.; Kanda, T.; Ohtake, Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J. Agric. Food Chem., 2007, 55(11), 4604-4609.
[http://dx.doi.org/10.1021/jf070569k] [PMID: 17458979]
[36]
Boqué, N.; de la Iglesia, R.; de la Garza, A.L.; Milagro, F.I.; Olivares, M.; Bañuelos, O.; Soria, A.C.; Rodríguez-Sánchez, S.; Martínez, J.A.; Campión, J. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol. Nutr. Food Res., 2013, 57(8), 1473-1478.
[http://dx.doi.org/10.1002/mnfr.201200686] [PMID: 23529981]
[37]
Aliomrani, M.; Sepand, M.R.; Mirzaei, H.R.; Kazemi, A.R.; Nekonam, S.; Sabzevari, O. Effects of phloretin on oxidative and inflammatory reaction in rat model of cecal ligation and puncture induced sepsis. Daru, 2016, 24(1), 15.
[http://dx.doi.org/10.1186/s40199-016-0154-9] [PMID: 27150961]
[38]
Calamita, G.; Gena, P.; Ferri, D.; Rosito, A.; Rojek, A.; Nielsen, S.; Marinelli, R.A.; Frühbeck, G.; Svelto, M. Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol. Cell, 2012, 104(6), 342-351.
[http://dx.doi.org/10.1111/boc.201100061] [PMID: 22316404]
[39]
Crespy, V.; Aprikian, O.; Morand, C.; Besson, C.; Manach, C.; Demigné, C.; Rémésy, C. Bioavailability of phloretin and phloridzin in rats. J. Nutr., 2001, 131(12), 3227-3230.
[http://dx.doi.org/10.1093/jn/131.12.3227] [PMID: 11739871]
[40]
Idris, I.; Donnelly, R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes. Metab., 2009, 11(2), 79-88.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00982.x] [PMID: 19125776]
[41]
Fenton, R.A.; Chou, C.L.; Stewart, G.S.; Smith, C.P.; Knepper, M.A. Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc. Natl. Acad. Sci. USA, 2004, 101(19), 7469-7474.
[http://dx.doi.org/10.1073/pnas.0401704101] [PMID: 15123796]
[42]
Shayakul, C.; Tsukaguchi, H.; Berger, U.V.; Hediger, M.A. Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts. Am. J. Physiol. Renal Physiol., 2001, 280(3), F487-F494.
[http://dx.doi.org/10.1152/ajprenal.2001.280.3.F487] [PMID: 11181411]
[43]
Jelen, S.; Gena, P.; Lebeck, J.; Rojek, A.; Praetorius, J.; Frøkiaer, J.; Fenton, R.A.; Nielsen, S.; Calamita, G.; Rützler, M. Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(11), G1279-G1287.
[http://dx.doi.org/10.1152/ajpgi.00153.2012] [PMID: 23042941]
[44]
Calamita, G.; Ferri, D.; Gena, P.; Carreras, F.I.; Liquori, G.E.; Portincasa, P.; Marinelli, R.A.; Svelto, M. Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(4), G682-G690.
[http://dx.doi.org/10.1152/ajpgi.90226.2008] [PMID: 18669624]
[45]
Rodríguez, A.; Gena, P.; Méndez-Giménez, L.; Rosito, A.; Valentí, V.; Rotellar, F.; Sola, I.; Moncada, R.; Silva, C.; Svelto, M.; Salvador, J.; Calamita, G.; Frühbeck, G. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int. J. Obes., 2014, 38(9), 1213-1220.
[http://dx.doi.org/10.1038/ijo.2013.234] [PMID: 24418844]
[46]
Tsukaguchi, H.; Weremowicz, S.; Morton, C.C.; Hediger, M.A. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am. J. Physiol., 1999, 277(5), F685-F696.
[PMID: 10564231]
[47]
Alvarez-Suarez, J.M.; Giampieri, F.; Battino, M. Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem., 2013, 20(5), 621-638.
[http://dx.doi.org/10.2174/092986713804999358] [PMID: 23298140]
[48]
Dunkić, V.; Kosalec, I.; Kosir, I.J.; Potocnik, T.; Cerenak, A.; Koncic, M.Z.; Vitali, D.; Muller, I.D.; Kopricanec, M.; Bezic, N.; Srecec, S.; Kremer, D. Antioxidant and antimicrobial properties of Veronica spicata L. (Plantaginaceae). Curr. Drug Targets, 2015, 16(14), 1660-1670.
