Prediction and Early Evaluation of Anticancer Therapy Response: From Imaging of Drug Efflux Pumps to Targeted Therapy Response

Author(s): Qingqing Meng , Zheng Li , Shaoshun Li .

Journal Name: Current Medicinal Chemistry

Volume 23 , Issue 41 , 2016

  Journal Home
Translate in Chinese

Abstract:

Multidrug resistance (MDR) describes the resistance of tumor cells to chemotherapy and has been ascribed to the overexpression of drug efflux pumps. Molecular imaging of drug efflux pumps is helpful to identify the patients who may be resistant to the chemotherapy and thus will avoid the unnecessary treatment and increase the therapeutic effectiveness. Imaging probes targeting drug efflux pumps can non-invasively evaluate the Pgp function and play an important role in identification of MDR, prediction of response, and monitoring MDR modulation. On the other hand, new anticancer agents based on molecular targets such as epidermal growth factor receptor (EGFR) and angiogenic factor receptor may potentially be combined with chemotherapeutic drugs to overcome the MDR. Imaging of molecular targets visualize treatment response of patients at molecular level vividly and help to select right patients for certain targeted anticancer therapy. Among all the imaging modalities, nuclear imaging including positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging has the greatest promise for rapid translation to the clinic and can realize quantitative visualization of biochemical processes in vivo. In this review, we will summarize the nuclear imaging probes utilized for predicting and evaluating the early anticancer therapy response. 99mTc labeled agents and PET based radiopharmaceuticals like 18F-Paclitaxel, 11C-Verapamil for drug efflux pumps imaging will be discussed here. Moreover, molecular imaging probes used for targeted therapy response evaluation like 18F-Tamoxifen, 89Zr-Trastuzumab will also be introduced in this review.

Keywords: Multidrug resistance, molecular imaging, drug efflux pump, therapy response, SPECT, PET.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 41
Year: 2016
Page: [4625 - 4638]
Pages: 14
DOI: 10.2174/0929867323666161101100417
Price: $58

Article Metrics

PDF: 40
HTML: 3