An Investigating Approach for Optimization of Software Test Suite

Author(s): Prabhat Kumar, Manju Khari*.

Journal Name: Recent Advances in Communications and Networking Technology

Volume 6 , Issue 1 , 2017

Graphical Abstract:


Abstract:

Aims: Software Test Suite Optimization (TSO) is a common approach for generating efficient test data in lesser time. This paper presents an efficient methodology for automatic generation of independent paths and TSO with the help of Artificial Bee Colony (ABC) investigating technique.

Method: The proposed work combines both global search methods (by scout bees) and local search methods (performed by employee bees and onlooker bees). The parallel behaviour of these three bees makes the generation of independent paths and software TSO faster.

Observation: The proposed novel approach is compared with other population-based approaches such as Genetic Algorithm (GA) and Ant Colony Optimization (ACO). It is analysed and validated using 30 Java programs and the results show that it outperforms the other approaches on the basis of execution time and percentage of optimization.

Results: The study presents sophisticated concept in a simplified form that should be beneficial to both researchers and practitioners involved in solving TSO problems.

Keywords: Investigating technique, software under test, ant colony, software testing, artificial bee colony, optimization, genetic algorithm, test data generation.

Rights & PermissionsPrintExport

Article Details

VOLUME: 6
ISSUE: 1
Year: 2017
Page: [41 - 54]
Pages: 14
DOI: 10.2174/2215081106666170102145454
Price: $58

Article Metrics

PDF: 6
HTML: 1
EPUB: 1
PRC: 0