[http://dx.doi.org/10.2174/1389450116666150531161820] [PMID: 26028041]
[49]
Nabavi, S.F.; Braidy, N.; Habtemariam, S.; Orhan, I.E.; Daglia, M.; Manayi, A.; Gortzi, O.; Nabavi, S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int., 2015, 90, 224-231.
[http://dx.doi.org/10.1016/j.neuint.2015.09.006] [PMID: 26386393]
[50]
Wu, N-L.; Fang, J-Y.; Chen, M.; Wu, C-J.; Huang, C-C.; Hung, C-F. Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage. J. Agric. Food Chem., 2011, 59(15), 8391-8400.
[http://dx.doi.org/10.1021/jf200931t] [PMID: 21699266]
[51]
He, W.; Li, Y.; Xue, C.; Hu, Z.; Chen, X.; Sheng, F. Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg. Med. Chem., 2005, 13(5), 1837-1845.
[http://dx.doi.org/10.1016/j.bmc.2004.11.038] [PMID: 15698801]
[52]
Tang, B.; Du, J.; Wang, J.; Tan, G.; Gao, Z.; Wang, Z.; Wang, L. Alpinetin suppresses proliferation of human hepatoma cells by the activation of MKK7 and elevates sensitization to cis-diammined dichloridoplatium. Oncol. Rep., 2012, 27(4), 1090-1096.
[http://dx.doi.org/10.3892/or.2011.1580] [PMID: 22159816]
[53]
Liang, X.; Zhang, B.; Chen, Q.; Zhang, J.; Lei, B.; Li, B.; Wei, Y.; Zhai, R.; Liang, Z.; He, S.; Tang, B. The mechanism underlying alpinetin-mediated alleviation of pancreatitis-associated lung injury through upregulating aquaporin-1. Drug Des. Devel. Ther., 2016, 10, 841-850.
[PMID: 26966354]
[54]
King, A.; Young, G. Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet. Assoc., 1999, 99(2), 213-218.
[http://dx.doi.org/10.1016/S0002-8223(99)00051-6] [PMID: 9972191]
[55]
Rice, S.; Whitehead, S.A. Phytoestrogens oestrogen synthesis and breast cancer. J. Steroid Biochem. Mol. Biol., 2008, 108(3-5), 186-195.
[http://dx.doi.org/10.1016/j.jsbmb.2007.09.003] [PMID: 17936616]
[56]
Cos, P.; De Bruyne, T.; Apers, S.; Vanden Berghe, D.; Pieters, L.; Vlietinck, A.J. Phytoestrogens: recent developments. Planta Med., 2003, 69(7), 589-599.
[http://dx.doi.org/10.1055/s-2003-41122] [PMID: 12898412]
[57]
Möller, F.J.; Diel, P.; Zierau, O.; Hertrampf, T.; Maass, J.; Vollmer, G. Long-term dietary isoflavone exposure enhances estrogen sensitivity of rat uterine responsiveness mediated through estrogen receptor alpha. Toxicol. Lett., 2010, 196(3), 142-153.
[http://dx.doi.org/10.1016/j.toxlet.2010.03.1117] [PMID: 20381596]
[58]
Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: definitions and controversies. BMC Med., 2011, 9, 48.
[http://dx.doi.org/10.1186/1741-7015-9-48] [PMID: 21542944]
[59]
Dekker, M.J.; Su, Q.; Baker, C.; Rutledge, A.C.; Adeli, K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab., 2010, 299(5), E685-E694.
[http://dx.doi.org/10.1152/ajpendo.00283.2010] [PMID: 20823452]
[60]
Isomaa, B.; Henricsson, M.; Almgren, P.; Tuomi, T.; Taskinen, M.R.; Groop, L. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia, 2001, 44(9), 1148-1154.
[http://dx.doi.org/10.1007/s001250100615] [PMID: 11596670]
[61]
Ewida, S.F.; Al-Sharaky, D.R. Implication of renal aquaporin-3 in fructose-induced metabolic syndrome and melatonin protection. J. Clin. Diagn. Res., 2016, 10(4), CF06-CF11.
