Current Metabolomics

Back

FTIR Spectroscopy Analysis can Highlight Induced Damage in Neuronallike Cells and Bio-protective Effectiveness of Agmatine

(E-pub Ahead of Print)

Author(s): Nadia Ferlazzo, Emanuele Calabrò, Monica Currò, Daniela Caccamo, Salvatore Magazù, Riccardo Ientile.

Abstract:

Background: Agmatine, an endogenous amine, is cosidered a novel neuromodulator with neuroprotective properties. However, the mechanisms involved in these protective effects are poorly understood.

Methods: Fourier transform infrared (FTIR) spectroscopy analysis detects biomolecular changes in disordered cells and tissues. In the present study, we employ FTIR spectroscopy to characterize the changes in rotenone-induced damage in neuronal-like differentiated SH-SY5Y neuroblastoma cells in the presence or absence of agmatine.

Results: The analysis of the FTIR spectra evidences significant alterations in rotenone-treated cells that are reduced by the pre-incubation with agmatine (250 nM). In particular, rotenone-damaged cells demonstrate spectral alterations related to amide I, which correspond to an increase in β-sheet components, and decreases in the amide II absorption intensity, suggesting a loss of N–H bending and C–N stretching. These alterations were also evident by Fourier self-deconvolution analysis. Thus, rotenone induced increases in the levels of stretching vibration band related to the protein carboxyl group would account for a significant amount of misfolded proteins in the cell. Agmatine effectively reduces these effects of rotenone on protein structure.

Conclusion: In conclusion, antioxidant and scavenging properties of agmatine reduce rotenone-produced cellular damage at the level of protein structure. Our results, together with other previous observations, make agmatine a potential therapeutic agent in the treatment of Parkinson’s disease.

Keywords: FTIR spectroscopy analysis can highlight induced damage in neuronal-like cells and bio-protective effectiveness of agmatine.

Rights & PermissionsPrintExport

Article Details

VOLUME: 4
Year: 2016
(E-pub Ahead of Print)
DOI: 10.2174/2213235X04666161118144545
Price: $95