Contribution of Aspartic Proteases in Candida Virulence. Protease Inhibitors against Candida Infections

Author(s): Staniszewska Monika*, Bondaryk Małgorzata, Ochal Zbigniew.

Journal Name: Current Protein & Peptide Science

Volume 18 , Issue 10 , 2017

Become EABM
Become Reviewer

Graphical Abstract:


Candida species are the major opportunistic human pathogens accounting for 70-90% of all invasive fungal infections. Candida spp, especially C. albicans, are able to produce and secrete hydrolytic enzymes, particularly aspartic proteases (Saps). These enzymes production is an evolutionary adaptation of pathogens to utilize nutrients and survive in host. Sap1-10 are believed to contribute to the adhesion and invasion of host tissues through the degradation of cell surface structures. Aspartic proteases control several steps in innate immune evasion and they degrade proteins related to immunological defense (antibodies, complement and cytokines), allowing the fungus to escape from the first line of host defense. The existing ways to identify potential drug targets rely on specific subset like virulence genes, transcriptional and stress response factors. Candida virulence factors like Sap isoenzymes can be pivotal targets for drug development. The identification of mechanism of a non-canonical inflammasome exerted by Saps could open novel therapeutic strategies to dampen hyperinflammatory response in candidiasis.

Keywords: Candida, Sap1-10, inhibitors, pathogenesis, fungal infections, enzymes.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2017
Page: [1050 - 1062]
Pages: 13
DOI: 10.2174/1389203717666160809155749
Price: $65

Article Metrics

PDF: 42