[http://dx.doi.org/10.7860/JCDR/2016/18362.7656] [PMID: 27190797]
[62]
Rodríguez, A.; Catalán, V.; Gómez-Ambrosi, J.; Frühbeck, G. Information regarding the role of aquaglyceroporins in humans is scarce. Cell Cycle, 2011, 10, 1548-1556.
[PMID: 21502813]
[63]
Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.
Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diag-nosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological As-sociation, American Association for the Study of Liver Dis-eases, and American College of Gastroenterology. Gastroenterology, 2012, 142(7), 1592-1609.
[http://dx.doi.org/10.1053/j.gastro.2012.04.001] [PMID: 22656328]
[64]
Tiniakos, D.G.; Vos, M.B.; Brunt, E.M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol., 2010, 5, 145-171.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102132] [PMID: 20078219]
[65]
Gena, P.; Mastrodonato, M.; Portincasa, P.; Fanelli, E.; Mentino, D.; Rodríguez, A.; Marinelli, R.A.; Brenner, C.; Frühbeck, G.; Svelto, M.; Calamita, G. Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of Non-Alcoholic Fatty Liver Disease. PLoS One, 2013, 8(10)e78139
[http://dx.doi.org/10.1371/journal.pone.0078139] [PMID: 24205128]
[66]
Rodríguez, A.; Moreno, N.R.; Balaguer, I.; Méndez-Giménez, L.; Becerril, S.; Catalán, V.; Gómez-Ambrosi, J.; Portincasa, P.; Calamita, G.; Soveral, G.; Malagón, M.M.; Frühbeck, G. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice. Sci. Rep., 2015, 5, 12067.
[http://dx.doi.org/10.1038/srep12067] [PMID: 26159457]
[67]
Rodríguez, A.; Gena, P.; Méndez-Giménez, L.; Rosito, A.; Valentí, V.; Rotellar, F.; Sola, I.; Moncada, R.; Silva, C.; Svelto, M.; Salvador, J.; Calamita, G.; Frühbeck, G. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int. J. Obes., 2014, 38(9), 1213-1220.
[http://dx.doi.org/10.1038/ijo.2013.234] [PMID: 24418844]
[68]
Calamita, G.; Delporte, C.; Marinelli, R.A. Hepatobiliary, salivary glands and pancreas aquaporins in health and disease. In: Aquaporins in health and disease: new molecular targets for drug discovery;; Soveral, G.; Casini, A.; Nielsen, S., Eds.; CRC Press Taylor & Francis Group, 2015; pp. 183-205.
[69]
Bernardino, R.L.; Marinelli, R.A.; Maggio, A.; Gena, P.; Cataldo, I.; Alves, M.G.; Svelto, M.; Oliveira, P.F.; Calamita, G. Hepatocyte and sertoli cell aquaporins, recent advances and research trends. Int. J. Mol. Sci., 2016, 17(7), 1096.
[http://dx.doi.org/10.3390/ijms17071096] [PMID: 27409609]
[70]
Portois, L.; Zhang, Y.; Ladrière, L.; Perret, J.; Louchami, K.; Gaspard, N.; Hupkens, E.; Bolaky, N.; Delforge, V.; Beauwens, R.; Malaisse, W.J.; Sener, A.; Carpentier, Y.A.; Delporte, C. Perturbation of glycerol metabolism in hepatocytes from n3-PUFA-depleted rats. Int. J. Mol. Med., 2012, 29(6), 1121-1126.
[PMID: 22426780]
[71]
Cai, C.; Wang, C.; Ji, W.; Liu, B.; Kang, Y.; Hu, Z.; Jiang, Z. Knockdown of hepatic aquaglyceroporin-9 alleviates high fat diet-induced non-alcoholic fatty liver disease in rats. Int. Immunopharmacol., 2013, 15(3), 550-556.
[http://dx.doi.org/10.1016/j.intimp.2013.01.020] [PMID: 23415870]
[72]
Gambert, S.; Héliès-Toussaint, C.; Grynberg, A. Extracellular glycerol regulates the cardiac energy balance in a working rat heart model. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(3), H1600-H1606.
