Novel Thiazole Carboxylic Acid Derivatives Possessing a “Zinc Binding Feature” as Potential Human Glyoxalase-I Inhibitors

Author(s): Qosay A. Al-Balasa*, Mohammad A. Hassana, Ghazi A. Al Jabala, Nizar A. Al-Shar, Ammar M. Almaaytahb, Tamam El-Elimata.

Journal Name: Letters in Drug Design & Discovery

Volume 14 , Issue 11 , 2017

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Glyoxalase-I (Glo-I) enzyme is an attractive new target for developing new cancer therapeutics. This enzyme is a dimeric mononuclear zinc coordinating metalloenzyme, and the core zinc ion was utilized in designing potentially active inhibitors possessing a selective zinc binding feature.

Objective: A panel of thiazole based carboxylic acid derivatives were designed, synthesized, and evaluated for their in vitro inhibitory activity against Glo-I enzyme based on their chelating potential with the zinc atom at the core of the active site.

Methods: Flexible molecular docking was employed in designing the proposed inhibitors. The designed compounds were synthesized, fully characterized, and in vitro assayed against Glo-I enzyme.

Results: Compound 14 was identified as the most potent inhibitor of the series with an IC50 of 2.5 µM. Moreover, the in-silico calculated CDocker scores were in excellent agreement with the experimental inhibitory activity of the compounds.

Conclusion: The carboxylic acid group was identified as an indispensable chelating functionality in inhibiting Glo-I enzyme. The data obtained in this study indicate that these compounds could be promising anti-cancer candidates and hence warrant further optimization.

Keywords: Computer aided drug design, glyoxalase-I, thiazole carboxylic acid, zinc binding feature, CDocker, anticancer.

Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 14
ISSUE: 11
Year: 2017
Page: [1324 - 1334]
Pages: 11
DOI: 10.2174/1570180814666170306120954
Price: $58

Article Metrics

PDF: 20
HTML: 1