Anti-cancer Drug Delivery Using Metal Organic Frameworks (MOFs)

Author(s): Mihad Ibrahim, Rana Sabouni, Ghaleb A. Husseini.

Journal Name: Current Medicinal Chemistry

Volume 24 , Issue 2 , 2017

  Journal Home
Translate in Chinese
Submit Manuscript
Submit Proposal

Abstract:

Cancer is the uncontrolled growth of cells in the body and is considered as one of the major causes of death globally. There are several cytotoxic chemotherapeutic agents used to treat cancer including methotrexate, 5-fluorouracil, cisplatin, tamoxifen, doxorubicin and others. Although billions of dollars have been spent on cancer research to develop these chemotherapies, it still remains a major illness for mankind partly due to the shortcomings of these therapies. These shortcomings include low targeting specificity, severe side effects (due to high doses) and poor pharmacokinetics. To avoid these drawbacks, anti-cancer drug delivery systems have been developed recently using nanocarriers including liposomes, micelles, polyelectrolyte capsules and others.

One of the recent class of nanoparticles investigated for chemotherapeutic use are metal organic frameworks (MOFs) which are hybrid polymers that consist of metal ions or clusters and organic ligands. MOFs are used in many applications including gas/vapor separation, gas storage, catalysis, luminescent materials, and biomedical imaging. These structures have additional features that promote their use as drug carriers in the biomedical field. First, they are nontoxic, biodegradable and have the ability to carry high loadings of the anti-neoplastic agent due to their porous nature. Also, they have well-defined crystalline structures that can be characterized by different analytical techniques and their sizes are suitable to control their in vivo drug release.

This paper reviews the methods used to synthesize MOFs and their recent use as antineoplastic drug delivery carriers.

Keywords: Cancer, chemotherapy, metal organic frameworks (MOFs), loading, release, cytotoxicity.

Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 24
ISSUE: 2
Year: 2017
Page: [193 - 214]
Pages: 22
DOI: 10.2174/0929867323666160926151216
Price: $58

Article Metrics

PDF: 87
HTML: 22
EPUB: 2
PRC: 1