[http://dx.doi.org/10.1152/ajpheart.00563.2006] [PMID: 17040970]
[73]
Palabiyik, O.; Karaca, A.; Taştekin, E.; Yamasan, B.E.; Tokuç, B.; Sipahi, T.; Vardar, S.A. The effect of a high-protein diet and exercise on cardiac AQP7 and GLUT4 gene expression. Biochem. Genet., 2016, 54(5), 731-745.
[http://dx.doi.org/10.1007/s10528-016-9753-x] [PMID: 27294385]
[74]
Hibuse, T.; Maeda, N.; Nakatsuji, H.; Tochino, Y.; Fujita, K.; Kihara, S.; Funahashi, T.; Shimomura, I. The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc. Res., 2009, 83(1), 34-41.
[http://dx.doi.org/10.1093/cvr/cvp095] [PMID: 19297367]
[75]
Gladka, M.; El Azzouzi, H.; De Windt, L.J.; da Costa Martins, P.A. Aquaporin 7: the glycerol aquaeductus in the heart. Cardiovasc. Res., 2009, 83(1), 3-4.
[http://dx.doi.org/10.1093/cvr/cvp147] [PMID: 19429920]
[76]
Thornton, S.N. Increased hydration can be associated with weight loss. Front. Nutr., 2016, 10, 3-18.
[http://dx.doi.org/10.3389/fnut.2016.00018]
[77]
Dennis, E.A.; Dengo, A.L.; Comber, D.L.; Flack, K.D.; Savla, J.; Davy, K.P.; Davy, B.M. Water consumption increases weight loss during a hypocaloric diet intervention in middle-aged and older adults. Obesity (Silver Spring), 2010, 18(2), 300-307.
[http://dx.doi.org/10.1038/oby.2009.235] [PMID: 19661958]
[78]
Parretti, H.M.; Aveyard, P.; Blannin, A.; Clifford, S.J.; Coleman, S.J.; Roalfe, A.; Daley, A.J. Efficacy of water preloading before main meals as a strategy for weight loss in primary care patients with obesity: RCT. Obesity (Silver Spring), 2015, 23(9), 1785-1791.
[http://dx.doi.org/10.1002/oby.21167] [PMID: 26237305]
[79]
Kennedy, G.C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B Biol. Sci., 1953, 140(901), 578-596.
[http://dx.doi.org/10.1098/rspb.1953.0009] [PMID: 13027283]
[80]
Ye, Q.; Wu, Y.; Gao, Y.; Li, Z.; Li, W.; Zhang, C. The ‘selfish brain’ is regulated by aquaporins and autophagy under nutrient deprivation. Mol. Med. Rep., 2016, 13(5), 3842-3848.
[http://dx.doi.org/10.3892/mmr.2016.4988] [PMID: 26986971]
[81]
Belkacemi, L.; Desai, M.; Beall, M.H.; Liu, Q.; Lin, J.T.; Nelson, D.M.; Ross, M.G. Early compensatory adaptations in maternal undernourished pregnancies in rats: role of the aquaporins. J. Matern. Fetal Neonatal Med., 2011, 24(5), 752-759.
[http://dx.doi.org/10.3109/14767058.2010.521870] [PMID: 20958229]
[82]
Portincasa, P.; Calamita, G. Phytocompounds modulating aquaporins: clinical benefits are anticipated. food chem., 2019, 274, 642-650.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.029] [pmid:30372989]
[83]
Tesse, A.; Grossini, E.; Tamma, G.; Brenner, C.; Portincasa, P.; Marinelli, R.A.; Calamita, G. Aquaporins as targets of dietary bioactive phytocompounds. Front. Mol. Biosci., 2018, 5, 30.
[http://dx.doi.org/10.3389/fmolb.2018.00030] [PMID: 29721498]
[84]
Tamma, G.; Valenti, G.; Grossini, E.; Donnini, S.; Marino, A.; Marinelli, R.A.; Calamita, G. Aquaporin membrane channels in oxidative stress, cell signaling and aging: recent advances and research trends. Oxid. Med. Cell. Longev., 2018.20181501847
[http://dx.doi.org/10.1155/2018/1501847] [PMID: 29770164]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 19
Year: 2019
Page: [3457 - 3470]
Pages: 14
DOI: 10.2174/0929867324666170523123010
Price: $65

Article Metrics

PDF: 30
HTML: 4